![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pmapmeet | Structured version Visualization version GIF version |
Description: The projective map of a meet. (Contributed by NM, 25-Jan-2012.) |
Ref | Expression |
---|---|
pmapmeet.b | ⊢ 𝐵 = (Base‘𝐾) |
pmapmeet.m | ⊢ ∧ = (meet‘𝐾) |
pmapmeet.a | ⊢ 𝐴 = (Atoms‘𝐾) |
pmapmeet.p | ⊢ 𝑃 = (pmap‘𝐾) |
Ref | Expression |
---|---|
pmapmeet | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑃‘(𝑋 ∧ 𝑌)) = ((𝑃‘𝑋) ∩ (𝑃‘𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2797 | . . . 4 ⊢ (glb‘𝐾) = (glb‘𝐾) | |
2 | pmapmeet.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
3 | simp1 1167 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ HL) | |
4 | simp2 1168 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
5 | simp3 1169 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
6 | 1, 2, 3, 4, 5 | meetval 17331 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) = ((glb‘𝐾)‘{𝑋, 𝑌})) |
7 | 6 | fveq2d 6413 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑃‘(𝑋 ∧ 𝑌)) = (𝑃‘((glb‘𝐾)‘{𝑋, 𝑌}))) |
8 | prssi 4538 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → {𝑋, 𝑌} ⊆ 𝐵) | |
9 | 8 | 3adant1 1161 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → {𝑋, 𝑌} ⊆ 𝐵) |
10 | prnzg 4497 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → {𝑋, 𝑌} ≠ ∅) | |
11 | 10 | 3ad2ant2 1165 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → {𝑋, 𝑌} ≠ ∅) |
12 | pmapmeet.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
13 | pmapmeet.p | . . . 4 ⊢ 𝑃 = (pmap‘𝐾) | |
14 | 12, 1, 13 | pmapglb 35783 | . . 3 ⊢ ((𝐾 ∈ HL ∧ {𝑋, 𝑌} ⊆ 𝐵 ∧ {𝑋, 𝑌} ≠ ∅) → (𝑃‘((glb‘𝐾)‘{𝑋, 𝑌})) = ∩ 𝑥 ∈ {𝑋, 𝑌} (𝑃‘𝑥)) |
15 | 3, 9, 11, 14 | syl3anc 1491 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑃‘((glb‘𝐾)‘{𝑋, 𝑌})) = ∩ 𝑥 ∈ {𝑋, 𝑌} (𝑃‘𝑥)) |
16 | fveq2 6409 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑃‘𝑥) = (𝑃‘𝑋)) | |
17 | fveq2 6409 | . . . 4 ⊢ (𝑥 = 𝑌 → (𝑃‘𝑥) = (𝑃‘𝑌)) | |
18 | 16, 17 | iinxprg 4789 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ∩ 𝑥 ∈ {𝑋, 𝑌} (𝑃‘𝑥) = ((𝑃‘𝑋) ∩ (𝑃‘𝑌))) |
19 | 18 | 3adant1 1161 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ∩ 𝑥 ∈ {𝑋, 𝑌} (𝑃‘𝑥) = ((𝑃‘𝑋) ∩ (𝑃‘𝑌))) |
20 | 7, 15, 19 | 3eqtrd 2835 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑃‘(𝑋 ∧ 𝑌)) = ((𝑃‘𝑋) ∩ (𝑃‘𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ≠ wne 2969 ∩ cin 3766 ⊆ wss 3767 ∅c0 4113 {cpr 4368 ∩ ciin 4709 ‘cfv 6099 (class class class)co 6876 Basecbs 16181 glbcglb 17255 meetcmee 17257 Atomscatm 35276 HLchlt 35363 pmapcpmap 35510 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-rep 4962 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-ral 3092 df-rex 3093 df-reu 3094 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-op 4373 df-uni 4627 df-iun 4710 df-iin 4711 df-br 4842 df-opab 4904 df-mpt 4921 df-id 5218 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-riota 6837 df-ov 6879 df-oprab 6880 df-poset 17258 df-lub 17286 df-glb 17287 df-join 17288 df-meet 17289 df-lat 17358 df-clat 17420 df-ats 35280 df-hlat 35364 df-pmap 35517 |
This theorem is referenced by: hlmod1i 35869 poldmj1N 35941 pmapj2N 35942 pnonsingN 35946 psubclinN 35961 poml4N 35966 pl42lem1N 35992 pl42lem2N 35993 |
Copyright terms: Public domain | W3C validator |