| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imass2 | Structured version Visualization version GIF version | ||
| Description: Subset theorem for image. Exercise 22(a) of [Enderton] p. 53. (Contributed by NM, 22-Mar-1998.) |
| Ref | Expression |
|---|---|
| imass2 | ⊢ (𝐴 ⊆ 𝐵 → (𝐶 “ 𝐴) ⊆ (𝐶 “ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssres2 5975 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ↾ 𝐴) ⊆ (𝐶 ↾ 𝐵)) | |
| 2 | rnss 5903 | . . 3 ⊢ ((𝐶 ↾ 𝐴) ⊆ (𝐶 ↾ 𝐵) → ran (𝐶 ↾ 𝐴) ⊆ ran (𝐶 ↾ 𝐵)) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ran (𝐶 ↾ 𝐴) ⊆ ran (𝐶 ↾ 𝐵)) |
| 4 | df-ima 5651 | . 2 ⊢ (𝐶 “ 𝐴) = ran (𝐶 ↾ 𝐴) | |
| 5 | df-ima 5651 | . 2 ⊢ (𝐶 “ 𝐵) = ran (𝐶 ↾ 𝐵) | |
| 6 | 3, 4, 5 | 3sstr4g 4000 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 “ 𝐴) ⊆ (𝐶 “ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3914 ran crn 5639 ↾ cres 5640 “ cima 5641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 |
| This theorem is referenced by: funimass1 6598 funimass2 6599 fvimacnv 7025 fnfvimad 7208 f1imass 7239 ecinxp 8765 sbthlem1 9051 sbthlem2 9052 php3 9173 ordtypelem2 9472 tcrank 9837 limsupgord 15438 isercoll 15634 isacs1i 17618 gsumzf1o 19842 dprdres 19960 dprd2da 19974 dmdprdsplit2lem 19977 lmhmlsp 20956 f1lindf 21731 iscnp4 23150 cnpco 23154 cncls2i 23157 cnntri 23158 cnrest2 23173 cnpresti 23175 cnprest 23176 1stcfb 23332 xkococnlem 23546 qtopval2 23583 tgqtop 23599 qtoprest 23604 kqdisj 23619 regr1lem 23626 kqreglem1 23628 kqreglem2 23629 kqnrmlem1 23630 kqnrmlem2 23631 nrmhmph 23681 fbasrn 23771 elfm2 23835 fmfnfmlem1 23841 fmco 23848 flffbas 23882 cnpflf2 23887 cnextcn 23954 metcnp3 24428 metustto 24441 cfilucfil 24447 uniioombllem3 25486 dyadmbllem 25500 mbfconstlem 25528 i1fima2 25580 itg2gt0 25661 ellimc3 25780 limcflf 25782 limcresi 25786 limciun 25795 lhop 25921 ig1peu 26080 ig1pdvds 26085 psercnlem2 26334 dvloglem 26557 efopn 26567 noetalem1 27653 madess 27788 cofcut1 27828 negsproplem2 27935 bdayon 28173 fnpreimac 32595 fsuppinisegfi 32610 gsumpart 32997 elrgspnsubrunlem2 33199 txomap 33824 zarcmplem 33871 tpr2rico 33902 pthhashvtx 35115 cvmsss2 35261 cvmopnlem 35265 cvmliftmolem1 35268 cvmliftlem15 35285 cvmlift2lem9 35298 imadifss 37589 poimirlem1 37615 poimirlem2 37616 poimirlem3 37617 poimirlem15 37629 poimirlem30 37644 dvtan 37664 heibor1lem 37803 aks6d1c2 42118 aks6d1c6lem3 42160 aks6d1c6lem5 42165 isnumbasabl 43095 isnumbasgrp 43096 dfacbasgrp 43097 trclimalb2 43715 frege81d 43736 imass2d 45255 limccog 45618 liminfgord 45752 uhgrimisgrgriclem 47930 clnbgrgrim 47934 |
| Copyright terms: Public domain | W3C validator |