Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . . . . 6
⊢
(glb‘𝐾) =
(glb‘𝐾) |
2 | | dihmeetlem2.m |
. . . . . 6
⊢ ∧ =
(meet‘𝐾) |
3 | | simp1l 1195 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → 𝐾 ∈ HL) |
4 | | simp2l 1197 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → 𝑋 ∈ 𝐵) |
5 | | simp3l 1199 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → 𝑌 ∈ 𝐵) |
6 | 1, 2, 3, 4, 5 | meetval 18024 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → (𝑋 ∧ 𝑌) = ((glb‘𝐾)‘{𝑋, 𝑌})) |
7 | 6 | fveq2d 6760 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → (((DIsoB‘𝐾)‘𝑊)‘(𝑋 ∧ 𝑌)) = (((DIsoB‘𝐾)‘𝑊)‘((glb‘𝐾)‘{𝑋, 𝑌}))) |
8 | | simp1 1134 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
9 | | dihmeetlem2.b |
. . . . . . . . 9
⊢ 𝐵 = (Base‘𝐾) |
10 | | dihmeetlem2.l |
. . . . . . . . 9
⊢ ≤ =
(le‘𝐾) |
11 | | dihmeetlem2.h |
. . . . . . . . 9
⊢ 𝐻 = (LHyp‘𝐾) |
12 | | eqid 2738 |
. . . . . . . . 9
⊢
((DIsoB‘𝐾)‘𝑊) = ((DIsoB‘𝐾)‘𝑊) |
13 | 9, 10, 11, 12 | dibeldmN 39099 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑋 ∈ dom ((DIsoB‘𝐾)‘𝑊) ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊))) |
14 | 13 | biimpar 477 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → 𝑋 ∈ dom ((DIsoB‘𝐾)‘𝑊)) |
15 | 14 | 3adant3 1130 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → 𝑋 ∈ dom ((DIsoB‘𝐾)‘𝑊)) |
16 | 9, 10, 11, 12 | dibeldmN 39099 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑌 ∈ dom ((DIsoB‘𝐾)‘𝑊) ↔ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊))) |
17 | 16 | biimpar 477 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → 𝑌 ∈ dom ((DIsoB‘𝐾)‘𝑊)) |
18 | 17 | 3adant2 1129 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → 𝑌 ∈ dom ((DIsoB‘𝐾)‘𝑊)) |
19 | | prssg 4749 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∈ dom ((DIsoB‘𝐾)‘𝑊) ∧ 𝑌 ∈ dom ((DIsoB‘𝐾)‘𝑊)) ↔ {𝑋, 𝑌} ⊆ dom ((DIsoB‘𝐾)‘𝑊))) |
20 | 4, 5, 19 | syl2anc 583 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → ((𝑋 ∈ dom ((DIsoB‘𝐾)‘𝑊) ∧ 𝑌 ∈ dom ((DIsoB‘𝐾)‘𝑊)) ↔ {𝑋, 𝑌} ⊆ dom ((DIsoB‘𝐾)‘𝑊))) |
21 | 15, 18, 20 | mpbi2and 708 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → {𝑋, 𝑌} ⊆ dom ((DIsoB‘𝐾)‘𝑊)) |
22 | | prnzg 4711 |
. . . . . 6
⊢ (𝑋 ∈ 𝐵 → {𝑋, 𝑌} ≠ ∅) |
23 | 4, 22 | syl 17 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → {𝑋, 𝑌} ≠ ∅) |
24 | 1, 11, 12 | dibglbN 39107 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ({𝑋, 𝑌} ⊆ dom ((DIsoB‘𝐾)‘𝑊) ∧ {𝑋, 𝑌} ≠ ∅)) → (((DIsoB‘𝐾)‘𝑊)‘((glb‘𝐾)‘{𝑋, 𝑌})) = ∩
𝑥 ∈ {𝑋, 𝑌} (((DIsoB‘𝐾)‘𝑊)‘𝑥)) |
25 | 8, 21, 23, 24 | syl12anc 833 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → (((DIsoB‘𝐾)‘𝑊)‘((glb‘𝐾)‘{𝑋, 𝑌})) = ∩
𝑥 ∈ {𝑋, 𝑌} (((DIsoB‘𝐾)‘𝑊)‘𝑥)) |
26 | 7, 25 | eqtrd 2778 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → (((DIsoB‘𝐾)‘𝑊)‘(𝑋 ∧ 𝑌)) = ∩
𝑥 ∈ {𝑋, 𝑌} (((DIsoB‘𝐾)‘𝑊)‘𝑥)) |
27 | 3 | hllatd 37305 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → 𝐾 ∈ Lat) |
28 | 9, 2 | latmcl 18073 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ∈ 𝐵) |
29 | 27, 4, 5, 28 | syl3anc 1369 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → (𝑋 ∧ 𝑌) ∈ 𝐵) |
30 | | simp1r 1196 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → 𝑊 ∈ 𝐻) |
31 | 9, 11 | lhpbase 37939 |
. . . . . 6
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵) |
32 | 30, 31 | syl 17 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → 𝑊 ∈ 𝐵) |
33 | 9, 10, 2 | latmle1 18097 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ≤ 𝑋) |
34 | 27, 4, 5, 33 | syl3anc 1369 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → (𝑋 ∧ 𝑌) ≤ 𝑋) |
35 | | simp2r 1198 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → 𝑋 ≤ 𝑊) |
36 | 9, 10, 27, 29, 4, 32, 34, 35 | lattrd 18079 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → (𝑋 ∧ 𝑌) ≤ 𝑊) |
37 | | dihmeetlem2.i |
. . . . 5
⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
38 | 9, 10, 11, 37, 12 | dihvalb 39178 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑋 ∧ 𝑌) ∈ 𝐵 ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) → (𝐼‘(𝑋 ∧ 𝑌)) = (((DIsoB‘𝐾)‘𝑊)‘(𝑋 ∧ 𝑌))) |
39 | 8, 29, 36, 38 | syl12anc 833 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → (𝐼‘(𝑋 ∧ 𝑌)) = (((DIsoB‘𝐾)‘𝑊)‘(𝑋 ∧ 𝑌))) |
40 | | simpl1 1189 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ 𝑥 ∈ {𝑋, 𝑌}) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
41 | | vex 3426 |
. . . . . . 7
⊢ 𝑥 ∈ V |
42 | 41 | elpr 4581 |
. . . . . 6
⊢ (𝑥 ∈ {𝑋, 𝑌} ↔ (𝑥 = 𝑋 ∨ 𝑥 = 𝑌)) |
43 | | simpl2 1190 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ 𝑥 = 𝑋) → (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) |
44 | | eleq1 2826 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑋 → (𝑥 ∈ 𝐵 ↔ 𝑋 ∈ 𝐵)) |
45 | | breq1 5073 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑋 → (𝑥 ≤ 𝑊 ↔ 𝑋 ≤ 𝑊)) |
46 | 44, 45 | anbi12d 630 |
. . . . . . . . 9
⊢ (𝑥 = 𝑋 → ((𝑥 ∈ 𝐵 ∧ 𝑥 ≤ 𝑊) ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊))) |
47 | 46 | adantl 481 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ 𝑥 = 𝑋) → ((𝑥 ∈ 𝐵 ∧ 𝑥 ≤ 𝑊) ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊))) |
48 | 43, 47 | mpbird 256 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ 𝑥 = 𝑋) → (𝑥 ∈ 𝐵 ∧ 𝑥 ≤ 𝑊)) |
49 | | simpl3 1191 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ 𝑥 = 𝑌) → (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) |
50 | | eleq1 2826 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑌 → (𝑥 ∈ 𝐵 ↔ 𝑌 ∈ 𝐵)) |
51 | | breq1 5073 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑌 → (𝑥 ≤ 𝑊 ↔ 𝑌 ≤ 𝑊)) |
52 | 50, 51 | anbi12d 630 |
. . . . . . . . 9
⊢ (𝑥 = 𝑌 → ((𝑥 ∈ 𝐵 ∧ 𝑥 ≤ 𝑊) ↔ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊))) |
53 | 52 | adantl 481 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ 𝑥 = 𝑌) → ((𝑥 ∈ 𝐵 ∧ 𝑥 ≤ 𝑊) ↔ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊))) |
54 | 49, 53 | mpbird 256 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ 𝑥 = 𝑌) → (𝑥 ∈ 𝐵 ∧ 𝑥 ≤ 𝑊)) |
55 | 48, 54 | jaodan 954 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ (𝑥 = 𝑋 ∨ 𝑥 = 𝑌)) → (𝑥 ∈ 𝐵 ∧ 𝑥 ≤ 𝑊)) |
56 | 42, 55 | sylan2b 593 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ 𝑥 ∈ {𝑋, 𝑌}) → (𝑥 ∈ 𝐵 ∧ 𝑥 ≤ 𝑊)) |
57 | 9, 10, 11, 37, 12 | dihvalb 39178 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≤ 𝑊)) → (𝐼‘𝑥) = (((DIsoB‘𝐾)‘𝑊)‘𝑥)) |
58 | 40, 56, 57 | syl2anc 583 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ 𝑥 ∈ {𝑋, 𝑌}) → (𝐼‘𝑥) = (((DIsoB‘𝐾)‘𝑊)‘𝑥)) |
59 | 58 | iineq2dv 4946 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → ∩ 𝑥 ∈ {𝑋, 𝑌} (𝐼‘𝑥) = ∩ 𝑥 ∈ {𝑋, 𝑌} (((DIsoB‘𝐾)‘𝑊)‘𝑥)) |
60 | 26, 39, 59 | 3eqtr4d 2788 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → (𝐼‘(𝑋 ∧ 𝑌)) = ∩
𝑥 ∈ {𝑋, 𝑌} (𝐼‘𝑥)) |
61 | | fveq2 6756 |
. . . 4
⊢ (𝑥 = 𝑋 → (𝐼‘𝑥) = (𝐼‘𝑋)) |
62 | | fveq2 6756 |
. . . 4
⊢ (𝑥 = 𝑌 → (𝐼‘𝑥) = (𝐼‘𝑌)) |
63 | 61, 62 | iinxprg 5014 |
. . 3
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ∩
𝑥 ∈ {𝑋, 𝑌} (𝐼‘𝑥) = ((𝐼‘𝑋) ∩ (𝐼‘𝑌))) |
64 | 4, 5, 63 | syl2anc 583 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → ∩ 𝑥 ∈ {𝑋, 𝑌} (𝐼‘𝑥) = ((𝐼‘𝑋) ∩ (𝐼‘𝑌))) |
65 | 60, 64 | eqtrd 2778 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → (𝐼‘(𝑋 ∧ 𝑌)) = ((𝐼‘𝑋) ∩ (𝐼‘𝑌))) |