Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imassmpt Structured version   Visualization version   GIF version

Theorem imassmpt 41902
Description: Membership relation for the values of a function whose image is a subclass. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
imassmpt.1 𝑥𝜑
imassmpt.2 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝐵𝑉)
imassmpt.3 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
imassmpt (𝜑 → ((𝐹𝐶) ⊆ 𝐷 ↔ ∀𝑥 ∈ (𝐴𝐶)𝐵𝐷))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem imassmpt
StepHypRef Expression
1 df-ima 5532 . . . 4 (𝐹𝐶) = ran (𝐹𝐶)
2 imassmpt.3 . . . . . . 7 𝐹 = (𝑥𝐴𝐵)
32reseq1i 5814 . . . . . 6 (𝐹𝐶) = ((𝑥𝐴𝐵) ↾ 𝐶)
4 resmpt3 5873 . . . . . 6 ((𝑥𝐴𝐵) ↾ 𝐶) = (𝑥 ∈ (𝐴𝐶) ↦ 𝐵)
53, 4eqtri 2821 . . . . 5 (𝐹𝐶) = (𝑥 ∈ (𝐴𝐶) ↦ 𝐵)
65rneqi 5771 . . . 4 ran (𝐹𝐶) = ran (𝑥 ∈ (𝐴𝐶) ↦ 𝐵)
71, 6eqtri 2821 . . 3 (𝐹𝐶) = ran (𝑥 ∈ (𝐴𝐶) ↦ 𝐵)
87sseq1i 3943 . 2 ((𝐹𝐶) ⊆ 𝐷 ↔ ran (𝑥 ∈ (𝐴𝐶) ↦ 𝐵) ⊆ 𝐷)
9 imassmpt.1 . . 3 𝑥𝜑
10 eqid 2798 . . 3 (𝑥 ∈ (𝐴𝐶) ↦ 𝐵) = (𝑥 ∈ (𝐴𝐶) ↦ 𝐵)
11 imassmpt.2 . . 3 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝐵𝑉)
129, 10, 11rnmptssbi 41899 . 2 (𝜑 → (ran (𝑥 ∈ (𝐴𝐶) ↦ 𝐵) ⊆ 𝐷 ↔ ∀𝑥 ∈ (𝐴𝐶)𝐵𝐷))
138, 12syl5bb 286 1 (𝜑 → ((𝐹𝐶) ⊆ 𝐷 ↔ ∀𝑥 ∈ (𝐴𝐶)𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wnf 1785  wcel 2111  wral 3106  cin 3880  wss 3881  cmpt 5110  ran crn 5520  cres 5521  cima 5522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-fv 6332
This theorem is referenced by:  limsup10exlem  42414
  Copyright terms: Public domain W3C validator