| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imass2 | Structured version Visualization version GIF version | ||
| Description: Subset theorem for image. Exercise 22(a) of [Enderton] p. 53. (Contributed by NM, 22-Mar-1998.) |
| Ref | Expression |
|---|---|
| imass2 | ⊢ (𝐴 ⊆ 𝐵 → (𝐶 “ 𝐴) ⊆ (𝐶 “ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssres2 5978 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ↾ 𝐴) ⊆ (𝐶 ↾ 𝐵)) | |
| 2 | rnss 5906 | . . 3 ⊢ ((𝐶 ↾ 𝐴) ⊆ (𝐶 ↾ 𝐵) → ran (𝐶 ↾ 𝐴) ⊆ ran (𝐶 ↾ 𝐵)) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ran (𝐶 ↾ 𝐴) ⊆ ran (𝐶 ↾ 𝐵)) |
| 4 | df-ima 5654 | . 2 ⊢ (𝐶 “ 𝐴) = ran (𝐶 ↾ 𝐴) | |
| 5 | df-ima 5654 | . 2 ⊢ (𝐶 “ 𝐵) = ran (𝐶 ↾ 𝐵) | |
| 6 | 3, 4, 5 | 3sstr4g 4003 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 “ 𝐴) ⊆ (𝐶 “ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3917 ran crn 5642 ↾ cres 5643 “ cima 5644 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-cnv 5649 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 |
| This theorem is referenced by: funimass1 6601 funimass2 6602 fvimacnv 7028 fnfvimad 7211 f1imass 7242 ecinxp 8768 sbthlem1 9057 sbthlem2 9058 php3 9179 ordtypelem2 9479 tcrank 9844 limsupgord 15445 isercoll 15641 isacs1i 17625 gsumzf1o 19849 dprdres 19967 dprd2da 19981 dmdprdsplit2lem 19984 lmhmlsp 20963 f1lindf 21738 iscnp4 23157 cnpco 23161 cncls2i 23164 cnntri 23165 cnrest2 23180 cnpresti 23182 cnprest 23183 1stcfb 23339 xkococnlem 23553 qtopval2 23590 tgqtop 23606 qtoprest 23611 kqdisj 23626 regr1lem 23633 kqreglem1 23635 kqreglem2 23636 kqnrmlem1 23637 kqnrmlem2 23638 nrmhmph 23688 fbasrn 23778 elfm2 23842 fmfnfmlem1 23848 fmco 23855 flffbas 23889 cnpflf2 23894 cnextcn 23961 metcnp3 24435 metustto 24448 cfilucfil 24454 uniioombllem3 25493 dyadmbllem 25507 mbfconstlem 25535 i1fima2 25587 itg2gt0 25668 ellimc3 25787 limcflf 25789 limcresi 25793 limciun 25802 lhop 25928 ig1peu 26087 ig1pdvds 26092 psercnlem2 26341 dvloglem 26564 efopn 26574 noetalem1 27660 madess 27795 cofcut1 27835 negsproplem2 27942 bdayon 28180 fnpreimac 32602 fsuppinisegfi 32617 gsumpart 33004 elrgspnsubrunlem2 33206 txomap 33831 zarcmplem 33878 tpr2rico 33909 pthhashvtx 35122 cvmsss2 35268 cvmopnlem 35272 cvmliftmolem1 35275 cvmliftlem15 35292 cvmlift2lem9 35305 imadifss 37596 poimirlem1 37622 poimirlem2 37623 poimirlem3 37624 poimirlem15 37636 poimirlem30 37651 dvtan 37671 heibor1lem 37810 aks6d1c2 42125 aks6d1c6lem3 42167 aks6d1c6lem5 42172 isnumbasabl 43102 isnumbasgrp 43103 dfacbasgrp 43104 trclimalb2 43722 frege81d 43743 imass2d 45262 limccog 45625 liminfgord 45759 uhgrimisgrgriclem 47934 clnbgrgrim 47938 |
| Copyright terms: Public domain | W3C validator |