| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imass2 | Structured version Visualization version GIF version | ||
| Description: Subset theorem for image. Exercise 22(a) of [Enderton] p. 53. (Contributed by NM, 22-Mar-1998.) |
| Ref | Expression |
|---|---|
| imass2 | ⊢ (𝐴 ⊆ 𝐵 → (𝐶 “ 𝐴) ⊆ (𝐶 “ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssres2 5991 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ↾ 𝐴) ⊆ (𝐶 ↾ 𝐵)) | |
| 2 | rnss 5919 | . . 3 ⊢ ((𝐶 ↾ 𝐴) ⊆ (𝐶 ↾ 𝐵) → ran (𝐶 ↾ 𝐴) ⊆ ran (𝐶 ↾ 𝐵)) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ran (𝐶 ↾ 𝐴) ⊆ ran (𝐶 ↾ 𝐵)) |
| 4 | df-ima 5667 | . 2 ⊢ (𝐶 “ 𝐴) = ran (𝐶 ↾ 𝐴) | |
| 5 | df-ima 5667 | . 2 ⊢ (𝐶 “ 𝐵) = ran (𝐶 ↾ 𝐵) | |
| 6 | 3, 4, 5 | 3sstr4g 4012 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 “ 𝐴) ⊆ (𝐶 “ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3926 ran crn 5655 ↾ cres 5656 “ cima 5657 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 df-cnv 5662 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 |
| This theorem is referenced by: funimass1 6617 funimass2 6618 fvimacnv 7042 fnfvimad 7225 f1imass 7256 ecinxp 8804 sbthlem1 9095 sbthlem2 9096 php3 9221 php3OLD 9231 ordtypelem2 9531 tcrank 9896 limsupgord 15486 isercoll 15682 isacs1i 17667 gsumzf1o 19891 dprdres 20009 dprd2da 20023 dmdprdsplit2lem 20026 lmhmlsp 21005 f1lindf 21780 iscnp4 23199 cnpco 23203 cncls2i 23206 cnntri 23207 cnrest2 23222 cnpresti 23224 cnprest 23225 1stcfb 23381 xkococnlem 23595 qtopval2 23632 tgqtop 23648 qtoprest 23653 kqdisj 23668 regr1lem 23675 kqreglem1 23677 kqreglem2 23678 kqnrmlem1 23679 kqnrmlem2 23680 nrmhmph 23730 fbasrn 23820 elfm2 23884 fmfnfmlem1 23890 fmco 23897 flffbas 23931 cnpflf2 23936 cnextcn 24003 metcnp3 24477 metustto 24490 cfilucfil 24496 uniioombllem3 25536 dyadmbllem 25550 mbfconstlem 25578 i1fima2 25630 itg2gt0 25711 ellimc3 25830 limcflf 25832 limcresi 25836 limciun 25845 lhop 25971 ig1peu 26130 ig1pdvds 26135 psercnlem2 26384 dvloglem 26607 efopn 26617 noetalem1 27703 madess 27832 cofcut1 27871 negsproplem2 27978 fnpreimac 32595 fsuppinisegfi 32610 gsumpart 32997 elrgspnsubrunlem2 33189 txomap 33811 zarcmplem 33858 tpr2rico 33889 pthhashvtx 35096 cvmsss2 35242 cvmopnlem 35246 cvmliftmolem1 35249 cvmliftlem15 35266 cvmlift2lem9 35279 imadifss 37565 poimirlem1 37591 poimirlem2 37592 poimirlem3 37593 poimirlem15 37605 poimirlem30 37620 dvtan 37640 heibor1lem 37779 aks6d1c2 42089 aks6d1c6lem3 42131 aks6d1c6lem5 42136 isnumbasabl 43077 isnumbasgrp 43078 dfacbasgrp 43079 trclimalb2 43697 frege81d 43718 imass2d 45233 limccog 45597 liminfgord 45731 uhgrimisgrgriclem 47891 clnbgrgrim 47895 |
| Copyright terms: Public domain | W3C validator |