Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pmapmeet | Structured version Visualization version GIF version |
Description: The projective map of a meet. (Contributed by NM, 25-Jan-2012.) |
Ref | Expression |
---|---|
pmapmeet.b | ⊢ 𝐵 = (Base‘𝐾) |
pmapmeet.m | ⊢ ∧ = (meet‘𝐾) |
pmapmeet.a | ⊢ 𝐴 = (Atoms‘𝐾) |
pmapmeet.p | ⊢ 𝑃 = (pmap‘𝐾) |
Ref | Expression |
---|---|
pmapmeet | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑃‘(𝑋 ∧ 𝑌)) = ((𝑃‘𝑋) ∩ (𝑃‘𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2759 | . . . 4 ⊢ (glb‘𝐾) = (glb‘𝐾) | |
2 | pmapmeet.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
3 | simp1 1134 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ HL) | |
4 | simp2 1135 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
5 | simp3 1136 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
6 | 1, 2, 3, 4, 5 | meetval 17688 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) = ((glb‘𝐾)‘{𝑋, 𝑌})) |
7 | 6 | fveq2d 6663 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑃‘(𝑋 ∧ 𝑌)) = (𝑃‘((glb‘𝐾)‘{𝑋, 𝑌}))) |
8 | prssi 4712 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → {𝑋, 𝑌} ⊆ 𝐵) | |
9 | 8 | 3adant1 1128 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → {𝑋, 𝑌} ⊆ 𝐵) |
10 | prnzg 4672 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → {𝑋, 𝑌} ≠ ∅) | |
11 | 10 | 3ad2ant2 1132 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → {𝑋, 𝑌} ≠ ∅) |
12 | pmapmeet.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
13 | pmapmeet.p | . . . 4 ⊢ 𝑃 = (pmap‘𝐾) | |
14 | 12, 1, 13 | pmapglb 37339 | . . 3 ⊢ ((𝐾 ∈ HL ∧ {𝑋, 𝑌} ⊆ 𝐵 ∧ {𝑋, 𝑌} ≠ ∅) → (𝑃‘((glb‘𝐾)‘{𝑋, 𝑌})) = ∩ 𝑥 ∈ {𝑋, 𝑌} (𝑃‘𝑥)) |
15 | 3, 9, 11, 14 | syl3anc 1369 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑃‘((glb‘𝐾)‘{𝑋, 𝑌})) = ∩ 𝑥 ∈ {𝑋, 𝑌} (𝑃‘𝑥)) |
16 | fveq2 6659 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑃‘𝑥) = (𝑃‘𝑋)) | |
17 | fveq2 6659 | . . . 4 ⊢ (𝑥 = 𝑌 → (𝑃‘𝑥) = (𝑃‘𝑌)) | |
18 | 16, 17 | iinxprg 4977 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ∩ 𝑥 ∈ {𝑋, 𝑌} (𝑃‘𝑥) = ((𝑃‘𝑋) ∩ (𝑃‘𝑌))) |
19 | 18 | 3adant1 1128 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ∩ 𝑥 ∈ {𝑋, 𝑌} (𝑃‘𝑥) = ((𝑃‘𝑋) ∩ (𝑃‘𝑌))) |
20 | 7, 15, 19 | 3eqtrd 2798 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑃‘(𝑋 ∧ 𝑌)) = ((𝑃‘𝑋) ∩ (𝑃‘𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1539 ∈ wcel 2112 ≠ wne 2952 ∩ cin 3858 ⊆ wss 3859 ∅c0 4226 {cpr 4525 ∩ ciin 4885 ‘cfv 6336 (class class class)co 7151 Basecbs 16534 glbcglb 17612 meetcmee 17614 Atomscatm 36832 HLchlt 36919 pmapcpmap 37066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5157 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-op 4530 df-uni 4800 df-iun 4886 df-iin 4887 df-br 5034 df-opab 5096 df-mpt 5114 df-id 5431 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-ov 7154 df-oprab 7155 df-poset 17615 df-lub 17643 df-glb 17644 df-join 17645 df-meet 17646 df-lat 17715 df-clat 17777 df-ats 36836 df-hlat 36920 df-pmap 37073 |
This theorem is referenced by: hlmod1i 37425 poldmj1N 37497 pmapj2N 37498 pnonsingN 37502 psubclinN 37517 poml4N 37522 pl42lem1N 37548 pl42lem2N 37549 |
Copyright terms: Public domain | W3C validator |