![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imass2 | Structured version Visualization version GIF version |
Description: Subset theorem for image. Exercise 22(a) of [Enderton] p. 53. (Contributed by NM, 22-Mar-1998.) |
Ref | Expression |
---|---|
imass2 | ⊢ (𝐴 ⊆ 𝐵 → (𝐶 “ 𝐴) ⊆ (𝐶 “ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssres2 6034 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ↾ 𝐴) ⊆ (𝐶 ↾ 𝐵)) | |
2 | rnss 5964 | . . 3 ⊢ ((𝐶 ↾ 𝐴) ⊆ (𝐶 ↾ 𝐵) → ran (𝐶 ↾ 𝐴) ⊆ ran (𝐶 ↾ 𝐵)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ran (𝐶 ↾ 𝐴) ⊆ ran (𝐶 ↾ 𝐵)) |
4 | df-ima 5713 | . 2 ⊢ (𝐶 “ 𝐴) = ran (𝐶 ↾ 𝐴) | |
5 | df-ima 5713 | . 2 ⊢ (𝐶 “ 𝐵) = ran (𝐶 ↾ 𝐵) | |
6 | 3, 4, 5 | 3sstr4g 4054 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 “ 𝐴) ⊆ (𝐶 “ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3976 ran crn 5701 ↾ cres 5702 “ cima 5703 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 |
This theorem is referenced by: funimass1 6660 funimass2 6661 fvimacnv 7086 fnfvimad 7271 f1imass 7301 ecinxp 8850 sbthlem1 9149 sbthlem2 9150 php3 9275 php3OLD 9287 ordtypelem2 9588 tcrank 9953 limsupgord 15518 isercoll 15716 isacs1i 17715 gsumzf1o 19954 dprdres 20072 dprd2da 20086 dmdprdsplit2lem 20089 lmhmlsp 21071 f1lindf 21865 iscnp4 23292 cnpco 23296 cncls2i 23299 cnntri 23300 cnrest2 23315 cnpresti 23317 cnprest 23318 1stcfb 23474 xkococnlem 23688 qtopval2 23725 tgqtop 23741 qtoprest 23746 kqdisj 23761 regr1lem 23768 kqreglem1 23770 kqreglem2 23771 kqnrmlem1 23772 kqnrmlem2 23773 nrmhmph 23823 fbasrn 23913 elfm2 23977 fmfnfmlem1 23983 fmco 23990 flffbas 24024 cnpflf2 24029 cnextcn 24096 metcnp3 24574 metustto 24587 cfilucfil 24593 uniioombllem3 25639 dyadmbllem 25653 mbfconstlem 25681 i1fima2 25733 itg2gt0 25815 ellimc3 25934 limcflf 25936 limcresi 25940 limciun 25949 lhop 26075 ig1peu 26234 ig1pdvds 26239 psercnlem2 26486 dvloglem 26708 efopn 26718 noetalem1 27804 madess 27933 cofcut1 27972 negsproplem2 28079 fnpreimac 32689 fsuppinisegfi 32699 gsumpart 33038 txomap 33780 zarcmplem 33827 tpr2rico 33858 pthhashvtx 35095 cvmsss2 35242 cvmopnlem 35246 cvmliftmolem1 35249 cvmliftlem15 35266 cvmlift2lem9 35279 imadifss 37555 poimirlem1 37581 poimirlem2 37582 poimirlem3 37583 poimirlem15 37595 poimirlem30 37610 dvtan 37630 heibor1lem 37769 aks6d1c2 42087 aks6d1c6lem3 42129 aks6d1c6lem5 42134 isnumbasabl 43063 isnumbasgrp 43064 dfacbasgrp 43065 trclimalb2 43688 frege81d 43709 imass2d 45171 limccog 45541 liminfgord 45675 uhgrimisgrgriclem 47782 clnbgrgrim 47786 |
Copyright terms: Public domain | W3C validator |