Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihmeetlem2N Structured version   Visualization version   GIF version

Theorem dihmeetlem2N 39240
Description: Isomorphism H of a conjunction. (Contributed by NM, 22-Mar-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dihmeetlem2.b 𝐵 = (Base‘𝐾)
dihmeetlem2.m = (meet‘𝐾)
dihmeetlem2.h 𝐻 = (LHyp‘𝐾)
dihmeetlem2.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dihmeetlem2.l = (le‘𝐾)
dihmeetlem2.j = (join‘𝐾)
dihmeetlem2.a 𝐴 = (Atoms‘𝐾)
dihmeetlem2.p 𝑃 = ((oc‘𝐾)‘𝑊)
dihmeetlem2.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dihmeetlem2.r 𝑅 = ((trL‘𝐾)‘𝑊)
dihmeetlem2.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dihmeetlem2.g 𝐺 = (𝑇 (𝑃) = 𝑞)
dihmeetlem2.o 0 = (𝑇 ↦ ( I ↾ 𝐵))
Assertion
Ref Expression
dihmeetlem2N (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝐼‘(𝑋 𝑌)) = ((𝐼𝑋) ∩ (𝐼𝑌)))

Proof of Theorem dihmeetlem2N
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . . . 6 (glb‘𝐾) = (glb‘𝐾)
2 dihmeetlem2.m . . . . . 6 = (meet‘𝐾)
3 simp1l 1195 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝐾 ∈ HL)
4 simp2l 1197 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝑋𝐵)
5 simp3l 1199 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝑌𝐵)
61, 2, 3, 4, 5meetval 18024 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝑋 𝑌) = ((glb‘𝐾)‘{𝑋, 𝑌}))
76fveq2d 6760 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (((DIsoB‘𝐾)‘𝑊)‘(𝑋 𝑌)) = (((DIsoB‘𝐾)‘𝑊)‘((glb‘𝐾)‘{𝑋, 𝑌})))
8 simp1 1134 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
9 dihmeetlem2.b . . . . . . . . 9 𝐵 = (Base‘𝐾)
10 dihmeetlem2.l . . . . . . . . 9 = (le‘𝐾)
11 dihmeetlem2.h . . . . . . . . 9 𝐻 = (LHyp‘𝐾)
12 eqid 2738 . . . . . . . . 9 ((DIsoB‘𝐾)‘𝑊) = ((DIsoB‘𝐾)‘𝑊)
139, 10, 11, 12dibeldmN 39099 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑋 ∈ dom ((DIsoB‘𝐾)‘𝑊) ↔ (𝑋𝐵𝑋 𝑊)))
1413biimpar 477 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → 𝑋 ∈ dom ((DIsoB‘𝐾)‘𝑊))
15143adant3 1130 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝑋 ∈ dom ((DIsoB‘𝐾)‘𝑊))
169, 10, 11, 12dibeldmN 39099 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑌 ∈ dom ((DIsoB‘𝐾)‘𝑊) ↔ (𝑌𝐵𝑌 𝑊)))
1716biimpar 477 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑌𝐵𝑌 𝑊)) → 𝑌 ∈ dom ((DIsoB‘𝐾)‘𝑊))
18173adant2 1129 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝑌 ∈ dom ((DIsoB‘𝐾)‘𝑊))
19 prssg 4749 . . . . . . 7 ((𝑋𝐵𝑌𝐵) → ((𝑋 ∈ dom ((DIsoB‘𝐾)‘𝑊) ∧ 𝑌 ∈ dom ((DIsoB‘𝐾)‘𝑊)) ↔ {𝑋, 𝑌} ⊆ dom ((DIsoB‘𝐾)‘𝑊)))
204, 5, 19syl2anc 583 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → ((𝑋 ∈ dom ((DIsoB‘𝐾)‘𝑊) ∧ 𝑌 ∈ dom ((DIsoB‘𝐾)‘𝑊)) ↔ {𝑋, 𝑌} ⊆ dom ((DIsoB‘𝐾)‘𝑊)))
2115, 18, 20mpbi2and 708 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → {𝑋, 𝑌} ⊆ dom ((DIsoB‘𝐾)‘𝑊))
22 prnzg 4711 . . . . . 6 (𝑋𝐵 → {𝑋, 𝑌} ≠ ∅)
234, 22syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → {𝑋, 𝑌} ≠ ∅)
241, 11, 12dibglbN 39107 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ({𝑋, 𝑌} ⊆ dom ((DIsoB‘𝐾)‘𝑊) ∧ {𝑋, 𝑌} ≠ ∅)) → (((DIsoB‘𝐾)‘𝑊)‘((glb‘𝐾)‘{𝑋, 𝑌})) = 𝑥 ∈ {𝑋, 𝑌} (((DIsoB‘𝐾)‘𝑊)‘𝑥))
258, 21, 23, 24syl12anc 833 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (((DIsoB‘𝐾)‘𝑊)‘((glb‘𝐾)‘{𝑋, 𝑌})) = 𝑥 ∈ {𝑋, 𝑌} (((DIsoB‘𝐾)‘𝑊)‘𝑥))
267, 25eqtrd 2778 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (((DIsoB‘𝐾)‘𝑊)‘(𝑋 𝑌)) = 𝑥 ∈ {𝑋, 𝑌} (((DIsoB‘𝐾)‘𝑊)‘𝑥))
273hllatd 37305 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝐾 ∈ Lat)
289, 2latmcl 18073 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
2927, 4, 5, 28syl3anc 1369 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝑋 𝑌) ∈ 𝐵)
30 simp1r 1196 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝑊𝐻)
319, 11lhpbase 37939 . . . . . 6 (𝑊𝐻𝑊𝐵)
3230, 31syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝑊𝐵)
339, 10, 2latmle1 18097 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) 𝑋)
3427, 4, 5, 33syl3anc 1369 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝑋 𝑌) 𝑋)
35 simp2r 1198 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝑋 𝑊)
369, 10, 27, 29, 4, 32, 34, 35lattrd 18079 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝑋 𝑌) 𝑊)
37 dihmeetlem2.i . . . . 5 𝐼 = ((DIsoH‘𝐾)‘𝑊)
389, 10, 11, 37, 12dihvalb 39178 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋 𝑌) ∈ 𝐵 ∧ (𝑋 𝑌) 𝑊)) → (𝐼‘(𝑋 𝑌)) = (((DIsoB‘𝐾)‘𝑊)‘(𝑋 𝑌)))
398, 29, 36, 38syl12anc 833 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝐼‘(𝑋 𝑌)) = (((DIsoB‘𝐾)‘𝑊)‘(𝑋 𝑌)))
40 simpl1 1189 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ 𝑥 ∈ {𝑋, 𝑌}) → (𝐾 ∈ HL ∧ 𝑊𝐻))
41 vex 3426 . . . . . . 7 𝑥 ∈ V
4241elpr 4581 . . . . . 6 (𝑥 ∈ {𝑋, 𝑌} ↔ (𝑥 = 𝑋𝑥 = 𝑌))
43 simpl2 1190 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ 𝑥 = 𝑋) → (𝑋𝐵𝑋 𝑊))
44 eleq1 2826 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝑥𝐵𝑋𝐵))
45 breq1 5073 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝑥 𝑊𝑋 𝑊))
4644, 45anbi12d 630 . . . . . . . . 9 (𝑥 = 𝑋 → ((𝑥𝐵𝑥 𝑊) ↔ (𝑋𝐵𝑋 𝑊)))
4746adantl 481 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ 𝑥 = 𝑋) → ((𝑥𝐵𝑥 𝑊) ↔ (𝑋𝐵𝑋 𝑊)))
4843, 47mpbird 256 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ 𝑥 = 𝑋) → (𝑥𝐵𝑥 𝑊))
49 simpl3 1191 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ 𝑥 = 𝑌) → (𝑌𝐵𝑌 𝑊))
50 eleq1 2826 . . . . . . . . . 10 (𝑥 = 𝑌 → (𝑥𝐵𝑌𝐵))
51 breq1 5073 . . . . . . . . . 10 (𝑥 = 𝑌 → (𝑥 𝑊𝑌 𝑊))
5250, 51anbi12d 630 . . . . . . . . 9 (𝑥 = 𝑌 → ((𝑥𝐵𝑥 𝑊) ↔ (𝑌𝐵𝑌 𝑊)))
5352adantl 481 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ 𝑥 = 𝑌) → ((𝑥𝐵𝑥 𝑊) ↔ (𝑌𝐵𝑌 𝑊)))
5449, 53mpbird 256 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ 𝑥 = 𝑌) → (𝑥𝐵𝑥 𝑊))
5548, 54jaodan 954 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑥 = 𝑋𝑥 = 𝑌)) → (𝑥𝐵𝑥 𝑊))
5642, 55sylan2b 593 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ 𝑥 ∈ {𝑋, 𝑌}) → (𝑥𝐵𝑥 𝑊))
579, 10, 11, 37, 12dihvalb 39178 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝐵𝑥 𝑊)) → (𝐼𝑥) = (((DIsoB‘𝐾)‘𝑊)‘𝑥))
5840, 56, 57syl2anc 583 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ 𝑥 ∈ {𝑋, 𝑌}) → (𝐼𝑥) = (((DIsoB‘𝐾)‘𝑊)‘𝑥))
5958iineq2dv 4946 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝑥 ∈ {𝑋, 𝑌} (𝐼𝑥) = 𝑥 ∈ {𝑋, 𝑌} (((DIsoB‘𝐾)‘𝑊)‘𝑥))
6026, 39, 593eqtr4d 2788 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝐼‘(𝑋 𝑌)) = 𝑥 ∈ {𝑋, 𝑌} (𝐼𝑥))
61 fveq2 6756 . . . 4 (𝑥 = 𝑋 → (𝐼𝑥) = (𝐼𝑋))
62 fveq2 6756 . . . 4 (𝑥 = 𝑌 → (𝐼𝑥) = (𝐼𝑌))
6361, 62iinxprg 5014 . . 3 ((𝑋𝐵𝑌𝐵) → 𝑥 ∈ {𝑋, 𝑌} (𝐼𝑥) = ((𝐼𝑋) ∩ (𝐼𝑌)))
644, 5, 63syl2anc 583 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝑥 ∈ {𝑋, 𝑌} (𝐼𝑥) = ((𝐼𝑋) ∩ (𝐼𝑌)))
6560, 64eqtrd 2778 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝐼‘(𝑋 𝑌)) = ((𝐼𝑋) ∩ (𝐼𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  wne 2942  cin 3882  wss 3883  c0 4253  {cpr 4560   ciin 4922   class class class wbr 5070  cmpt 5153   I cid 5479  dom cdm 5580  cres 5582  cfv 6418  crio 7211  (class class class)co 7255  Basecbs 16840  lecple 16895  occoc 16896  glbcglb 17943  joincjn 17944  meetcmee 17945  Latclat 18064  Atomscatm 37204  HLchlt 37291  LHypclh 37925  LTrncltrn 38042  trLctrl 38099  TEndoctendo 38693  DIsoBcdib 39079  DIsoHcdih 39169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575  df-proset 17928  df-poset 17946  df-plt 17963  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-p0 18058  df-p1 18059  df-lat 18065  df-clat 18132  df-oposet 37117  df-ol 37119  df-oml 37120  df-covers 37207  df-ats 37208  df-atl 37239  df-cvlat 37263  df-hlat 37292  df-lhyp 37929  df-laut 37930  df-ldil 38045  df-ltrn 38046  df-trl 38100  df-disoa 38970  df-dib 39080  df-dih 39170
This theorem is referenced by:  dihmeetbN  39244
  Copyright terms: Public domain W3C validator