Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihmeetlem2N Structured version   Visualization version   GIF version

Theorem dihmeetlem2N 38321
Description: Isomorphism H of a conjunction. (Contributed by NM, 22-Mar-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dihmeetlem2.b 𝐵 = (Base‘𝐾)
dihmeetlem2.m = (meet‘𝐾)
dihmeetlem2.h 𝐻 = (LHyp‘𝐾)
dihmeetlem2.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dihmeetlem2.l = (le‘𝐾)
dihmeetlem2.j = (join‘𝐾)
dihmeetlem2.a 𝐴 = (Atoms‘𝐾)
dihmeetlem2.p 𝑃 = ((oc‘𝐾)‘𝑊)
dihmeetlem2.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dihmeetlem2.r 𝑅 = ((trL‘𝐾)‘𝑊)
dihmeetlem2.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dihmeetlem2.g 𝐺 = (𝑇 (𝑃) = 𝑞)
dihmeetlem2.o 0 = (𝑇 ↦ ( I ↾ 𝐵))
Assertion
Ref Expression
dihmeetlem2N (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝐼‘(𝑋 𝑌)) = ((𝐼𝑋) ∩ (𝐼𝑌)))

Proof of Theorem dihmeetlem2N
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2826 . . . . . 6 (glb‘𝐾) = (glb‘𝐾)
2 dihmeetlem2.m . . . . . 6 = (meet‘𝐾)
3 simp1l 1191 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝐾 ∈ HL)
4 simp2l 1193 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝑋𝐵)
5 simp3l 1195 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝑌𝐵)
61, 2, 3, 4, 5meetval 17624 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝑋 𝑌) = ((glb‘𝐾)‘{𝑋, 𝑌}))
76fveq2d 6673 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (((DIsoB‘𝐾)‘𝑊)‘(𝑋 𝑌)) = (((DIsoB‘𝐾)‘𝑊)‘((glb‘𝐾)‘{𝑋, 𝑌})))
8 simp1 1130 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
9 dihmeetlem2.b . . . . . . . . 9 𝐵 = (Base‘𝐾)
10 dihmeetlem2.l . . . . . . . . 9 = (le‘𝐾)
11 dihmeetlem2.h . . . . . . . . 9 𝐻 = (LHyp‘𝐾)
12 eqid 2826 . . . . . . . . 9 ((DIsoB‘𝐾)‘𝑊) = ((DIsoB‘𝐾)‘𝑊)
139, 10, 11, 12dibeldmN 38180 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑋 ∈ dom ((DIsoB‘𝐾)‘𝑊) ↔ (𝑋𝐵𝑋 𝑊)))
1413biimpar 478 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → 𝑋 ∈ dom ((DIsoB‘𝐾)‘𝑊))
15143adant3 1126 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝑋 ∈ dom ((DIsoB‘𝐾)‘𝑊))
169, 10, 11, 12dibeldmN 38180 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑌 ∈ dom ((DIsoB‘𝐾)‘𝑊) ↔ (𝑌𝐵𝑌 𝑊)))
1716biimpar 478 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑌𝐵𝑌 𝑊)) → 𝑌 ∈ dom ((DIsoB‘𝐾)‘𝑊))
18173adant2 1125 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝑌 ∈ dom ((DIsoB‘𝐾)‘𝑊))
19 prssg 4751 . . . . . . 7 ((𝑋𝐵𝑌𝐵) → ((𝑋 ∈ dom ((DIsoB‘𝐾)‘𝑊) ∧ 𝑌 ∈ dom ((DIsoB‘𝐾)‘𝑊)) ↔ {𝑋, 𝑌} ⊆ dom ((DIsoB‘𝐾)‘𝑊)))
204, 5, 19syl2anc 584 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → ((𝑋 ∈ dom ((DIsoB‘𝐾)‘𝑊) ∧ 𝑌 ∈ dom ((DIsoB‘𝐾)‘𝑊)) ↔ {𝑋, 𝑌} ⊆ dom ((DIsoB‘𝐾)‘𝑊)))
2115, 18, 20mpbi2and 708 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → {𝑋, 𝑌} ⊆ dom ((DIsoB‘𝐾)‘𝑊))
22 prnzg 4712 . . . . . 6 (𝑋𝐵 → {𝑋, 𝑌} ≠ ∅)
234, 22syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → {𝑋, 𝑌} ≠ ∅)
241, 11, 12dibglbN 38188 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ({𝑋, 𝑌} ⊆ dom ((DIsoB‘𝐾)‘𝑊) ∧ {𝑋, 𝑌} ≠ ∅)) → (((DIsoB‘𝐾)‘𝑊)‘((glb‘𝐾)‘{𝑋, 𝑌})) = 𝑥 ∈ {𝑋, 𝑌} (((DIsoB‘𝐾)‘𝑊)‘𝑥))
258, 21, 23, 24syl12anc 834 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (((DIsoB‘𝐾)‘𝑊)‘((glb‘𝐾)‘{𝑋, 𝑌})) = 𝑥 ∈ {𝑋, 𝑌} (((DIsoB‘𝐾)‘𝑊)‘𝑥))
267, 25eqtrd 2861 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (((DIsoB‘𝐾)‘𝑊)‘(𝑋 𝑌)) = 𝑥 ∈ {𝑋, 𝑌} (((DIsoB‘𝐾)‘𝑊)‘𝑥))
273hllatd 36386 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝐾 ∈ Lat)
289, 2latmcl 17657 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
2927, 4, 5, 28syl3anc 1365 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝑋 𝑌) ∈ 𝐵)
30 simp1r 1192 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝑊𝐻)
319, 11lhpbase 37020 . . . . . 6 (𝑊𝐻𝑊𝐵)
3230, 31syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝑊𝐵)
339, 10, 2latmle1 17681 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) 𝑋)
3427, 4, 5, 33syl3anc 1365 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝑋 𝑌) 𝑋)
35 simp2r 1194 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝑋 𝑊)
369, 10, 27, 29, 4, 32, 34, 35lattrd 17663 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝑋 𝑌) 𝑊)
37 dihmeetlem2.i . . . . 5 𝐼 = ((DIsoH‘𝐾)‘𝑊)
389, 10, 11, 37, 12dihvalb 38259 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋 𝑌) ∈ 𝐵 ∧ (𝑋 𝑌) 𝑊)) → (𝐼‘(𝑋 𝑌)) = (((DIsoB‘𝐾)‘𝑊)‘(𝑋 𝑌)))
398, 29, 36, 38syl12anc 834 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝐼‘(𝑋 𝑌)) = (((DIsoB‘𝐾)‘𝑊)‘(𝑋 𝑌)))
40 simpl1 1185 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ 𝑥 ∈ {𝑋, 𝑌}) → (𝐾 ∈ HL ∧ 𝑊𝐻))
41 vex 3503 . . . . . . 7 𝑥 ∈ V
4241elpr 4587 . . . . . 6 (𝑥 ∈ {𝑋, 𝑌} ↔ (𝑥 = 𝑋𝑥 = 𝑌))
43 simpl2 1186 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ 𝑥 = 𝑋) → (𝑋𝐵𝑋 𝑊))
44 eleq1 2905 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝑥𝐵𝑋𝐵))
45 breq1 5066 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝑥 𝑊𝑋 𝑊))
4644, 45anbi12d 630 . . . . . . . . 9 (𝑥 = 𝑋 → ((𝑥𝐵𝑥 𝑊) ↔ (𝑋𝐵𝑋 𝑊)))
4746adantl 482 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ 𝑥 = 𝑋) → ((𝑥𝐵𝑥 𝑊) ↔ (𝑋𝐵𝑋 𝑊)))
4843, 47mpbird 258 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ 𝑥 = 𝑋) → (𝑥𝐵𝑥 𝑊))
49 simpl3 1187 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ 𝑥 = 𝑌) → (𝑌𝐵𝑌 𝑊))
50 eleq1 2905 . . . . . . . . . 10 (𝑥 = 𝑌 → (𝑥𝐵𝑌𝐵))
51 breq1 5066 . . . . . . . . . 10 (𝑥 = 𝑌 → (𝑥 𝑊𝑌 𝑊))
5250, 51anbi12d 630 . . . . . . . . 9 (𝑥 = 𝑌 → ((𝑥𝐵𝑥 𝑊) ↔ (𝑌𝐵𝑌 𝑊)))
5352adantl 482 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ 𝑥 = 𝑌) → ((𝑥𝐵𝑥 𝑊) ↔ (𝑌𝐵𝑌 𝑊)))
5449, 53mpbird 258 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ 𝑥 = 𝑌) → (𝑥𝐵𝑥 𝑊))
5548, 54jaodan 953 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑥 = 𝑋𝑥 = 𝑌)) → (𝑥𝐵𝑥 𝑊))
5642, 55sylan2b 593 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ 𝑥 ∈ {𝑋, 𝑌}) → (𝑥𝐵𝑥 𝑊))
579, 10, 11, 37, 12dihvalb 38259 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝐵𝑥 𝑊)) → (𝐼𝑥) = (((DIsoB‘𝐾)‘𝑊)‘𝑥))
5840, 56, 57syl2anc 584 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ 𝑥 ∈ {𝑋, 𝑌}) → (𝐼𝑥) = (((DIsoB‘𝐾)‘𝑊)‘𝑥))
5958iineq2dv 4941 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝑥 ∈ {𝑋, 𝑌} (𝐼𝑥) = 𝑥 ∈ {𝑋, 𝑌} (((DIsoB‘𝐾)‘𝑊)‘𝑥))
6026, 39, 593eqtr4d 2871 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝐼‘(𝑋 𝑌)) = 𝑥 ∈ {𝑋, 𝑌} (𝐼𝑥))
61 fveq2 6669 . . . 4 (𝑥 = 𝑋 → (𝐼𝑥) = (𝐼𝑋))
62 fveq2 6669 . . . 4 (𝑥 = 𝑌 → (𝐼𝑥) = (𝐼𝑌))
6361, 62iinxprg 5008 . . 3 ((𝑋𝐵𝑌𝐵) → 𝑥 ∈ {𝑋, 𝑌} (𝐼𝑥) = ((𝐼𝑋) ∩ (𝐼𝑌)))
644, 5, 63syl2anc 584 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝑥 ∈ {𝑋, 𝑌} (𝐼𝑥) = ((𝐼𝑋) ∩ (𝐼𝑌)))
6560, 64eqtrd 2861 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝐼‘(𝑋 𝑌)) = ((𝐼𝑋) ∩ (𝐼𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  wo 843  w3a 1081   = wceq 1530  wcel 2107  wne 3021  cin 3939  wss 3940  c0 4295  {cpr 4566   ciin 4918   class class class wbr 5063  cmpt 5143   I cid 5458  dom cdm 5554  cres 5556  cfv 6354  crio 7107  (class class class)co 7150  Basecbs 16478  lecple 16567  occoc 16568  glbcglb 17548  joincjn 17549  meetcmee 17550  Latclat 17650  Atomscatm 36285  HLchlt 36372  LHypclh 37006  LTrncltrn 37123  trLctrl 37180  TEndoctendo 37774  DIsoBcdib 38160  DIsoHcdih 38250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-ral 3148  df-rex 3149  df-reu 3150  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4838  df-iun 4919  df-iin 4920  df-br 5064  df-opab 5126  df-mpt 5144  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-map 8403  df-proset 17533  df-poset 17551  df-plt 17563  df-lub 17579  df-glb 17580  df-join 17581  df-meet 17582  df-p0 17644  df-p1 17645  df-lat 17651  df-clat 17713  df-oposet 36198  df-ol 36200  df-oml 36201  df-covers 36288  df-ats 36289  df-atl 36320  df-cvlat 36344  df-hlat 36373  df-lhyp 37010  df-laut 37011  df-ldil 37126  df-ltrn 37127  df-trl 37181  df-disoa 38051  df-dib 38161  df-dih 38251
This theorem is referenced by:  dihmeetbN  38325
  Copyright terms: Public domain W3C validator