| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imass2 | Structured version Visualization version GIF version | ||
| Description: Subset theorem for image. Exercise 22(a) of [Enderton] p. 53. (Contributed by NM, 22-Mar-1998.) |
| Ref | Expression |
|---|---|
| imass2 | ⊢ (𝐴 ⊆ 𝐵 → (𝐶 “ 𝐴) ⊆ (𝐶 “ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssres2 5957 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ↾ 𝐴) ⊆ (𝐶 ↾ 𝐵)) | |
| 2 | rnss 5883 | . . 3 ⊢ ((𝐶 ↾ 𝐴) ⊆ (𝐶 ↾ 𝐵) → ran (𝐶 ↾ 𝐴) ⊆ ran (𝐶 ↾ 𝐵)) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ran (𝐶 ↾ 𝐴) ⊆ ran (𝐶 ↾ 𝐵)) |
| 4 | df-ima 5632 | . 2 ⊢ (𝐶 “ 𝐴) = ran (𝐶 ↾ 𝐴) | |
| 5 | df-ima 5632 | . 2 ⊢ (𝐶 “ 𝐵) = ran (𝐶 ↾ 𝐵) | |
| 6 | 3, 4, 5 | 3sstr4g 3984 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 “ 𝐴) ⊆ (𝐶 “ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3898 ran crn 5620 ↾ cres 5621 “ cima 5622 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-xp 5625 df-cnv 5627 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 |
| This theorem is referenced by: funimass1 6568 funimass2 6569 fvimacnv 6992 fnfvimad 7174 f1imass 7204 ecinxp 8722 sbthlem1 9007 sbthlem2 9008 php3 9125 ordtypelem2 9412 tcrank 9784 limsupgord 15381 isercoll 15577 isacs1i 17565 gsumzf1o 19826 dprdres 19944 dprd2da 19958 dmdprdsplit2lem 19961 lmhmlsp 20985 f1lindf 21761 iscnp4 23179 cnpco 23183 cncls2i 23186 cnntri 23187 cnrest2 23202 cnpresti 23204 cnprest 23205 1stcfb 23361 xkococnlem 23575 qtopval2 23612 tgqtop 23628 qtoprest 23633 kqdisj 23648 regr1lem 23655 kqreglem1 23657 kqreglem2 23658 kqnrmlem1 23659 kqnrmlem2 23660 nrmhmph 23710 fbasrn 23800 elfm2 23864 fmfnfmlem1 23870 fmco 23877 flffbas 23911 cnpflf2 23916 cnextcn 23983 metcnp3 24456 metustto 24469 cfilucfil 24475 uniioombllem3 25514 dyadmbllem 25528 mbfconstlem 25556 i1fima2 25608 itg2gt0 25689 ellimc3 25808 limcflf 25810 limcresi 25814 limciun 25823 lhop 25949 ig1peu 26108 ig1pdvds 26113 psercnlem2 26362 dvloglem 26585 efopn 26595 noetalem1 27681 madess 27822 oldss 27824 cofcut1 27865 negsproplem2 27972 bdayon 28210 fnpreimac 32655 fsuppinisegfi 32672 gsumpart 33044 elrgspnsubrunlem2 33222 txomap 33868 zarcmplem 33915 tpr2rico 33946 pthhashvtx 35193 cvmsss2 35339 cvmopnlem 35343 cvmliftmolem1 35346 cvmliftlem15 35363 cvmlift2lem9 35376 imadifss 37655 poimirlem1 37681 poimirlem2 37682 poimirlem3 37683 poimirlem15 37695 poimirlem30 37710 dvtan 37730 heibor1lem 37869 aks6d1c2 42243 aks6d1c6lem3 42285 aks6d1c6lem5 42290 isnumbasabl 43223 isnumbasgrp 43224 dfacbasgrp 43225 trclimalb2 43843 frege81d 43864 imass2d 45382 limccog 45744 liminfgord 45876 uhgrimisgrgriclem 48054 clnbgrgrim 48058 |
| Copyright terms: Public domain | W3C validator |