Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnmptssbi Structured version   Visualization version   GIF version

Theorem rnmptssbi 44265
Description: The range of a function given by the maps-to notation as a subset. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
rnmptssbi.1 𝑥𝜑
rnmptssbi.2 𝐹 = (𝑥𝐴𝐵)
rnmptssbi.3 ((𝜑𝑥𝐴) → 𝐵𝑉)
Assertion
Ref Expression
rnmptssbi (𝜑 → (ran 𝐹𝐶 ↔ ∀𝑥𝐴 𝐵𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem rnmptssbi
StepHypRef Expression
1 rnmptssbi.1 . . . 4 𝑥𝜑
2 rnmptssbi.2 . . . . . . 7 𝐹 = (𝑥𝐴𝐵)
3 nfmpt1 5257 . . . . . . 7 𝑥(𝑥𝐴𝐵)
42, 3nfcxfr 2900 . . . . . 6 𝑥𝐹
54nfrn 5952 . . . . 5 𝑥ran 𝐹
6 nfcv 2902 . . . . 5 𝑥𝐶
75, 6nfss 3975 . . . 4 𝑥ran 𝐹𝐶
81, 7nfan 1901 . . 3 𝑥(𝜑 ∧ ran 𝐹𝐶)
9 simplr 766 . . . 4 (((𝜑 ∧ ran 𝐹𝐶) ∧ 𝑥𝐴) → ran 𝐹𝐶)
10 simpr 484 . . . . 5 (((𝜑 ∧ ran 𝐹𝐶) ∧ 𝑥𝐴) → 𝑥𝐴)
11 rnmptssbi.3 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵𝑉)
1211adantlr 712 . . . . 5 (((𝜑 ∧ ran 𝐹𝐶) ∧ 𝑥𝐴) → 𝐵𝑉)
132, 10, 12elrnmpt1d 44232 . . . 4 (((𝜑 ∧ ran 𝐹𝐶) ∧ 𝑥𝐴) → 𝐵 ∈ ran 𝐹)
149, 13sseldd 3984 . . 3 (((𝜑 ∧ ran 𝐹𝐶) ∧ 𝑥𝐴) → 𝐵𝐶)
158, 14ralrimia 3254 . 2 ((𝜑 ∧ ran 𝐹𝐶) → ∀𝑥𝐴 𝐵𝐶)
162rnmptss 7125 . . 3 (∀𝑥𝐴 𝐵𝐶 → ran 𝐹𝐶)
1716adantl 481 . 2 ((𝜑 ∧ ∀𝑥𝐴 𝐵𝐶) → ran 𝐹𝐶)
1815, 17impbida 798 1 (𝜑 → (ran 𝐹𝐶 ↔ ∀𝑥𝐴 𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1540  wnf 1784  wcel 2105  wral 3060  wss 3949  cmpt 5232  ran crn 5678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-fun 6546  df-fn 6547  df-f 6548
This theorem is referenced by:  imassmpt  44267
  Copyright terms: Public domain W3C validator