Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rnmptssbi | Structured version Visualization version GIF version |
Description: The range of an operation given by the maps-to notation as a subset. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
rnmptssbi.1 | ⊢ Ⅎ𝑥𝜑 |
rnmptssbi.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
rnmptssbi.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
Ref | Expression |
---|---|
rnmptssbi | ⊢ (𝜑 → (ran 𝐹 ⊆ 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnmptssbi.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
2 | rnmptssbi.2 | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
3 | nfmpt1 5178 | . . . . . . 7 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) | |
4 | 2, 3 | nfcxfr 2904 | . . . . . 6 ⊢ Ⅎ𝑥𝐹 |
5 | 4 | nfrn 5850 | . . . . 5 ⊢ Ⅎ𝑥ran 𝐹 |
6 | nfcv 2906 | . . . . 5 ⊢ Ⅎ𝑥𝐶 | |
7 | 5, 6 | nfss 3909 | . . . 4 ⊢ Ⅎ𝑥ran 𝐹 ⊆ 𝐶 |
8 | 1, 7 | nfan 1903 | . . 3 ⊢ Ⅎ𝑥(𝜑 ∧ ran 𝐹 ⊆ 𝐶) |
9 | simplr 765 | . . . 4 ⊢ (((𝜑 ∧ ran 𝐹 ⊆ 𝐶) ∧ 𝑥 ∈ 𝐴) → ran 𝐹 ⊆ 𝐶) | |
10 | simpr 484 | . . . . 5 ⊢ (((𝜑 ∧ ran 𝐹 ⊆ 𝐶) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
11 | rnmptssbi.3 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) | |
12 | 11 | adantlr 711 | . . . . 5 ⊢ (((𝜑 ∧ ran 𝐹 ⊆ 𝐶) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
13 | 2, 10, 12 | elrnmpt1d 42662 | . . . 4 ⊢ (((𝜑 ∧ ran 𝐹 ⊆ 𝐶) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ran 𝐹) |
14 | 9, 13 | sseldd 3918 | . . 3 ⊢ (((𝜑 ∧ ran 𝐹 ⊆ 𝐶) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
15 | 8, 14 | ralrimia 3420 | . 2 ⊢ ((𝜑 ∧ ran 𝐹 ⊆ 𝐶) → ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) |
16 | 2 | rnmptss 6978 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ran 𝐹 ⊆ 𝐶) |
17 | 16 | adantl 481 | . 2 ⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) → ran 𝐹 ⊆ 𝐶) |
18 | 15, 17 | impbida 797 | 1 ⊢ (𝜑 → (ran 𝐹 ⊆ 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 Ⅎwnf 1787 ∈ wcel 2108 ∀wral 3063 ⊆ wss 3883 ↦ cmpt 5153 ran crn 5581 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-fun 6420 df-fn 6421 df-f 6422 |
This theorem is referenced by: imassmpt 42699 |
Copyright terms: Public domain | W3C validator |