Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapmeet Structured version   Visualization version   GIF version

Theorem pmapmeet 37787
Description: The projective map of a meet. (Contributed by NM, 25-Jan-2012.)
Hypotheses
Ref Expression
pmapmeet.b 𝐵 = (Base‘𝐾)
pmapmeet.m = (meet‘𝐾)
pmapmeet.a 𝐴 = (Atoms‘𝐾)
pmapmeet.p 𝑃 = (pmap‘𝐾)
Assertion
Ref Expression
pmapmeet ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑃‘(𝑋 𝑌)) = ((𝑃𝑋) ∩ (𝑃𝑌)))

Proof of Theorem pmapmeet
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . 4 (glb‘𝐾) = (glb‘𝐾)
2 pmapmeet.m . . . 4 = (meet‘𝐾)
3 simp1 1135 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ HL)
4 simp2 1136 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
5 simp3 1137 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
61, 2, 3, 4, 5meetval 18109 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = ((glb‘𝐾)‘{𝑋, 𝑌}))
76fveq2d 6778 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑃‘(𝑋 𝑌)) = (𝑃‘((glb‘𝐾)‘{𝑋, 𝑌})))
8 prssi 4754 . . . 4 ((𝑋𝐵𝑌𝐵) → {𝑋, 𝑌} ⊆ 𝐵)
983adant1 1129 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → {𝑋, 𝑌} ⊆ 𝐵)
10 prnzg 4714 . . . 4 (𝑋𝐵 → {𝑋, 𝑌} ≠ ∅)
11103ad2ant2 1133 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → {𝑋, 𝑌} ≠ ∅)
12 pmapmeet.b . . . 4 𝐵 = (Base‘𝐾)
13 pmapmeet.p . . . 4 𝑃 = (pmap‘𝐾)
1412, 1, 13pmapglb 37784 . . 3 ((𝐾 ∈ HL ∧ {𝑋, 𝑌} ⊆ 𝐵 ∧ {𝑋, 𝑌} ≠ ∅) → (𝑃‘((glb‘𝐾)‘{𝑋, 𝑌})) = 𝑥 ∈ {𝑋, 𝑌} (𝑃𝑥))
153, 9, 11, 14syl3anc 1370 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑃‘((glb‘𝐾)‘{𝑋, 𝑌})) = 𝑥 ∈ {𝑋, 𝑌} (𝑃𝑥))
16 fveq2 6774 . . . 4 (𝑥 = 𝑋 → (𝑃𝑥) = (𝑃𝑋))
17 fveq2 6774 . . . 4 (𝑥 = 𝑌 → (𝑃𝑥) = (𝑃𝑌))
1816, 17iinxprg 5018 . . 3 ((𝑋𝐵𝑌𝐵) → 𝑥 ∈ {𝑋, 𝑌} (𝑃𝑥) = ((𝑃𝑋) ∩ (𝑃𝑌)))
19183adant1 1129 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝑥 ∈ {𝑋, 𝑌} (𝑃𝑥) = ((𝑃𝑋) ∩ (𝑃𝑌)))
207, 15, 193eqtrd 2782 1 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑃‘(𝑋 𝑌)) = ((𝑃𝑋) ∩ (𝑃𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2106  wne 2943  cin 3886  wss 3887  c0 4256  {cpr 4563   ciin 4925  cfv 6433  (class class class)co 7275  Basecbs 16912  glbcglb 18028  meetcmee 18030  Atomscatm 37277  HLchlt 37364  pmapcpmap 37511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-poset 18031  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-lat 18150  df-clat 18217  df-ats 37281  df-hlat 37365  df-pmap 37518
This theorem is referenced by:  hlmod1i  37870  poldmj1N  37942  pmapj2N  37943  pnonsingN  37947  psubclinN  37962  poml4N  37967  pl42lem1N  37993  pl42lem2N  37994
  Copyright terms: Public domain W3C validator