Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imassmpt Structured version   Visualization version   GIF version

Theorem imassmpt 45234
Description: Membership relation for the values of a function whose image is a subclass. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
imassmpt.1 𝑥𝜑
imassmpt.2 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝐵𝑉)
imassmpt.3 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
imassmpt (𝜑 → ((𝐹𝐶) ⊆ 𝐷 ↔ ∀𝑥 ∈ (𝐴𝐶)𝐵𝐷))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem imassmpt
StepHypRef Expression
1 df-ima 5667 . . . 4 (𝐹𝐶) = ran (𝐹𝐶)
2 imassmpt.3 . . . . . . 7 𝐹 = (𝑥𝐴𝐵)
32reseq1i 5962 . . . . . 6 (𝐹𝐶) = ((𝑥𝐴𝐵) ↾ 𝐶)
4 resmpt3 6025 . . . . . 6 ((𝑥𝐴𝐵) ↾ 𝐶) = (𝑥 ∈ (𝐴𝐶) ↦ 𝐵)
53, 4eqtri 2758 . . . . 5 (𝐹𝐶) = (𝑥 ∈ (𝐴𝐶) ↦ 𝐵)
65rneqi 5917 . . . 4 ran (𝐹𝐶) = ran (𝑥 ∈ (𝐴𝐶) ↦ 𝐵)
71, 6eqtri 2758 . . 3 (𝐹𝐶) = ran (𝑥 ∈ (𝐴𝐶) ↦ 𝐵)
87sseq1i 3987 . 2 ((𝐹𝐶) ⊆ 𝐷 ↔ ran (𝑥 ∈ (𝐴𝐶) ↦ 𝐵) ⊆ 𝐷)
9 imassmpt.1 . . 3 𝑥𝜑
10 eqid 2735 . . 3 (𝑥 ∈ (𝐴𝐶) ↦ 𝐵) = (𝑥 ∈ (𝐴𝐶) ↦ 𝐵)
11 imassmpt.2 . . 3 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝐵𝑉)
129, 10, 11rnmptssbi 45232 . 2 (𝜑 → (ran (𝑥 ∈ (𝐴𝐶) ↦ 𝐵) ⊆ 𝐷 ↔ ∀𝑥 ∈ (𝐴𝐶)𝐵𝐷))
138, 12bitrid 283 1 (𝜑 → ((𝐹𝐶) ⊆ 𝐷 ↔ ∀𝑥 ∈ (𝐴𝐶)𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wnf 1783  wcel 2108  wral 3051  cin 3925  wss 3926  cmpt 5201  ran crn 5655  cres 5656  cima 5657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-fun 6532  df-fn 6533  df-f 6534
This theorem is referenced by:  limsup10exlem  45749
  Copyright terms: Public domain W3C validator