| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > imassmpt | Structured version Visualization version GIF version | ||
| Description: Membership relation for the values of a function whose image is a subclass. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| imassmpt.1 | ⊢ Ⅎ𝑥𝜑 |
| imassmpt.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐶)) → 𝐵 ∈ 𝑉) |
| imassmpt.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| imassmpt | ⊢ (𝜑 → ((𝐹 “ 𝐶) ⊆ 𝐷 ↔ ∀𝑥 ∈ (𝐴 ∩ 𝐶)𝐵 ∈ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ima 5667 | . . . 4 ⊢ (𝐹 “ 𝐶) = ran (𝐹 ↾ 𝐶) | |
| 2 | imassmpt.3 | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 3 | 2 | reseq1i 5962 | . . . . . 6 ⊢ (𝐹 ↾ 𝐶) = ((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝐶) |
| 4 | resmpt3 6025 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝐶) = (𝑥 ∈ (𝐴 ∩ 𝐶) ↦ 𝐵) | |
| 5 | 3, 4 | eqtri 2758 | . . . . 5 ⊢ (𝐹 ↾ 𝐶) = (𝑥 ∈ (𝐴 ∩ 𝐶) ↦ 𝐵) |
| 6 | 5 | rneqi 5917 | . . . 4 ⊢ ran (𝐹 ↾ 𝐶) = ran (𝑥 ∈ (𝐴 ∩ 𝐶) ↦ 𝐵) |
| 7 | 1, 6 | eqtri 2758 | . . 3 ⊢ (𝐹 “ 𝐶) = ran (𝑥 ∈ (𝐴 ∩ 𝐶) ↦ 𝐵) |
| 8 | 7 | sseq1i 3987 | . 2 ⊢ ((𝐹 “ 𝐶) ⊆ 𝐷 ↔ ran (𝑥 ∈ (𝐴 ∩ 𝐶) ↦ 𝐵) ⊆ 𝐷) |
| 9 | imassmpt.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 10 | eqid 2735 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐶) ↦ 𝐵) = (𝑥 ∈ (𝐴 ∩ 𝐶) ↦ 𝐵) | |
| 11 | imassmpt.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐶)) → 𝐵 ∈ 𝑉) | |
| 12 | 9, 10, 11 | rnmptssbi 45232 | . 2 ⊢ (𝜑 → (ran (𝑥 ∈ (𝐴 ∩ 𝐶) ↦ 𝐵) ⊆ 𝐷 ↔ ∀𝑥 ∈ (𝐴 ∩ 𝐶)𝐵 ∈ 𝐷)) |
| 13 | 8, 12 | bitrid 283 | 1 ⊢ (𝜑 → ((𝐹 “ 𝐶) ⊆ 𝐷 ↔ ∀𝑥 ∈ (𝐴 ∩ 𝐶)𝐵 ∈ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2108 ∀wral 3051 ∩ cin 3925 ⊆ wss 3926 ↦ cmpt 5201 ran crn 5655 ↾ cres 5656 “ cima 5657 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-fun 6532 df-fn 6533 df-f 6534 |
| This theorem is referenced by: limsup10exlem 45749 |
| Copyright terms: Public domain | W3C validator |