| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > imassmpt | Structured version Visualization version GIF version | ||
| Description: Membership relation for the values of a function whose image is a subclass. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| imassmpt.1 | ⊢ Ⅎ𝑥𝜑 |
| imassmpt.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐶)) → 𝐵 ∈ 𝑉) |
| imassmpt.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| imassmpt | ⊢ (𝜑 → ((𝐹 “ 𝐶) ⊆ 𝐷 ↔ ∀𝑥 ∈ (𝐴 ∩ 𝐶)𝐵 ∈ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ima 5651 | . . . 4 ⊢ (𝐹 “ 𝐶) = ran (𝐹 ↾ 𝐶) | |
| 2 | imassmpt.3 | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 3 | 2 | reseq1i 5946 | . . . . . 6 ⊢ (𝐹 ↾ 𝐶) = ((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝐶) |
| 4 | resmpt3 6009 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝐶) = (𝑥 ∈ (𝐴 ∩ 𝐶) ↦ 𝐵) | |
| 5 | 3, 4 | eqtri 2752 | . . . . 5 ⊢ (𝐹 ↾ 𝐶) = (𝑥 ∈ (𝐴 ∩ 𝐶) ↦ 𝐵) |
| 6 | 5 | rneqi 5901 | . . . 4 ⊢ ran (𝐹 ↾ 𝐶) = ran (𝑥 ∈ (𝐴 ∩ 𝐶) ↦ 𝐵) |
| 7 | 1, 6 | eqtri 2752 | . . 3 ⊢ (𝐹 “ 𝐶) = ran (𝑥 ∈ (𝐴 ∩ 𝐶) ↦ 𝐵) |
| 8 | 7 | sseq1i 3975 | . 2 ⊢ ((𝐹 “ 𝐶) ⊆ 𝐷 ↔ ran (𝑥 ∈ (𝐴 ∩ 𝐶) ↦ 𝐵) ⊆ 𝐷) |
| 9 | imassmpt.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 10 | eqid 2729 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐶) ↦ 𝐵) = (𝑥 ∈ (𝐴 ∩ 𝐶) ↦ 𝐵) | |
| 11 | imassmpt.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐶)) → 𝐵 ∈ 𝑉) | |
| 12 | 9, 10, 11 | rnmptssbi 45254 | . 2 ⊢ (𝜑 → (ran (𝑥 ∈ (𝐴 ∩ 𝐶) ↦ 𝐵) ⊆ 𝐷 ↔ ∀𝑥 ∈ (𝐴 ∩ 𝐶)𝐵 ∈ 𝐷)) |
| 13 | 8, 12 | bitrid 283 | 1 ⊢ (𝜑 → ((𝐹 “ 𝐶) ⊆ 𝐷 ↔ ∀𝑥 ∈ (𝐴 ∩ 𝐶)𝐵 ∈ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 ∀wral 3044 ∩ cin 3913 ⊆ wss 3914 ↦ cmpt 5188 ran crn 5639 ↾ cres 5640 “ cima 5641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-fun 6513 df-fn 6514 df-f 6515 |
| This theorem is referenced by: limsup10exlem 45770 |
| Copyright terms: Public domain | W3C validator |