![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > imassmpt | Structured version Visualization version GIF version |
Description: Membership relation for the values of a function whose image is a subclass. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
imassmpt.1 | ⊢ Ⅎ𝑥𝜑 |
imassmpt.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐶)) → 𝐵 ∈ 𝑉) |
imassmpt.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
imassmpt | ⊢ (𝜑 → ((𝐹 “ 𝐶) ⊆ 𝐷 ↔ ∀𝑥 ∈ (𝐴 ∩ 𝐶)𝐵 ∈ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 5689 | . . . 4 ⊢ (𝐹 “ 𝐶) = ran (𝐹 ↾ 𝐶) | |
2 | imassmpt.3 | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
3 | 2 | reseq1i 5977 | . . . . . 6 ⊢ (𝐹 ↾ 𝐶) = ((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝐶) |
4 | resmpt3 6038 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝐶) = (𝑥 ∈ (𝐴 ∩ 𝐶) ↦ 𝐵) | |
5 | 3, 4 | eqtri 2759 | . . . . 5 ⊢ (𝐹 ↾ 𝐶) = (𝑥 ∈ (𝐴 ∩ 𝐶) ↦ 𝐵) |
6 | 5 | rneqi 5936 | . . . 4 ⊢ ran (𝐹 ↾ 𝐶) = ran (𝑥 ∈ (𝐴 ∩ 𝐶) ↦ 𝐵) |
7 | 1, 6 | eqtri 2759 | . . 3 ⊢ (𝐹 “ 𝐶) = ran (𝑥 ∈ (𝐴 ∩ 𝐶) ↦ 𝐵) |
8 | 7 | sseq1i 4010 | . 2 ⊢ ((𝐹 “ 𝐶) ⊆ 𝐷 ↔ ran (𝑥 ∈ (𝐴 ∩ 𝐶) ↦ 𝐵) ⊆ 𝐷) |
9 | imassmpt.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
10 | eqid 2731 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐶) ↦ 𝐵) = (𝑥 ∈ (𝐴 ∩ 𝐶) ↦ 𝐵) | |
11 | imassmpt.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐶)) → 𝐵 ∈ 𝑉) | |
12 | 9, 10, 11 | rnmptssbi 44264 | . 2 ⊢ (𝜑 → (ran (𝑥 ∈ (𝐴 ∩ 𝐶) ↦ 𝐵) ⊆ 𝐷 ↔ ∀𝑥 ∈ (𝐴 ∩ 𝐶)𝐵 ∈ 𝐷)) |
13 | 8, 12 | bitrid 283 | 1 ⊢ (𝜑 → ((𝐹 “ 𝐶) ⊆ 𝐷 ↔ ∀𝑥 ∈ (𝐴 ∩ 𝐶)𝐵 ∈ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 Ⅎwnf 1784 ∈ wcel 2105 ∀wral 3060 ∩ cin 3947 ⊆ wss 3948 ↦ cmpt 5231 ran crn 5677 ↾ cres 5678 “ cima 5679 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-fun 6545 df-fn 6546 df-f 6547 |
This theorem is referenced by: limsup10exlem 44787 |
Copyright terms: Public domain | W3C validator |