![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rnmptssbi | Structured version Visualization version GIF version |
Description: The range of a function given by the maps-to notation as a subset. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
rnmptssbi.1 | ⊢ Ⅎ𝑥𝜑 |
rnmptssbi.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
rnmptssbi.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
Ref | Expression |
---|---|
rnmptssbi | ⊢ (𝜑 → (ran 𝐹 ⊆ 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnmptssbi.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
2 | rnmptssbi.2 | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
3 | nfmpt1 5274 | . . . . . . 7 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) | |
4 | 2, 3 | nfcxfr 2906 | . . . . . 6 ⊢ Ⅎ𝑥𝐹 |
5 | 4 | nfrn 5977 | . . . . 5 ⊢ Ⅎ𝑥ran 𝐹 |
6 | nfcv 2908 | . . . . 5 ⊢ Ⅎ𝑥𝐶 | |
7 | 5, 6 | nfss 4001 | . . . 4 ⊢ Ⅎ𝑥ran 𝐹 ⊆ 𝐶 |
8 | 1, 7 | nfan 1898 | . . 3 ⊢ Ⅎ𝑥(𝜑 ∧ ran 𝐹 ⊆ 𝐶) |
9 | simplr 768 | . . . 4 ⊢ (((𝜑 ∧ ran 𝐹 ⊆ 𝐶) ∧ 𝑥 ∈ 𝐴) → ran 𝐹 ⊆ 𝐶) | |
10 | simpr 484 | . . . . 5 ⊢ (((𝜑 ∧ ran 𝐹 ⊆ 𝐶) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
11 | rnmptssbi.3 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) | |
12 | 11 | adantlr 714 | . . . . 5 ⊢ (((𝜑 ∧ ran 𝐹 ⊆ 𝐶) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
13 | 2, 10, 12 | elrnmpt1d 5987 | . . . 4 ⊢ (((𝜑 ∧ ran 𝐹 ⊆ 𝐶) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ran 𝐹) |
14 | 9, 13 | sseldd 4009 | . . 3 ⊢ (((𝜑 ∧ ran 𝐹 ⊆ 𝐶) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
15 | 8, 14 | ralrimia 3264 | . 2 ⊢ ((𝜑 ∧ ran 𝐹 ⊆ 𝐶) → ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) |
16 | 2 | rnmptss 7157 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ran 𝐹 ⊆ 𝐶) |
17 | 16 | adantl 481 | . 2 ⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) → ran 𝐹 ⊆ 𝐶) |
18 | 15, 17 | impbida 800 | 1 ⊢ (𝜑 → (ran 𝐹 ⊆ 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 Ⅎwnf 1781 ∈ wcel 2108 ∀wral 3067 ⊆ wss 3976 ↦ cmpt 5249 ran crn 5701 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-fun 6575 df-fn 6576 df-f 6577 |
This theorem is referenced by: imassmpt 45172 |
Copyright terms: Public domain | W3C validator |