| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imass2 | Structured version Visualization version GIF version | ||
| Description: Subset theorem for image. Exercise 22(a) of [Enderton] p. 53. (Contributed by NM, 22-Mar-1998.) |
| Ref | Expression |
|---|---|
| imass2 | ⊢ (𝐴 ⊆ 𝐵 → (𝐶 “ 𝐴) ⊆ (𝐶 “ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssres2 5959 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ↾ 𝐴) ⊆ (𝐶 ↾ 𝐵)) | |
| 2 | rnss 5885 | . . 3 ⊢ ((𝐶 ↾ 𝐴) ⊆ (𝐶 ↾ 𝐵) → ran (𝐶 ↾ 𝐴) ⊆ ran (𝐶 ↾ 𝐵)) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ran (𝐶 ↾ 𝐴) ⊆ ran (𝐶 ↾ 𝐵)) |
| 4 | df-ima 5636 | . 2 ⊢ (𝐶 “ 𝐴) = ran (𝐶 ↾ 𝐴) | |
| 5 | df-ima 5636 | . 2 ⊢ (𝐶 “ 𝐵) = ran (𝐶 ↾ 𝐵) | |
| 6 | 3, 4, 5 | 3sstr4g 3991 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 “ 𝐴) ⊆ (𝐶 “ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3905 ran crn 5624 ↾ cres 5625 “ cima 5626 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-xp 5629 df-cnv 5631 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 |
| This theorem is referenced by: funimass1 6568 funimass2 6569 fvimacnv 6991 fnfvimad 7174 f1imass 7205 ecinxp 8726 sbthlem1 9011 sbthlem2 9012 php3 9133 ordtypelem2 9430 tcrank 9799 limsupgord 15397 isercoll 15593 isacs1i 17581 gsumzf1o 19809 dprdres 19927 dprd2da 19941 dmdprdsplit2lem 19944 lmhmlsp 20971 f1lindf 21747 iscnp4 23166 cnpco 23170 cncls2i 23173 cnntri 23174 cnrest2 23189 cnpresti 23191 cnprest 23192 1stcfb 23348 xkococnlem 23562 qtopval2 23599 tgqtop 23615 qtoprest 23620 kqdisj 23635 regr1lem 23642 kqreglem1 23644 kqreglem2 23645 kqnrmlem1 23646 kqnrmlem2 23647 nrmhmph 23697 fbasrn 23787 elfm2 23851 fmfnfmlem1 23857 fmco 23864 flffbas 23898 cnpflf2 23903 cnextcn 23970 metcnp3 24444 metustto 24457 cfilucfil 24463 uniioombllem3 25502 dyadmbllem 25516 mbfconstlem 25544 i1fima2 25596 itg2gt0 25677 ellimc3 25796 limcflf 25798 limcresi 25802 limciun 25811 lhop 25937 ig1peu 26096 ig1pdvds 26101 psercnlem2 26350 dvloglem 26573 efopn 26583 noetalem1 27669 madess 27808 oldss 27810 cofcut1 27851 negsproplem2 27958 bdayon 28196 fnpreimac 32628 fsuppinisegfi 32643 gsumpart 33023 elrgspnsubrunlem2 33198 txomap 33800 zarcmplem 33847 tpr2rico 33878 pthhashvtx 35100 cvmsss2 35246 cvmopnlem 35250 cvmliftmolem1 35253 cvmliftlem15 35270 cvmlift2lem9 35283 imadifss 37574 poimirlem1 37600 poimirlem2 37601 poimirlem3 37602 poimirlem15 37614 poimirlem30 37629 dvtan 37649 heibor1lem 37788 aks6d1c2 42103 aks6d1c6lem3 42145 aks6d1c6lem5 42150 isnumbasabl 43079 isnumbasgrp 43080 dfacbasgrp 43081 trclimalb2 43699 frege81d 43720 imass2d 45239 limccog 45602 liminfgord 45736 uhgrimisgrgriclem 47915 clnbgrgrim 47919 |
| Copyright terms: Public domain | W3C validator |