Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dihmeet | Structured version Visualization version GIF version |
Description: Isomorphism H of a lattice meet. (Contributed by NM, 13-Apr-2014.) |
Ref | Expression |
---|---|
dihmeet.b | ⊢ 𝐵 = (Base‘𝐾) |
dihmeet.m | ⊢ ∧ = (meet‘𝐾) |
dihmeet.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dihmeet.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
dihmeet | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐼‘(𝑋 ∧ 𝑌)) = ((𝐼‘𝑋) ∩ (𝐼‘𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . 4 ⊢ (glb‘𝐾) = (glb‘𝐾) | |
2 | dihmeet.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
3 | simp1l 1199 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ HL) | |
4 | simp2 1139 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
5 | simp3 1140 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
6 | 1, 2, 3, 4, 5 | meetval 17910 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) = ((glb‘𝐾)‘{𝑋, 𝑌})) |
7 | 6 | fveq2d 6730 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐼‘(𝑋 ∧ 𝑌)) = (𝐼‘((glb‘𝐾)‘{𝑋, 𝑌}))) |
8 | simp1 1138 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
9 | prssi 4743 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → {𝑋, 𝑌} ⊆ 𝐵) | |
10 | 9 | 3adant1 1132 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → {𝑋, 𝑌} ⊆ 𝐵) |
11 | prnzg 4703 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → {𝑋, 𝑌} ≠ ∅) | |
12 | 11 | 3ad2ant2 1136 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → {𝑋, 𝑌} ≠ ∅) |
13 | dihmeet.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
14 | dihmeet.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
15 | dihmeet.i | . . . 4 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
16 | 13, 1, 14, 15 | dihglb 39105 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ({𝑋, 𝑌} ⊆ 𝐵 ∧ {𝑋, 𝑌} ≠ ∅)) → (𝐼‘((glb‘𝐾)‘{𝑋, 𝑌})) = ∩ 𝑥 ∈ {𝑋, 𝑌} (𝐼‘𝑥)) |
17 | 8, 10, 12, 16 | syl12anc 837 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐼‘((glb‘𝐾)‘{𝑋, 𝑌})) = ∩ 𝑥 ∈ {𝑋, 𝑌} (𝐼‘𝑥)) |
18 | fveq2 6726 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝐼‘𝑥) = (𝐼‘𝑋)) | |
19 | fveq2 6726 | . . . 4 ⊢ (𝑥 = 𝑌 → (𝐼‘𝑥) = (𝐼‘𝑌)) | |
20 | 18, 19 | iinxprg 5006 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ∩ 𝑥 ∈ {𝑋, 𝑌} (𝐼‘𝑥) = ((𝐼‘𝑋) ∩ (𝐼‘𝑌))) |
21 | 20 | 3adant1 1132 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ∩ 𝑥 ∈ {𝑋, 𝑌} (𝐼‘𝑥) = ((𝐼‘𝑋) ∩ (𝐼‘𝑌))) |
22 | 7, 17, 21 | 3eqtrd 2782 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐼‘(𝑋 ∧ 𝑌)) = ((𝐼‘𝑋) ∩ (𝐼‘𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2111 ≠ wne 2941 ∩ cin 3874 ⊆ wss 3875 ∅c0 4246 {cpr 4552 ∩ ciin 4914 ‘cfv 6389 (class class class)co 7222 Basecbs 16773 glbcglb 17830 meetcmee 17832 HLchlt 37114 LHypclh 37748 DIsoHcdih 38992 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-rep 5188 ax-sep 5201 ax-nul 5208 ax-pow 5267 ax-pr 5331 ax-un 7532 ax-cnex 10798 ax-resscn 10799 ax-1cn 10800 ax-icn 10801 ax-addcl 10802 ax-addrcl 10803 ax-mulcl 10804 ax-mulrcl 10805 ax-mulcom 10806 ax-addass 10807 ax-mulass 10808 ax-distr 10809 ax-i2m1 10810 ax-1ne0 10811 ax-1rid 10812 ax-rnegex 10813 ax-rrecex 10814 ax-cnre 10815 ax-pre-lttri 10816 ax-pre-lttrn 10817 ax-pre-ltadd 10818 ax-pre-mulgt0 10819 ax-riotaBAD 36717 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rmo 3070 df-rab 3071 df-v 3417 df-sbc 3704 df-csb 3821 df-dif 3878 df-un 3880 df-in 3882 df-ss 3892 df-pss 3894 df-nul 4247 df-if 4449 df-pw 4524 df-sn 4551 df-pr 4553 df-tp 4555 df-op 4557 df-uni 4829 df-int 4869 df-iun 4915 df-iin 4916 df-br 5063 df-opab 5125 df-mpt 5145 df-tr 5171 df-id 5464 df-eprel 5469 df-po 5477 df-so 5478 df-fr 5518 df-we 5520 df-xp 5566 df-rel 5567 df-cnv 5568 df-co 5569 df-dm 5570 df-rn 5571 df-res 5572 df-ima 5573 df-pred 6169 df-ord 6225 df-on 6226 df-lim 6227 df-suc 6228 df-iota 6347 df-fun 6391 df-fn 6392 df-f 6393 df-f1 6394 df-fo 6395 df-f1o 6396 df-fv 6397 df-riota 7179 df-ov 7225 df-oprab 7226 df-mpo 7227 df-om 7654 df-1st 7770 df-2nd 7771 df-tpos 7977 df-undef 8024 df-wrecs 8056 df-recs 8117 df-rdg 8155 df-1o 8211 df-er 8400 df-map 8519 df-en 8636 df-dom 8637 df-sdom 8638 df-fin 8639 df-pnf 10882 df-mnf 10883 df-xr 10884 df-ltxr 10885 df-le 10886 df-sub 11077 df-neg 11078 df-nn 11844 df-2 11906 df-3 11907 df-4 11908 df-5 11909 df-6 11910 df-n0 12104 df-z 12190 df-uz 12452 df-fz 13109 df-struct 16713 df-sets 16730 df-slot 16748 df-ndx 16758 df-base 16774 df-ress 16798 df-plusg 16828 df-mulr 16829 df-sca 16831 df-vsca 16832 df-0g 16959 df-proset 17815 df-poset 17833 df-plt 17849 df-lub 17865 df-glb 17866 df-join 17867 df-meet 17868 df-p0 17944 df-p1 17945 df-lat 17951 df-clat 18018 df-mgm 18127 df-sgrp 18176 df-mnd 18187 df-submnd 18232 df-grp 18381 df-minusg 18382 df-sbg 18383 df-subg 18553 df-cntz 18724 df-lsm 19038 df-cmn 19185 df-abl 19186 df-mgp 19518 df-ur 19530 df-ring 19577 df-oppr 19654 df-dvdsr 19672 df-unit 19673 df-invr 19703 df-dvr 19714 df-drng 19782 df-lmod 19914 df-lss 19982 df-lsp 20022 df-lvec 20153 df-lsatoms 36740 df-oposet 36940 df-ol 36942 df-oml 36943 df-covers 37030 df-ats 37031 df-atl 37062 df-cvlat 37086 df-hlat 37115 df-llines 37262 df-lplanes 37263 df-lvols 37264 df-lines 37265 df-psubsp 37267 df-pmap 37268 df-padd 37560 df-lhyp 37752 df-laut 37753 df-ldil 37868 df-ltrn 37869 df-trl 37923 df-tendo 38519 df-edring 38521 df-disoa 38793 df-dvech 38843 df-dib 38903 df-dic 38937 df-dih 38993 |
This theorem is referenced by: dihmeetcl 39109 dihmeet2 39110 dochnoncon 39155 djhlj 39165 |
Copyright terms: Public domain | W3C validator |