Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imassmpt Structured version   Visualization version   GIF version

Theorem imassmpt 45298
Description: Membership relation for the values of a function whose image is a subclass. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
imassmpt.1 𝑥𝜑
imassmpt.2 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝐵𝑉)
imassmpt.3 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
imassmpt (𝜑 → ((𝐹𝐶) ⊆ 𝐷 ↔ ∀𝑥 ∈ (𝐴𝐶)𝐵𝐷))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem imassmpt
StepHypRef Expression
1 df-ima 5629 . . . 4 (𝐹𝐶) = ran (𝐹𝐶)
2 imassmpt.3 . . . . . . 7 𝐹 = (𝑥𝐴𝐵)
32reseq1i 5924 . . . . . 6 (𝐹𝐶) = ((𝑥𝐴𝐵) ↾ 𝐶)
4 resmpt3 5987 . . . . . 6 ((𝑥𝐴𝐵) ↾ 𝐶) = (𝑥 ∈ (𝐴𝐶) ↦ 𝐵)
53, 4eqtri 2754 . . . . 5 (𝐹𝐶) = (𝑥 ∈ (𝐴𝐶) ↦ 𝐵)
65rneqi 5877 . . . 4 ran (𝐹𝐶) = ran (𝑥 ∈ (𝐴𝐶) ↦ 𝐵)
71, 6eqtri 2754 . . 3 (𝐹𝐶) = ran (𝑥 ∈ (𝐴𝐶) ↦ 𝐵)
87sseq1i 3963 . 2 ((𝐹𝐶) ⊆ 𝐷 ↔ ran (𝑥 ∈ (𝐴𝐶) ↦ 𝐵) ⊆ 𝐷)
9 imassmpt.1 . . 3 𝑥𝜑
10 eqid 2731 . . 3 (𝑥 ∈ (𝐴𝐶) ↦ 𝐵) = (𝑥 ∈ (𝐴𝐶) ↦ 𝐵)
11 imassmpt.2 . . 3 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝐵𝑉)
129, 10, 11rnmptssbi 45296 . 2 (𝜑 → (ran (𝑥 ∈ (𝐴𝐶) ↦ 𝐵) ⊆ 𝐷 ↔ ∀𝑥 ∈ (𝐴𝐶)𝐵𝐷))
138, 12bitrid 283 1 (𝜑 → ((𝐹𝐶) ⊆ 𝐷 ↔ ∀𝑥 ∈ (𝐴𝐶)𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wnf 1784  wcel 2111  wral 3047  cin 3901  wss 3902  cmpt 5172  ran crn 5617  cres 5618  cima 5619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-fun 6483  df-fn 6484  df-f 6485
This theorem is referenced by:  limsup10exlem  45809
  Copyright terms: Public domain W3C validator