![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pmapmeet | Structured version Visualization version GIF version |
Description: The projective map of a meet. (Contributed by NM, 25-Jan-2012.) |
Ref | Expression |
---|---|
pmapmeet.b | ⊢ 𝐵 = (Base‘𝐾) |
pmapmeet.m | ⊢ ∧ = (meet‘𝐾) |
pmapmeet.a | ⊢ 𝐴 = (Atoms‘𝐾) |
pmapmeet.p | ⊢ 𝑃 = (pmap‘𝐾) |
Ref | Expression |
---|---|
pmapmeet | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑃‘(𝑋 ∧ 𝑌)) = ((𝑃‘𝑋) ∩ (𝑃‘𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . . . 4 ⊢ (glb‘𝐾) = (glb‘𝐾) | |
2 | pmapmeet.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
3 | simp1 1136 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ HL) | |
4 | simp2 1137 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
5 | simp3 1138 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
6 | 1, 2, 3, 4, 5 | meetval 18280 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) = ((glb‘𝐾)‘{𝑋, 𝑌})) |
7 | 6 | fveq2d 6846 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑃‘(𝑋 ∧ 𝑌)) = (𝑃‘((glb‘𝐾)‘{𝑋, 𝑌}))) |
8 | prssi 4781 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → {𝑋, 𝑌} ⊆ 𝐵) | |
9 | 8 | 3adant1 1130 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → {𝑋, 𝑌} ⊆ 𝐵) |
10 | prnzg 4739 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → {𝑋, 𝑌} ≠ ∅) | |
11 | 10 | 3ad2ant2 1134 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → {𝑋, 𝑌} ≠ ∅) |
12 | pmapmeet.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
13 | pmapmeet.p | . . . 4 ⊢ 𝑃 = (pmap‘𝐾) | |
14 | 12, 1, 13 | pmapglb 38233 | . . 3 ⊢ ((𝐾 ∈ HL ∧ {𝑋, 𝑌} ⊆ 𝐵 ∧ {𝑋, 𝑌} ≠ ∅) → (𝑃‘((glb‘𝐾)‘{𝑋, 𝑌})) = ∩ 𝑥 ∈ {𝑋, 𝑌} (𝑃‘𝑥)) |
15 | 3, 9, 11, 14 | syl3anc 1371 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑃‘((glb‘𝐾)‘{𝑋, 𝑌})) = ∩ 𝑥 ∈ {𝑋, 𝑌} (𝑃‘𝑥)) |
16 | fveq2 6842 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑃‘𝑥) = (𝑃‘𝑋)) | |
17 | fveq2 6842 | . . . 4 ⊢ (𝑥 = 𝑌 → (𝑃‘𝑥) = (𝑃‘𝑌)) | |
18 | 16, 17 | iinxprg 5049 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ∩ 𝑥 ∈ {𝑋, 𝑌} (𝑃‘𝑥) = ((𝑃‘𝑋) ∩ (𝑃‘𝑌))) |
19 | 18 | 3adant1 1130 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ∩ 𝑥 ∈ {𝑋, 𝑌} (𝑃‘𝑥) = ((𝑃‘𝑋) ∩ (𝑃‘𝑌))) |
20 | 7, 15, 19 | 3eqtrd 2780 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑃‘(𝑋 ∧ 𝑌)) = ((𝑃‘𝑋) ∩ (𝑃‘𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ≠ wne 2943 ∩ cin 3909 ⊆ wss 3910 ∅c0 4282 {cpr 4588 ∩ ciin 4955 ‘cfv 6496 (class class class)co 7357 Basecbs 17083 glbcglb 18199 meetcmee 18201 Atomscatm 37725 HLchlt 37812 pmapcpmap 37960 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-ral 3065 df-rex 3074 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-iun 4956 df-iin 4957 df-br 5106 df-opab 5168 df-mpt 5189 df-id 5531 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-poset 18202 df-lub 18235 df-glb 18236 df-join 18237 df-meet 18238 df-lat 18321 df-clat 18388 df-ats 37729 df-hlat 37813 df-pmap 37967 |
This theorem is referenced by: hlmod1i 38319 poldmj1N 38391 pmapj2N 38392 pnonsingN 38396 psubclinN 38411 poml4N 38416 pl42lem1N 38442 pl42lem2N 38443 |
Copyright terms: Public domain | W3C validator |