Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imassmpt Structured version   Visualization version   GIF version

Theorem imassmpt 42810
Description: Membership relation for the values of a function whose image is a subclass. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
imassmpt.1 𝑥𝜑
imassmpt.2 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝐵𝑉)
imassmpt.3 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
imassmpt (𝜑 → ((𝐹𝐶) ⊆ 𝐷 ↔ ∀𝑥 ∈ (𝐴𝐶)𝐵𝐷))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem imassmpt
StepHypRef Expression
1 df-ima 5602 . . . 4 (𝐹𝐶) = ran (𝐹𝐶)
2 imassmpt.3 . . . . . . 7 𝐹 = (𝑥𝐴𝐵)
32reseq1i 5887 . . . . . 6 (𝐹𝐶) = ((𝑥𝐴𝐵) ↾ 𝐶)
4 resmpt3 5946 . . . . . 6 ((𝑥𝐴𝐵) ↾ 𝐶) = (𝑥 ∈ (𝐴𝐶) ↦ 𝐵)
53, 4eqtri 2766 . . . . 5 (𝐹𝐶) = (𝑥 ∈ (𝐴𝐶) ↦ 𝐵)
65rneqi 5846 . . . 4 ran (𝐹𝐶) = ran (𝑥 ∈ (𝐴𝐶) ↦ 𝐵)
71, 6eqtri 2766 . . 3 (𝐹𝐶) = ran (𝑥 ∈ (𝐴𝐶) ↦ 𝐵)
87sseq1i 3949 . 2 ((𝐹𝐶) ⊆ 𝐷 ↔ ran (𝑥 ∈ (𝐴𝐶) ↦ 𝐵) ⊆ 𝐷)
9 imassmpt.1 . . 3 𝑥𝜑
10 eqid 2738 . . 3 (𝑥 ∈ (𝐴𝐶) ↦ 𝐵) = (𝑥 ∈ (𝐴𝐶) ↦ 𝐵)
11 imassmpt.2 . . 3 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝐵𝑉)
129, 10, 11rnmptssbi 42807 . 2 (𝜑 → (ran (𝑥 ∈ (𝐴𝐶) ↦ 𝐵) ⊆ 𝐷 ↔ ∀𝑥 ∈ (𝐴𝐶)𝐵𝐷))
138, 12syl5bb 283 1 (𝜑 → ((𝐹𝐶) ⊆ 𝐷 ↔ ∀𝑥 ∈ (𝐴𝐶)𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wnf 1786  wcel 2106  wral 3064  cin 3886  wss 3887  cmpt 5157  ran crn 5590  cres 5591  cima 5592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-fun 6435  df-fn 6436  df-f 6437
This theorem is referenced by:  limsup10exlem  43313
  Copyright terms: Public domain W3C validator