Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imass2d Structured version   Visualization version   GIF version

Theorem imass2d 41840
 Description: Subset theorem for image. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypothesis
Ref Expression
imass2d.1 (𝜑𝐴𝐵)
Assertion
Ref Expression
imass2d (𝜑 → (𝐶𝐴) ⊆ (𝐶𝐵))

Proof of Theorem imass2d
StepHypRef Expression
1 imass2d.1 . 2 (𝜑𝐴𝐵)
2 imass2 5943 . 2 (𝐴𝐵 → (𝐶𝐴) ⊆ (𝐶𝐵))
31, 2syl 17 1 (𝜑 → (𝐶𝐴) ⊆ (𝐶𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ⊆ wss 3908   “ cima 5535 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-rab 3139  df-v 3471  df-un 3913  df-in 3915  df-ss 3925  df-sn 4540  df-pr 4542  df-op 4546  df-br 5043  df-opab 5105  df-xp 5538  df-cnv 5540  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545 This theorem is referenced by:  liminflelimsuplem  42356
 Copyright terms: Public domain W3C validator