|   | Mathbox for Norm Megill | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dihmeetcN | Structured version Visualization version GIF version | ||
| Description: Isomorphism H of a lattice meet when the meet is not under the fiducial hyperplane 𝑊. (Contributed by NM, 26-Mar-2014.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| dihmeetc.b | ⊢ 𝐵 = (Base‘𝐾) | 
| dihmeetc.l | ⊢ ≤ = (le‘𝐾) | 
| dihmeetc.m | ⊢ ∧ = (meet‘𝐾) | 
| dihmeetc.h | ⊢ 𝐻 = (LHyp‘𝐾) | 
| dihmeetc.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | 
| Ref | Expression | 
|---|---|
| dihmeetcN | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ (𝑋 ∧ 𝑌) ≤ 𝑊) → (𝐼‘(𝑋 ∧ 𝑌)) = ((𝐼‘𝑋) ∩ (𝐼‘𝑌))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid 2736 | . . . 4 ⊢ (glb‘𝐾) = (glb‘𝐾) | |
| 2 | dihmeetc.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
| 3 | simp1l 1197 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ (𝑋 ∧ 𝑌) ≤ 𝑊) → 𝐾 ∈ HL) | |
| 4 | simp2l 1199 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ (𝑋 ∧ 𝑌) ≤ 𝑊) → 𝑋 ∈ 𝐵) | |
| 5 | simp2r 1200 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ (𝑋 ∧ 𝑌) ≤ 𝑊) → 𝑌 ∈ 𝐵) | |
| 6 | 1, 2, 3, 4, 5 | meetval 18437 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ (𝑋 ∧ 𝑌) ≤ 𝑊) → (𝑋 ∧ 𝑌) = ((glb‘𝐾)‘{𝑋, 𝑌})) | 
| 7 | 6 | fveq2d 6909 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ (𝑋 ∧ 𝑌) ≤ 𝑊) → (𝐼‘(𝑋 ∧ 𝑌)) = (𝐼‘((glb‘𝐾)‘{𝑋, 𝑌}))) | 
| 8 | simp1 1136 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ (𝑋 ∧ 𝑌) ≤ 𝑊) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 9 | prssi 4820 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → {𝑋, 𝑌} ⊆ 𝐵) | |
| 10 | 9 | 3ad2ant2 1134 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ (𝑋 ∧ 𝑌) ≤ 𝑊) → {𝑋, 𝑌} ⊆ 𝐵) | 
| 11 | prnzg 4777 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → {𝑋, 𝑌} ≠ ∅) | |
| 12 | 4, 11 | syl 17 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ (𝑋 ∧ 𝑌) ≤ 𝑊) → {𝑋, 𝑌} ≠ ∅) | 
| 13 | simp3 1138 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ (𝑋 ∧ 𝑌) ≤ 𝑊) → ¬ (𝑋 ∧ 𝑌) ≤ 𝑊) | |
| 14 | 6 | breq1d 5152 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ (𝑋 ∧ 𝑌) ≤ 𝑊) → ((𝑋 ∧ 𝑌) ≤ 𝑊 ↔ ((glb‘𝐾)‘{𝑋, 𝑌}) ≤ 𝑊)) | 
| 15 | 13, 14 | mtbid 324 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ (𝑋 ∧ 𝑌) ≤ 𝑊) → ¬ ((glb‘𝐾)‘{𝑋, 𝑌}) ≤ 𝑊) | 
| 16 | dihmeetc.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 17 | dihmeetc.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 18 | dihmeetc.i | . . . 4 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
| 19 | dihmeetc.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 20 | 16, 1, 17, 18, 19 | dihglbcN 41304 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ({𝑋, 𝑌} ⊆ 𝐵 ∧ {𝑋, 𝑌} ≠ ∅) ∧ ¬ ((glb‘𝐾)‘{𝑋, 𝑌}) ≤ 𝑊) → (𝐼‘((glb‘𝐾)‘{𝑋, 𝑌})) = ∩ 𝑥 ∈ {𝑋, 𝑌} (𝐼‘𝑥)) | 
| 21 | 8, 10, 12, 15, 20 | syl121anc 1376 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ (𝑋 ∧ 𝑌) ≤ 𝑊) → (𝐼‘((glb‘𝐾)‘{𝑋, 𝑌})) = ∩ 𝑥 ∈ {𝑋, 𝑌} (𝐼‘𝑥)) | 
| 22 | fveq2 6905 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝐼‘𝑥) = (𝐼‘𝑋)) | |
| 23 | fveq2 6905 | . . . 4 ⊢ (𝑥 = 𝑌 → (𝐼‘𝑥) = (𝐼‘𝑌)) | |
| 24 | 22, 23 | iinxprg 5088 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ∩ 𝑥 ∈ {𝑋, 𝑌} (𝐼‘𝑥) = ((𝐼‘𝑋) ∩ (𝐼‘𝑌))) | 
| 25 | 24 | 3ad2ant2 1134 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ (𝑋 ∧ 𝑌) ≤ 𝑊) → ∩ 𝑥 ∈ {𝑋, 𝑌} (𝐼‘𝑥) = ((𝐼‘𝑋) ∩ (𝐼‘𝑌))) | 
| 26 | 7, 21, 25 | 3eqtrd 2780 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ (𝑋 ∧ 𝑌) ≤ 𝑊) → (𝐼‘(𝑋 ∧ 𝑌)) = ((𝐼‘𝑋) ∩ (𝐼‘𝑌))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2939 ∩ cin 3949 ⊆ wss 3950 ∅c0 4332 {cpr 4627 ∩ ciin 4991 class class class wbr 5142 ‘cfv 6560 (class class class)co 7432 Basecbs 17248 lecple 17305 glbcglb 18357 meetcmee 18359 HLchlt 39352 LHypclh 39987 DIsoHcdih 41231 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 ax-riotaBAD 38955 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-iin 4993 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-tpos 8252 df-undef 8299 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-er 8746 df-map 8869 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-2 12330 df-3 12331 df-4 12332 df-5 12333 df-6 12334 df-n0 12529 df-z 12616 df-uz 12880 df-fz 13549 df-struct 17185 df-sets 17202 df-slot 17220 df-ndx 17232 df-base 17249 df-ress 17276 df-plusg 17311 df-mulr 17312 df-sca 17314 df-vsca 17315 df-0g 17487 df-proset 18341 df-poset 18360 df-plt 18376 df-lub 18392 df-glb 18393 df-join 18394 df-meet 18395 df-p0 18471 df-p1 18472 df-lat 18478 df-clat 18545 df-mgm 18654 df-sgrp 18733 df-mnd 18749 df-submnd 18798 df-grp 18955 df-minusg 18956 df-sbg 18957 df-subg 19142 df-cntz 19336 df-lsm 19655 df-cmn 19801 df-abl 19802 df-mgp 20139 df-rng 20151 df-ur 20180 df-ring 20233 df-oppr 20335 df-dvdsr 20358 df-unit 20359 df-invr 20389 df-dvr 20402 df-drng 20732 df-lmod 20861 df-lss 20931 df-lsp 20971 df-lvec 21103 df-oposet 39178 df-ol 39180 df-oml 39181 df-covers 39268 df-ats 39269 df-atl 39300 df-cvlat 39324 df-hlat 39353 df-llines 39501 df-lplanes 39502 df-lvols 39503 df-lines 39504 df-psubsp 39506 df-pmap 39507 df-padd 39799 df-lhyp 39991 df-laut 39992 df-ldil 40107 df-ltrn 40108 df-trl 40162 df-tendo 40758 df-edring 40760 df-disoa 41032 df-dvech 41082 df-dib 41142 df-dic 41176 df-dih 41232 | 
| This theorem is referenced by: dihmeetlem10N 41319 dihmeetALTN 41330 | 
| Copyright terms: Public domain | W3C validator |