| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pmapmeet | Structured version Visualization version GIF version | ||
| Description: The projective map of a meet. (Contributed by NM, 25-Jan-2012.) |
| Ref | Expression |
|---|---|
| pmapmeet.b | ⊢ 𝐵 = (Base‘𝐾) |
| pmapmeet.m | ⊢ ∧ = (meet‘𝐾) |
| pmapmeet.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| pmapmeet.p | ⊢ 𝑃 = (pmap‘𝐾) |
| Ref | Expression |
|---|---|
| pmapmeet | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑃‘(𝑋 ∧ 𝑌)) = ((𝑃‘𝑋) ∩ (𝑃‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ (glb‘𝐾) = (glb‘𝐾) | |
| 2 | pmapmeet.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
| 3 | simp1 1136 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ HL) | |
| 4 | simp2 1137 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 5 | simp3 1138 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
| 6 | 1, 2, 3, 4, 5 | meetval 18295 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) = ((glb‘𝐾)‘{𝑋, 𝑌})) |
| 7 | 6 | fveq2d 6826 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑃‘(𝑋 ∧ 𝑌)) = (𝑃‘((glb‘𝐾)‘{𝑋, 𝑌}))) |
| 8 | prssi 4772 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → {𝑋, 𝑌} ⊆ 𝐵) | |
| 9 | 8 | 3adant1 1130 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → {𝑋, 𝑌} ⊆ 𝐵) |
| 10 | prnzg 4730 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → {𝑋, 𝑌} ≠ ∅) | |
| 11 | 10 | 3ad2ant2 1134 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → {𝑋, 𝑌} ≠ ∅) |
| 12 | pmapmeet.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 13 | pmapmeet.p | . . . 4 ⊢ 𝑃 = (pmap‘𝐾) | |
| 14 | 12, 1, 13 | pmapglb 39759 | . . 3 ⊢ ((𝐾 ∈ HL ∧ {𝑋, 𝑌} ⊆ 𝐵 ∧ {𝑋, 𝑌} ≠ ∅) → (𝑃‘((glb‘𝐾)‘{𝑋, 𝑌})) = ∩ 𝑥 ∈ {𝑋, 𝑌} (𝑃‘𝑥)) |
| 15 | 3, 9, 11, 14 | syl3anc 1373 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑃‘((glb‘𝐾)‘{𝑋, 𝑌})) = ∩ 𝑥 ∈ {𝑋, 𝑌} (𝑃‘𝑥)) |
| 16 | fveq2 6822 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑃‘𝑥) = (𝑃‘𝑋)) | |
| 17 | fveq2 6822 | . . . 4 ⊢ (𝑥 = 𝑌 → (𝑃‘𝑥) = (𝑃‘𝑌)) | |
| 18 | 16, 17 | iinxprg 5038 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ∩ 𝑥 ∈ {𝑋, 𝑌} (𝑃‘𝑥) = ((𝑃‘𝑋) ∩ (𝑃‘𝑌))) |
| 19 | 18 | 3adant1 1130 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ∩ 𝑥 ∈ {𝑋, 𝑌} (𝑃‘𝑥) = ((𝑃‘𝑋) ∩ (𝑃‘𝑌))) |
| 20 | 7, 15, 19 | 3eqtrd 2768 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑃‘(𝑋 ∧ 𝑌)) = ((𝑃‘𝑋) ∩ (𝑃‘𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∩ cin 3902 ⊆ wss 3903 ∅c0 4284 {cpr 4579 ∩ ciin 4942 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 glbcglb 18216 meetcmee 18218 Atomscatm 39252 HLchlt 39339 pmapcpmap 39486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-poset 18219 df-lub 18250 df-glb 18251 df-join 18252 df-meet 18253 df-lat 18338 df-clat 18405 df-ats 39256 df-hlat 39340 df-pmap 39493 |
| This theorem is referenced by: hlmod1i 39845 poldmj1N 39917 pmapj2N 39918 pnonsingN 39922 psubclinN 39937 poml4N 39942 pl42lem1N 39968 pl42lem2N 39969 |
| Copyright terms: Public domain | W3C validator |