Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihmeetlem2N Structured version   Visualization version   GIF version

Theorem dihmeetlem2N 41397
Description: Isomorphism H of a conjunction. (Contributed by NM, 22-Mar-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dihmeetlem2.b 𝐵 = (Base‘𝐾)
dihmeetlem2.m = (meet‘𝐾)
dihmeetlem2.h 𝐻 = (LHyp‘𝐾)
dihmeetlem2.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dihmeetlem2.l = (le‘𝐾)
dihmeetlem2.j = (join‘𝐾)
dihmeetlem2.a 𝐴 = (Atoms‘𝐾)
dihmeetlem2.p 𝑃 = ((oc‘𝐾)‘𝑊)
dihmeetlem2.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dihmeetlem2.r 𝑅 = ((trL‘𝐾)‘𝑊)
dihmeetlem2.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dihmeetlem2.g 𝐺 = (𝑇 (𝑃) = 𝑞)
dihmeetlem2.o 0 = (𝑇 ↦ ( I ↾ 𝐵))
Assertion
Ref Expression
dihmeetlem2N (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝐼‘(𝑋 𝑌)) = ((𝐼𝑋) ∩ (𝐼𝑌)))

Proof of Theorem dihmeetlem2N
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . . . 6 (glb‘𝐾) = (glb‘𝐾)
2 dihmeetlem2.m . . . . . 6 = (meet‘𝐾)
3 simp1l 1198 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝐾 ∈ HL)
4 simp2l 1200 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝑋𝐵)
5 simp3l 1202 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝑌𝐵)
61, 2, 3, 4, 5meetval 18295 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝑋 𝑌) = ((glb‘𝐾)‘{𝑋, 𝑌}))
76fveq2d 6826 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (((DIsoB‘𝐾)‘𝑊)‘(𝑋 𝑌)) = (((DIsoB‘𝐾)‘𝑊)‘((glb‘𝐾)‘{𝑋, 𝑌})))
8 simp1 1136 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
9 dihmeetlem2.b . . . . . . . . 9 𝐵 = (Base‘𝐾)
10 dihmeetlem2.l . . . . . . . . 9 = (le‘𝐾)
11 dihmeetlem2.h . . . . . . . . 9 𝐻 = (LHyp‘𝐾)
12 eqid 2731 . . . . . . . . 9 ((DIsoB‘𝐾)‘𝑊) = ((DIsoB‘𝐾)‘𝑊)
139, 10, 11, 12dibeldmN 41256 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑋 ∈ dom ((DIsoB‘𝐾)‘𝑊) ↔ (𝑋𝐵𝑋 𝑊)))
1413biimpar 477 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → 𝑋 ∈ dom ((DIsoB‘𝐾)‘𝑊))
15143adant3 1132 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝑋 ∈ dom ((DIsoB‘𝐾)‘𝑊))
169, 10, 11, 12dibeldmN 41256 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑌 ∈ dom ((DIsoB‘𝐾)‘𝑊) ↔ (𝑌𝐵𝑌 𝑊)))
1716biimpar 477 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑌𝐵𝑌 𝑊)) → 𝑌 ∈ dom ((DIsoB‘𝐾)‘𝑊))
18173adant2 1131 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝑌 ∈ dom ((DIsoB‘𝐾)‘𝑊))
19 prssg 4768 . . . . . . 7 ((𝑋𝐵𝑌𝐵) → ((𝑋 ∈ dom ((DIsoB‘𝐾)‘𝑊) ∧ 𝑌 ∈ dom ((DIsoB‘𝐾)‘𝑊)) ↔ {𝑋, 𝑌} ⊆ dom ((DIsoB‘𝐾)‘𝑊)))
204, 5, 19syl2anc 584 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → ((𝑋 ∈ dom ((DIsoB‘𝐾)‘𝑊) ∧ 𝑌 ∈ dom ((DIsoB‘𝐾)‘𝑊)) ↔ {𝑋, 𝑌} ⊆ dom ((DIsoB‘𝐾)‘𝑊)))
2115, 18, 20mpbi2and 712 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → {𝑋, 𝑌} ⊆ dom ((DIsoB‘𝐾)‘𝑊))
22 prnzg 4728 . . . . . 6 (𝑋𝐵 → {𝑋, 𝑌} ≠ ∅)
234, 22syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → {𝑋, 𝑌} ≠ ∅)
241, 11, 12dibglbN 41264 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ({𝑋, 𝑌} ⊆ dom ((DIsoB‘𝐾)‘𝑊) ∧ {𝑋, 𝑌} ≠ ∅)) → (((DIsoB‘𝐾)‘𝑊)‘((glb‘𝐾)‘{𝑋, 𝑌})) = 𝑥 ∈ {𝑋, 𝑌} (((DIsoB‘𝐾)‘𝑊)‘𝑥))
258, 21, 23, 24syl12anc 836 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (((DIsoB‘𝐾)‘𝑊)‘((glb‘𝐾)‘{𝑋, 𝑌})) = 𝑥 ∈ {𝑋, 𝑌} (((DIsoB‘𝐾)‘𝑊)‘𝑥))
267, 25eqtrd 2766 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (((DIsoB‘𝐾)‘𝑊)‘(𝑋 𝑌)) = 𝑥 ∈ {𝑋, 𝑌} (((DIsoB‘𝐾)‘𝑊)‘𝑥))
273hllatd 39462 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝐾 ∈ Lat)
289, 2latmcl 18346 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
2927, 4, 5, 28syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝑋 𝑌) ∈ 𝐵)
30 simp1r 1199 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝑊𝐻)
319, 11lhpbase 40096 . . . . . 6 (𝑊𝐻𝑊𝐵)
3230, 31syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝑊𝐵)
339, 10, 2latmle1 18370 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) 𝑋)
3427, 4, 5, 33syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝑋 𝑌) 𝑋)
35 simp2r 1201 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝑋 𝑊)
369, 10, 27, 29, 4, 32, 34, 35lattrd 18352 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝑋 𝑌) 𝑊)
37 dihmeetlem2.i . . . . 5 𝐼 = ((DIsoH‘𝐾)‘𝑊)
389, 10, 11, 37, 12dihvalb 41335 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋 𝑌) ∈ 𝐵 ∧ (𝑋 𝑌) 𝑊)) → (𝐼‘(𝑋 𝑌)) = (((DIsoB‘𝐾)‘𝑊)‘(𝑋 𝑌)))
398, 29, 36, 38syl12anc 836 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝐼‘(𝑋 𝑌)) = (((DIsoB‘𝐾)‘𝑊)‘(𝑋 𝑌)))
40 simpl1 1192 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ 𝑥 ∈ {𝑋, 𝑌}) → (𝐾 ∈ HL ∧ 𝑊𝐻))
41 vex 3440 . . . . . . 7 𝑥 ∈ V
4241elpr 4598 . . . . . 6 (𝑥 ∈ {𝑋, 𝑌} ↔ (𝑥 = 𝑋𝑥 = 𝑌))
43 simpl2 1193 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ 𝑥 = 𝑋) → (𝑋𝐵𝑋 𝑊))
44 eleq1 2819 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝑥𝐵𝑋𝐵))
45 breq1 5092 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝑥 𝑊𝑋 𝑊))
4644, 45anbi12d 632 . . . . . . . . 9 (𝑥 = 𝑋 → ((𝑥𝐵𝑥 𝑊) ↔ (𝑋𝐵𝑋 𝑊)))
4746adantl 481 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ 𝑥 = 𝑋) → ((𝑥𝐵𝑥 𝑊) ↔ (𝑋𝐵𝑋 𝑊)))
4843, 47mpbird 257 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ 𝑥 = 𝑋) → (𝑥𝐵𝑥 𝑊))
49 simpl3 1194 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ 𝑥 = 𝑌) → (𝑌𝐵𝑌 𝑊))
50 eleq1 2819 . . . . . . . . . 10 (𝑥 = 𝑌 → (𝑥𝐵𝑌𝐵))
51 breq1 5092 . . . . . . . . . 10 (𝑥 = 𝑌 → (𝑥 𝑊𝑌 𝑊))
5250, 51anbi12d 632 . . . . . . . . 9 (𝑥 = 𝑌 → ((𝑥𝐵𝑥 𝑊) ↔ (𝑌𝐵𝑌 𝑊)))
5352adantl 481 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ 𝑥 = 𝑌) → ((𝑥𝐵𝑥 𝑊) ↔ (𝑌𝐵𝑌 𝑊)))
5449, 53mpbird 257 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ 𝑥 = 𝑌) → (𝑥𝐵𝑥 𝑊))
5548, 54jaodan 959 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑥 = 𝑋𝑥 = 𝑌)) → (𝑥𝐵𝑥 𝑊))
5642, 55sylan2b 594 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ 𝑥 ∈ {𝑋, 𝑌}) → (𝑥𝐵𝑥 𝑊))
579, 10, 11, 37, 12dihvalb 41335 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝐵𝑥 𝑊)) → (𝐼𝑥) = (((DIsoB‘𝐾)‘𝑊)‘𝑥))
5840, 56, 57syl2anc 584 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ 𝑥 ∈ {𝑋, 𝑌}) → (𝐼𝑥) = (((DIsoB‘𝐾)‘𝑊)‘𝑥))
5958iineq2dv 4965 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝑥 ∈ {𝑋, 𝑌} (𝐼𝑥) = 𝑥 ∈ {𝑋, 𝑌} (((DIsoB‘𝐾)‘𝑊)‘𝑥))
6026, 39, 593eqtr4d 2776 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝐼‘(𝑋 𝑌)) = 𝑥 ∈ {𝑋, 𝑌} (𝐼𝑥))
61 fveq2 6822 . . . 4 (𝑥 = 𝑋 → (𝐼𝑥) = (𝐼𝑋))
62 fveq2 6822 . . . 4 (𝑥 = 𝑌 → (𝐼𝑥) = (𝐼𝑌))
6361, 62iinxprg 5035 . . 3 ((𝑋𝐵𝑌𝐵) → 𝑥 ∈ {𝑋, 𝑌} (𝐼𝑥) = ((𝐼𝑋) ∩ (𝐼𝑌)))
644, 5, 63syl2anc 584 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝑥 ∈ {𝑋, 𝑌} (𝐼𝑥) = ((𝐼𝑋) ∩ (𝐼𝑌)))
6560, 64eqtrd 2766 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝐼‘(𝑋 𝑌)) = ((𝐼𝑋) ∩ (𝐼𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  wne 2928  cin 3896  wss 3897  c0 4280  {cpr 4575   ciin 4940   class class class wbr 5089  cmpt 5170   I cid 5508  dom cdm 5614  cres 5616  cfv 6481  crio 7302  (class class class)co 7346  Basecbs 17120  lecple 17168  occoc 17169  glbcglb 18216  joincjn 18217  meetcmee 18218  Latclat 18337  Atomscatm 39361  HLchlt 39448  LHypclh 40082  LTrncltrn 40199  trLctrl 40256  TEndoctendo 40850  DIsoBcdib 41236  DIsoHcdih 41326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-map 8752  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-oposet 39274  df-ol 39276  df-oml 39277  df-covers 39364  df-ats 39365  df-atl 39396  df-cvlat 39420  df-hlat 39449  df-lhyp 40086  df-laut 40087  df-ldil 40202  df-ltrn 40203  df-trl 40257  df-disoa 41127  df-dib 41237  df-dih 41327
This theorem is referenced by:  dihmeetbN  41401
  Copyright terms: Public domain W3C validator