Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imass2 | Structured version Visualization version GIF version |
Description: Subset theorem for image. Exercise 22(a) of [Enderton] p. 53. (Contributed by NM, 22-Mar-1998.) |
Ref | Expression |
---|---|
imass2 | ⊢ (𝐴 ⊆ 𝐵 → (𝐶 “ 𝐴) ⊆ (𝐶 “ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssres2 5939 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ↾ 𝐴) ⊆ (𝐶 ↾ 𝐵)) | |
2 | rnss 5868 | . . 3 ⊢ ((𝐶 ↾ 𝐴) ⊆ (𝐶 ↾ 𝐵) → ran (𝐶 ↾ 𝐴) ⊆ ran (𝐶 ↾ 𝐵)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ran (𝐶 ↾ 𝐴) ⊆ ran (𝐶 ↾ 𝐵)) |
4 | df-ima 5621 | . 2 ⊢ (𝐶 “ 𝐴) = ran (𝐶 ↾ 𝐴) | |
5 | df-ima 5621 | . 2 ⊢ (𝐶 “ 𝐵) = ran (𝐶 ↾ 𝐵) | |
6 | 3, 4, 5 | 3sstr4g 3976 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 “ 𝐴) ⊆ (𝐶 “ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3897 ran crn 5609 ↾ cres 5610 “ cima 5611 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-rab 3405 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-sn 4572 df-pr 4574 df-op 4578 df-br 5088 df-opab 5150 df-xp 5614 df-cnv 5616 df-dm 5618 df-rn 5619 df-res 5620 df-ima 5621 |
This theorem is referenced by: funimass1 6553 funimass2 6554 fvimacnv 6970 fnfvimad 7150 f1imass 7177 ecinxp 8631 sbthlem1 8927 sbthlem2 8928 php3 9056 php3OLD 9068 ordtypelem2 9355 tcrank 9720 limsupgord 15260 isercoll 15458 isacs1i 17443 gsumzf1o 19588 dprdres 19706 dprd2da 19720 dmdprdsplit2lem 19723 lmhmlsp 20394 f1lindf 21112 iscnp4 22497 cnpco 22501 cncls2i 22504 cnntri 22505 cnrest2 22520 cnpresti 22522 cnprest 22523 1stcfb 22679 xkococnlem 22893 qtopval2 22930 tgqtop 22946 qtoprest 22951 kqdisj 22966 regr1lem 22973 kqreglem1 22975 kqreglem2 22976 kqnrmlem1 22977 kqnrmlem2 22978 nrmhmph 23028 fbasrn 23118 elfm2 23182 fmfnfmlem1 23188 fmco 23195 flffbas 23229 cnpflf2 23234 cnextcn 23301 metcnp3 23779 metustto 23792 cfilucfil 23798 uniioombllem3 24832 dyadmbllem 24846 mbfconstlem 24874 i1fima2 24926 itg2gt0 25008 ellimc3 25126 limcflf 25128 limcresi 25132 limciun 25141 lhop 25263 ig1peu 25419 ig1pdvds 25424 psercnlem2 25666 dvloglem 25886 efopn 25896 fnpreimac 31143 fsuppinisegfi 31156 gsumpart 31450 txomap 31924 zarcmplem 31971 tpr2rico 32002 pthhashvtx 33228 cvmsss2 33375 cvmopnlem 33379 cvmliftmolem1 33382 cvmliftlem15 33399 cvmlift2lem9 33412 noetalem1 34018 madess 34133 cofcut1 34164 imadifss 35824 poimirlem1 35850 poimirlem2 35851 poimirlem3 35852 poimirlem15 35864 poimirlem30 35879 dvtan 35899 heibor1lem 36039 isnumbasabl 41148 isnumbasgrp 41149 dfacbasgrp 41150 trclimalb2 41568 frege81d 41589 imass2d 43051 limccog 43411 liminfgord 43545 |
Copyright terms: Public domain | W3C validator |