| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imass2 | Structured version Visualization version GIF version | ||
| Description: Subset theorem for image. Exercise 22(a) of [Enderton] p. 53. (Contributed by NM, 22-Mar-1998.) |
| Ref | Expression |
|---|---|
| imass2 | ⊢ (𝐴 ⊆ 𝐵 → (𝐶 “ 𝐴) ⊆ (𝐶 “ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssres2 5953 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ↾ 𝐴) ⊆ (𝐶 ↾ 𝐵)) | |
| 2 | rnss 5879 | . . 3 ⊢ ((𝐶 ↾ 𝐴) ⊆ (𝐶 ↾ 𝐵) → ran (𝐶 ↾ 𝐴) ⊆ ran (𝐶 ↾ 𝐵)) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ran (𝐶 ↾ 𝐴) ⊆ ran (𝐶 ↾ 𝐵)) |
| 4 | df-ima 5629 | . 2 ⊢ (𝐶 “ 𝐴) = ran (𝐶 ↾ 𝐴) | |
| 5 | df-ima 5629 | . 2 ⊢ (𝐶 “ 𝐵) = ran (𝐶 ↾ 𝐵) | |
| 6 | 3, 4, 5 | 3sstr4g 3988 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 “ 𝐴) ⊆ (𝐶 “ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3902 ran crn 5617 ↾ cres 5618 “ cima 5619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-xp 5622 df-cnv 5624 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 |
| This theorem is referenced by: funimass1 6563 funimass2 6564 fvimacnv 6986 fnfvimad 7168 f1imass 7198 ecinxp 8716 sbthlem1 9000 sbthlem2 9001 php3 9118 ordtypelem2 9405 tcrank 9774 limsupgord 15376 isercoll 15572 isacs1i 17560 gsumzf1o 19822 dprdres 19940 dprd2da 19954 dmdprdsplit2lem 19957 lmhmlsp 20981 f1lindf 21757 iscnp4 23176 cnpco 23180 cncls2i 23183 cnntri 23184 cnrest2 23199 cnpresti 23201 cnprest 23202 1stcfb 23358 xkococnlem 23572 qtopval2 23609 tgqtop 23625 qtoprest 23630 kqdisj 23645 regr1lem 23652 kqreglem1 23654 kqreglem2 23655 kqnrmlem1 23656 kqnrmlem2 23657 nrmhmph 23707 fbasrn 23797 elfm2 23861 fmfnfmlem1 23867 fmco 23874 flffbas 23908 cnpflf2 23913 cnextcn 23980 metcnp3 24453 metustto 24466 cfilucfil 24472 uniioombllem3 25511 dyadmbllem 25525 mbfconstlem 25553 i1fima2 25605 itg2gt0 25686 ellimc3 25805 limcflf 25807 limcresi 25811 limciun 25820 lhop 25946 ig1peu 26105 ig1pdvds 26110 psercnlem2 26359 dvloglem 26582 efopn 26592 noetalem1 27678 madess 27819 oldss 27821 cofcut1 27862 negsproplem2 27969 bdayon 28207 fnpreimac 32648 fsuppinisegfi 32663 gsumpart 33032 elrgspnsubrunlem2 33210 txomap 33842 zarcmplem 33889 tpr2rico 33920 pthhashvtx 35160 cvmsss2 35306 cvmopnlem 35310 cvmliftmolem1 35313 cvmliftlem15 35330 cvmlift2lem9 35343 imadifss 37634 poimirlem1 37660 poimirlem2 37661 poimirlem3 37662 poimirlem15 37674 poimirlem30 37689 dvtan 37709 heibor1lem 37848 aks6d1c2 42162 aks6d1c6lem3 42204 aks6d1c6lem5 42209 isnumbasabl 43138 isnumbasgrp 43139 dfacbasgrp 43140 trclimalb2 43758 frege81d 43779 imass2d 45297 limccog 45659 liminfgord 45791 uhgrimisgrgriclem 47960 clnbgrgrim 47964 |
| Copyright terms: Public domain | W3C validator |