Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imass2 | Structured version Visualization version GIF version |
Description: Subset theorem for image. Exercise 22(a) of [Enderton] p. 53. (Contributed by NM, 22-Mar-1998.) |
Ref | Expression |
---|---|
imass2 | ⊢ (𝐴 ⊆ 𝐵 → (𝐶 “ 𝐴) ⊆ (𝐶 “ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssres2 5919 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ↾ 𝐴) ⊆ (𝐶 ↾ 𝐵)) | |
2 | rnss 5848 | . . 3 ⊢ ((𝐶 ↾ 𝐴) ⊆ (𝐶 ↾ 𝐵) → ran (𝐶 ↾ 𝐴) ⊆ ran (𝐶 ↾ 𝐵)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ran (𝐶 ↾ 𝐴) ⊆ ran (𝐶 ↾ 𝐵)) |
4 | df-ima 5602 | . 2 ⊢ (𝐶 “ 𝐴) = ran (𝐶 ↾ 𝐴) | |
5 | df-ima 5602 | . 2 ⊢ (𝐶 “ 𝐵) = ran (𝐶 ↾ 𝐵) | |
6 | 3, 4, 5 | 3sstr4g 3966 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 “ 𝐴) ⊆ (𝐶 “ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3887 ran crn 5590 ↾ cres 5591 “ cima 5592 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-cnv 5597 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 |
This theorem is referenced by: funimass1 6516 funimass2 6517 fvimacnv 6930 fnfvimad 7110 f1imass 7137 ecinxp 8581 sbthlem1 8870 sbthlem2 8871 php3 8995 php3OLD 9007 ordtypelem2 9278 tcrank 9642 limsupgord 15181 isercoll 15379 isacs1i 17366 gsumzf1o 19513 dprdres 19631 dprd2da 19645 dmdprdsplit2lem 19648 lmhmlsp 20311 f1lindf 21029 iscnp4 22414 cnpco 22418 cncls2i 22421 cnntri 22422 cnrest2 22437 cnpresti 22439 cnprest 22440 1stcfb 22596 xkococnlem 22810 qtopval2 22847 tgqtop 22863 qtoprest 22868 kqdisj 22883 regr1lem 22890 kqreglem1 22892 kqreglem2 22893 kqnrmlem1 22894 kqnrmlem2 22895 nrmhmph 22945 fbasrn 23035 elfm2 23099 fmfnfmlem1 23105 fmco 23112 flffbas 23146 cnpflf2 23151 cnextcn 23218 metcnp3 23696 metustto 23709 cfilucfil 23715 uniioombllem3 24749 dyadmbllem 24763 mbfconstlem 24791 i1fima2 24843 itg2gt0 24925 ellimc3 25043 limcflf 25045 limcresi 25049 limciun 25058 lhop 25180 ig1peu 25336 ig1pdvds 25341 psercnlem2 25583 dvloglem 25803 efopn 25813 fnpreimac 31008 fsuppinisegfi 31021 gsumpart 31315 txomap 31784 zarcmplem 31831 tpr2rico 31862 pthhashvtx 33089 cvmsss2 33236 cvmopnlem 33240 cvmliftmolem1 33243 cvmliftlem15 33260 cvmlift2lem9 33273 noetalem1 33944 madess 34059 cofcut1 34090 imadifss 35752 poimirlem1 35778 poimirlem2 35779 poimirlem3 35780 poimirlem15 35792 poimirlem30 35807 dvtan 35827 heibor1lem 35967 isnumbasabl 40931 isnumbasgrp 40932 dfacbasgrp 40933 trclimalb2 41334 frege81d 41355 imass2d 42809 limccog 43161 liminfgord 43295 |
Copyright terms: Public domain | W3C validator |