![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pmapmeet | Structured version Visualization version GIF version |
Description: The projective map of a meet. (Contributed by NM, 25-Jan-2012.) |
Ref | Expression |
---|---|
pmapmeet.b | β’ π΅ = (BaseβπΎ) |
pmapmeet.m | β’ β§ = (meetβπΎ) |
pmapmeet.a | β’ π΄ = (AtomsβπΎ) |
pmapmeet.p | β’ π = (pmapβπΎ) |
Ref | Expression |
---|---|
pmapmeet | β’ ((πΎ β HL β§ π β π΅ β§ π β π΅) β (πβ(π β§ π)) = ((πβπ) β© (πβπ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2724 | . . . 4 β’ (glbβπΎ) = (glbβπΎ) | |
2 | pmapmeet.m | . . . 4 β’ β§ = (meetβπΎ) | |
3 | simp1 1133 | . . . 4 β’ ((πΎ β HL β§ π β π΅ β§ π β π΅) β πΎ β HL) | |
4 | simp2 1134 | . . . 4 β’ ((πΎ β HL β§ π β π΅ β§ π β π΅) β π β π΅) | |
5 | simp3 1135 | . . . 4 β’ ((πΎ β HL β§ π β π΅ β§ π β π΅) β π β π΅) | |
6 | 1, 2, 3, 4, 5 | meetval 18345 | . . 3 β’ ((πΎ β HL β§ π β π΅ β§ π β π΅) β (π β§ π) = ((glbβπΎ)β{π, π})) |
7 | 6 | fveq2d 6885 | . 2 β’ ((πΎ β HL β§ π β π΅ β§ π β π΅) β (πβ(π β§ π)) = (πβ((glbβπΎ)β{π, π}))) |
8 | prssi 4816 | . . . 4 β’ ((π β π΅ β§ π β π΅) β {π, π} β π΅) | |
9 | 8 | 3adant1 1127 | . . 3 β’ ((πΎ β HL β§ π β π΅ β§ π β π΅) β {π, π} β π΅) |
10 | prnzg 4774 | . . . 4 β’ (π β π΅ β {π, π} β β ) | |
11 | 10 | 3ad2ant2 1131 | . . 3 β’ ((πΎ β HL β§ π β π΅ β§ π β π΅) β {π, π} β β ) |
12 | pmapmeet.b | . . . 4 β’ π΅ = (BaseβπΎ) | |
13 | pmapmeet.p | . . . 4 β’ π = (pmapβπΎ) | |
14 | 12, 1, 13 | pmapglb 39097 | . . 3 β’ ((πΎ β HL β§ {π, π} β π΅ β§ {π, π} β β ) β (πβ((glbβπΎ)β{π, π})) = β© π₯ β {π, π} (πβπ₯)) |
15 | 3, 9, 11, 14 | syl3anc 1368 | . 2 β’ ((πΎ β HL β§ π β π΅ β§ π β π΅) β (πβ((glbβπΎ)β{π, π})) = β© π₯ β {π, π} (πβπ₯)) |
16 | fveq2 6881 | . . . 4 β’ (π₯ = π β (πβπ₯) = (πβπ)) | |
17 | fveq2 6881 | . . . 4 β’ (π₯ = π β (πβπ₯) = (πβπ)) | |
18 | 16, 17 | iinxprg 5082 | . . 3 β’ ((π β π΅ β§ π β π΅) β β© π₯ β {π, π} (πβπ₯) = ((πβπ) β© (πβπ))) |
19 | 18 | 3adant1 1127 | . 2 β’ ((πΎ β HL β§ π β π΅ β§ π β π΅) β β© π₯ β {π, π} (πβπ₯) = ((πβπ) β© (πβπ))) |
20 | 7, 15, 19 | 3eqtrd 2768 | 1 β’ ((πΎ β HL β§ π β π΅ β§ π β π΅) β (πβ(π β§ π)) = ((πβπ) β© (πβπ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1084 = wceq 1533 β wcel 2098 β wne 2932 β© cin 3939 β wss 3940 β c0 4314 {cpr 4622 β© ciin 4988 βcfv 6533 (class class class)co 7401 Basecbs 17142 glbcglb 18264 meetcmee 18266 Atomscatm 38589 HLchlt 38676 pmapcpmap 38824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-iin 4990 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-poset 18267 df-lub 18300 df-glb 18301 df-join 18302 df-meet 18303 df-lat 18386 df-clat 18453 df-ats 38593 df-hlat 38677 df-pmap 38831 |
This theorem is referenced by: hlmod1i 39183 poldmj1N 39255 pmapj2N 39256 pnonsingN 39260 psubclinN 39275 poml4N 39280 pl42lem1N 39306 pl42lem2N 39307 |
Copyright terms: Public domain | W3C validator |