Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnmptssbi Structured version   Visualization version   GIF version

Theorem rnmptssbi 45170
Description: The range of a function given by the maps-to notation as a subset. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
rnmptssbi.1 𝑥𝜑
rnmptssbi.2 𝐹 = (𝑥𝐴𝐵)
rnmptssbi.3 ((𝜑𝑥𝐴) → 𝐵𝑉)
Assertion
Ref Expression
rnmptssbi (𝜑 → (ran 𝐹𝐶 ↔ ∀𝑥𝐴 𝐵𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem rnmptssbi
StepHypRef Expression
1 rnmptssbi.1 . . . 4 𝑥𝜑
2 rnmptssbi.2 . . . . . . 7 𝐹 = (𝑥𝐴𝐵)
3 nfmpt1 5274 . . . . . . 7 𝑥(𝑥𝐴𝐵)
42, 3nfcxfr 2906 . . . . . 6 𝑥𝐹
54nfrn 5977 . . . . 5 𝑥ran 𝐹
6 nfcv 2908 . . . . 5 𝑥𝐶
75, 6nfss 4001 . . . 4 𝑥ran 𝐹𝐶
81, 7nfan 1898 . . 3 𝑥(𝜑 ∧ ran 𝐹𝐶)
9 simplr 768 . . . 4 (((𝜑 ∧ ran 𝐹𝐶) ∧ 𝑥𝐴) → ran 𝐹𝐶)
10 simpr 484 . . . . 5 (((𝜑 ∧ ran 𝐹𝐶) ∧ 𝑥𝐴) → 𝑥𝐴)
11 rnmptssbi.3 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵𝑉)
1211adantlr 714 . . . . 5 (((𝜑 ∧ ran 𝐹𝐶) ∧ 𝑥𝐴) → 𝐵𝑉)
132, 10, 12elrnmpt1d 5987 . . . 4 (((𝜑 ∧ ran 𝐹𝐶) ∧ 𝑥𝐴) → 𝐵 ∈ ran 𝐹)
149, 13sseldd 4009 . . 3 (((𝜑 ∧ ran 𝐹𝐶) ∧ 𝑥𝐴) → 𝐵𝐶)
158, 14ralrimia 3264 . 2 ((𝜑 ∧ ran 𝐹𝐶) → ∀𝑥𝐴 𝐵𝐶)
162rnmptss 7157 . . 3 (∀𝑥𝐴 𝐵𝐶 → ran 𝐹𝐶)
1716adantl 481 . 2 ((𝜑 ∧ ∀𝑥𝐴 𝐵𝐶) → ran 𝐹𝐶)
1815, 17impbida 800 1 (𝜑 → (ran 𝐹𝐶 ↔ ∀𝑥𝐴 𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wnf 1781  wcel 2108  wral 3067  wss 3976  cmpt 5249  ran crn 5701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-fun 6575  df-fn 6576  df-f 6577
This theorem is referenced by:  imassmpt  45172
  Copyright terms: Public domain W3C validator