![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pmapmeet | Structured version Visualization version GIF version |
Description: The projective map of a meet. (Contributed by NM, 25-Jan-2012.) |
Ref | Expression |
---|---|
pmapmeet.b | β’ π΅ = (BaseβπΎ) |
pmapmeet.m | β’ β§ = (meetβπΎ) |
pmapmeet.a | β’ π΄ = (AtomsβπΎ) |
pmapmeet.p | β’ π = (pmapβπΎ) |
Ref | Expression |
---|---|
pmapmeet | β’ ((πΎ β HL β§ π β π΅ β§ π β π΅) β (πβ(π β§ π)) = ((πβπ) β© (πβπ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . . 4 β’ (glbβπΎ) = (glbβπΎ) | |
2 | pmapmeet.m | . . . 4 β’ β§ = (meetβπΎ) | |
3 | simp1 1136 | . . . 4 β’ ((πΎ β HL β§ π β π΅ β§ π β π΅) β πΎ β HL) | |
4 | simp2 1137 | . . . 4 β’ ((πΎ β HL β§ π β π΅ β§ π β π΅) β π β π΅) | |
5 | simp3 1138 | . . . 4 β’ ((πΎ β HL β§ π β π΅ β§ π β π΅) β π β π΅) | |
6 | 1, 2, 3, 4, 5 | meetval 18340 | . . 3 β’ ((πΎ β HL β§ π β π΅ β§ π β π΅) β (π β§ π) = ((glbβπΎ)β{π, π})) |
7 | 6 | fveq2d 6892 | . 2 β’ ((πΎ β HL β§ π β π΅ β§ π β π΅) β (πβ(π β§ π)) = (πβ((glbβπΎ)β{π, π}))) |
8 | prssi 4823 | . . . 4 β’ ((π β π΅ β§ π β π΅) β {π, π} β π΅) | |
9 | 8 | 3adant1 1130 | . . 3 β’ ((πΎ β HL β§ π β π΅ β§ π β π΅) β {π, π} β π΅) |
10 | prnzg 4781 | . . . 4 β’ (π β π΅ β {π, π} β β ) | |
11 | 10 | 3ad2ant2 1134 | . . 3 β’ ((πΎ β HL β§ π β π΅ β§ π β π΅) β {π, π} β β ) |
12 | pmapmeet.b | . . . 4 β’ π΅ = (BaseβπΎ) | |
13 | pmapmeet.p | . . . 4 β’ π = (pmapβπΎ) | |
14 | 12, 1, 13 | pmapglb 38629 | . . 3 β’ ((πΎ β HL β§ {π, π} β π΅ β§ {π, π} β β ) β (πβ((glbβπΎ)β{π, π})) = β© π₯ β {π, π} (πβπ₯)) |
15 | 3, 9, 11, 14 | syl3anc 1371 | . 2 β’ ((πΎ β HL β§ π β π΅ β§ π β π΅) β (πβ((glbβπΎ)β{π, π})) = β© π₯ β {π, π} (πβπ₯)) |
16 | fveq2 6888 | . . . 4 β’ (π₯ = π β (πβπ₯) = (πβπ)) | |
17 | fveq2 6888 | . . . 4 β’ (π₯ = π β (πβπ₯) = (πβπ)) | |
18 | 16, 17 | iinxprg 5091 | . . 3 β’ ((π β π΅ β§ π β π΅) β β© π₯ β {π, π} (πβπ₯) = ((πβπ) β© (πβπ))) |
19 | 18 | 3adant1 1130 | . 2 β’ ((πΎ β HL β§ π β π΅ β§ π β π΅) β β© π₯ β {π, π} (πβπ₯) = ((πβπ) β© (πβπ))) |
20 | 7, 15, 19 | 3eqtrd 2776 | 1 β’ ((πΎ β HL β§ π β π΅ β§ π β π΅) β (πβ(π β§ π)) = ((πβπ) β© (πβπ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1087 = wceq 1541 β wcel 2106 β wne 2940 β© cin 3946 β wss 3947 β c0 4321 {cpr 4629 β© ciin 4997 βcfv 6540 (class class class)co 7405 Basecbs 17140 glbcglb 18259 meetcmee 18261 Atomscatm 38121 HLchlt 38208 pmapcpmap 38356 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-poset 18262 df-lub 18295 df-glb 18296 df-join 18297 df-meet 18298 df-lat 18381 df-clat 18448 df-ats 38125 df-hlat 38209 df-pmap 38363 |
This theorem is referenced by: hlmod1i 38715 poldmj1N 38787 pmapj2N 38788 pnonsingN 38792 psubclinN 38807 poml4N 38812 pl42lem1N 38838 pl42lem2N 38839 |
Copyright terms: Public domain | W3C validator |