Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imass2 | Structured version Visualization version GIF version |
Description: Subset theorem for image. Exercise 22(a) of [Enderton] p. 53. (Contributed by NM, 22-Mar-1998.) |
Ref | Expression |
---|---|
imass2 | ⊢ (𝐴 ⊆ 𝐵 → (𝐶 “ 𝐴) ⊆ (𝐶 “ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssres2 5908 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ↾ 𝐴) ⊆ (𝐶 ↾ 𝐵)) | |
2 | rnss 5837 | . . 3 ⊢ ((𝐶 ↾ 𝐴) ⊆ (𝐶 ↾ 𝐵) → ran (𝐶 ↾ 𝐴) ⊆ ran (𝐶 ↾ 𝐵)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ran (𝐶 ↾ 𝐴) ⊆ ran (𝐶 ↾ 𝐵)) |
4 | df-ima 5593 | . 2 ⊢ (𝐶 “ 𝐴) = ran (𝐶 ↾ 𝐴) | |
5 | df-ima 5593 | . 2 ⊢ (𝐶 “ 𝐵) = ran (𝐶 ↾ 𝐵) | |
6 | 3, 4, 5 | 3sstr4g 3962 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 “ 𝐴) ⊆ (𝐶 “ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3883 ran crn 5581 ↾ cres 5582 “ cima 5583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 |
This theorem is referenced by: funimass1 6500 funimass2 6501 fvimacnv 6912 fnfvimad 7092 f1imass 7118 ecinxp 8539 sbthlem1 8823 sbthlem2 8824 php3 8899 ordtypelem2 9208 tcrank 9573 limsupgord 15109 isercoll 15307 isacs1i 17283 gsumzf1o 19428 dprdres 19546 dprd2da 19560 dmdprdsplit2lem 19563 lmhmlsp 20226 f1lindf 20939 iscnp4 22322 cnpco 22326 cncls2i 22329 cnntri 22330 cnrest2 22345 cnpresti 22347 cnprest 22348 1stcfb 22504 xkococnlem 22718 qtopval2 22755 tgqtop 22771 qtoprest 22776 kqdisj 22791 regr1lem 22798 kqreglem1 22800 kqreglem2 22801 kqnrmlem1 22802 kqnrmlem2 22803 nrmhmph 22853 fbasrn 22943 elfm2 23007 fmfnfmlem1 23013 fmco 23020 flffbas 23054 cnpflf2 23059 cnextcn 23126 metcnp3 23602 metustto 23615 cfilucfil 23621 uniioombllem3 24654 dyadmbllem 24668 mbfconstlem 24696 i1fima2 24748 itg2gt0 24830 ellimc3 24948 limcflf 24950 limcresi 24954 limciun 24963 lhop 25085 ig1peu 25241 ig1pdvds 25246 psercnlem2 25488 dvloglem 25708 efopn 25718 fnpreimac 30910 fsuppinisegfi 30923 gsumpart 31217 txomap 31686 zarcmplem 31733 tpr2rico 31764 pthhashvtx 32989 cvmsss2 33136 cvmopnlem 33140 cvmliftmolem1 33143 cvmliftlem15 33160 cvmlift2lem9 33173 noetalem1 33871 madess 33986 cofcut1 34017 imadifss 35679 poimirlem1 35705 poimirlem2 35706 poimirlem3 35707 poimirlem15 35719 poimirlem30 35734 dvtan 35754 heibor1lem 35894 isnumbasabl 40847 isnumbasgrp 40848 dfacbasgrp 40849 trclimalb2 41223 frege81d 41244 imass2d 42698 limccog 43051 liminfgord 43185 |
Copyright terms: Public domain | W3C validator |