![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > imassmpt | Structured version Visualization version GIF version |
Description: Membership relation for the values of a function whose image is a subclass. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
imassmpt.1 | ⊢ Ⅎ𝑥𝜑 |
imassmpt.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐶)) → 𝐵 ∈ 𝑉) |
imassmpt.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
imassmpt | ⊢ (𝜑 → ((𝐹 “ 𝐶) ⊆ 𝐷 ↔ ∀𝑥 ∈ (𝐴 ∩ 𝐶)𝐵 ∈ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 5701 | . . . 4 ⊢ (𝐹 “ 𝐶) = ran (𝐹 ↾ 𝐶) | |
2 | imassmpt.3 | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
3 | 2 | reseq1i 5995 | . . . . . 6 ⊢ (𝐹 ↾ 𝐶) = ((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝐶) |
4 | resmpt3 6057 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝐶) = (𝑥 ∈ (𝐴 ∩ 𝐶) ↦ 𝐵) | |
5 | 3, 4 | eqtri 2762 | . . . . 5 ⊢ (𝐹 ↾ 𝐶) = (𝑥 ∈ (𝐴 ∩ 𝐶) ↦ 𝐵) |
6 | 5 | rneqi 5950 | . . . 4 ⊢ ran (𝐹 ↾ 𝐶) = ran (𝑥 ∈ (𝐴 ∩ 𝐶) ↦ 𝐵) |
7 | 1, 6 | eqtri 2762 | . . 3 ⊢ (𝐹 “ 𝐶) = ran (𝑥 ∈ (𝐴 ∩ 𝐶) ↦ 𝐵) |
8 | 7 | sseq1i 4023 | . 2 ⊢ ((𝐹 “ 𝐶) ⊆ 𝐷 ↔ ran (𝑥 ∈ (𝐴 ∩ 𝐶) ↦ 𝐵) ⊆ 𝐷) |
9 | imassmpt.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
10 | eqid 2734 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐶) ↦ 𝐵) = (𝑥 ∈ (𝐴 ∩ 𝐶) ↦ 𝐵) | |
11 | imassmpt.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐶)) → 𝐵 ∈ 𝑉) | |
12 | 9, 10, 11 | rnmptssbi 45205 | . 2 ⊢ (𝜑 → (ran (𝑥 ∈ (𝐴 ∩ 𝐶) ↦ 𝐵) ⊆ 𝐷 ↔ ∀𝑥 ∈ (𝐴 ∩ 𝐶)𝐵 ∈ 𝐷)) |
13 | 8, 12 | bitrid 283 | 1 ⊢ (𝜑 → ((𝐹 “ 𝐶) ⊆ 𝐷 ↔ ∀𝑥 ∈ (𝐴 ∩ 𝐶)𝐵 ∈ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1536 Ⅎwnf 1779 ∈ wcel 2105 ∀wral 3058 ∩ cin 3961 ⊆ wss 3962 ↦ cmpt 5230 ran crn 5689 ↾ cres 5690 “ cima 5691 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-fun 6564 df-fn 6565 df-f 6566 |
This theorem is referenced by: limsup10exlem 45727 |
Copyright terms: Public domain | W3C validator |