| Step | Hyp | Ref
| Expression |
| 1 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) → 𝑙 ∈
ℝ) |
| 2 | | simpl 482 |
. . . . . . . . . . . 12
⊢ ((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) → 𝑖 ∈
ℝ) |
| 3 | 1, 2 | ifcld 4572 |
. . . . . . . . . . 11
⊢ ((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) → if(𝑖 ≤ 𝑙, 𝑙, 𝑖) ∈ ℝ) |
| 4 | 3 | adantll 714 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ ℝ) ∧ 𝑙 ∈ ℝ) → if(𝑖 ≤ 𝑙, 𝑙, 𝑖) ∈ ℝ) |
| 5 | | liminflelimsuplem.2 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠
∅) |
| 6 | 5 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ ℝ) ∧ 𝑙 ∈ ℝ) → ∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠
∅) |
| 7 | | oveq1 7438 |
. . . . . . . . . . . 12
⊢ (𝑘 = if(𝑖 ≤ 𝑙, 𝑙, 𝑖) → (𝑘[,)+∞) = (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞)) |
| 8 | 7 | rexeqdv 3327 |
. . . . . . . . . . 11
⊢ (𝑘 = if(𝑖 ≤ 𝑙, 𝑙, 𝑖) → (∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠
∅ ↔ ∃𝑗
∈ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠
∅)) |
| 9 | 8 | rspcva 3620 |
. . . . . . . . . 10
⊢
((if(𝑖 ≤ 𝑙, 𝑙, 𝑖) ∈ ℝ ∧ ∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠
∅) → ∃𝑗
∈ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠
∅) |
| 10 | 4, 6, 9 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ ℝ) ∧ 𝑙 ∈ ℝ) → ∃𝑗 ∈ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠
∅) |
| 11 | | inss2 4238 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*)
⊆ ℝ* |
| 12 | | infxrcl 13375 |
. . . . . . . . . . . . . 14
⊢ (((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*)
⊆ ℝ* → inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < ) ∈ ℝ*) |
| 13 | 11, 12 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢
inf(((𝐹 “
(𝑖[,)+∞)) ∩
ℝ*), ℝ*, < ) ∈
ℝ* |
| 14 | 13 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠
∅) → inf(((𝐹
“ (𝑖[,)+∞))
∩ ℝ*), ℝ*, < ) ∈
ℝ*) |
| 15 | | inss2 4238 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*)
⊆ ℝ* |
| 16 | | infxrcl 13375 |
. . . . . . . . . . . . . 14
⊢ (((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*)
⊆ ℝ* → inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*),
ℝ*, < ) ∈ ℝ*) |
| 17 | 15, 16 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢
inf(((𝐹 “
(𝑗[,)+∞)) ∩
ℝ*), ℝ*, < ) ∈
ℝ* |
| 18 | 17 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠
∅) → inf(((𝐹
“ (𝑗[,)+∞))
∩ ℝ*), ℝ*, < ) ∈
ℝ*) |
| 19 | | inss2 4238 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*)
⊆ ℝ* |
| 20 | | supxrcl 13357 |
. . . . . . . . . . . . . 14
⊢ (((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*)
⊆ ℝ* → sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*),
ℝ*, < ) ∈ ℝ*) |
| 21 | 19, 20 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢
sup(((𝐹 “
(𝑙[,)+∞)) ∩
ℝ*), ℝ*, < ) ∈
ℝ* |
| 22 | 21 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠
∅) → sup(((𝐹
“ (𝑙[,)+∞))
∩ ℝ*), ℝ*, < ) ∈
ℝ*) |
| 23 | | rexr 11307 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈ ℝ → 𝑖 ∈
ℝ*) |
| 24 | 23 | ad2antrr 726 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞)) → 𝑖 ∈ ℝ*) |
| 25 | | pnfxr 11315 |
. . . . . . . . . . . . . . . . . 18
⊢ +∞
∈ ℝ* |
| 26 | 25 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞)) → +∞ ∈
ℝ*) |
| 27 | 3 | rexrd 11311 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) → if(𝑖 ≤ 𝑙, 𝑙, 𝑖) ∈
ℝ*) |
| 28 | 27 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞)) → if(𝑖 ≤ 𝑙, 𝑙, 𝑖) ∈
ℝ*) |
| 29 | | icossxr 13472 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞) ⊆
ℝ* |
| 30 | | id 22 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 ∈ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞) → 𝑗 ∈ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞)) |
| 31 | 29, 30 | sselid 3981 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞) → 𝑗 ∈ ℝ*) |
| 32 | 31 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞)) → 𝑗 ∈ ℝ*) |
| 33 | | max1 13227 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) → 𝑖 ≤ if(𝑖 ≤ 𝑙, 𝑙, 𝑖)) |
| 34 | 33 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞)) → 𝑖 ≤ if(𝑖 ≤ 𝑙, 𝑙, 𝑖)) |
| 35 | | simpr 484 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞)) → 𝑗 ∈ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞)) |
| 36 | 28, 26, 35 | icogelbd 45571 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞)) → if(𝑖 ≤ 𝑙, 𝑙, 𝑖) ≤ 𝑗) |
| 37 | 24, 28, 32, 34, 36 | xrletrd 13204 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞)) → 𝑖 ≤ 𝑗) |
| 38 | 24, 26, 37 | icossico2 45577 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞)) → (𝑗[,)+∞) ⊆ (𝑖[,)+∞)) |
| 39 | 38 | imass2d 45268 |
. . . . . . . . . . . . . . 15
⊢ (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞)) → (𝐹 “ (𝑗[,)+∞)) ⊆ (𝐹 “ (𝑖[,)+∞))) |
| 40 | 39 | ssrind 4244 |
. . . . . . . . . . . . . 14
⊢ (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞)) → ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*)
⊆ ((𝐹 “ (𝑖[,)+∞)) ∩
ℝ*)) |
| 41 | 11 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞)) → ((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*)
⊆ ℝ*) |
| 42 | | infxrss 13381 |
. . . . . . . . . . . . . 14
⊢ ((((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*)
⊆ ((𝐹 “ (𝑖[,)+∞)) ∩
ℝ*) ∧ ((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*)
⊆ ℝ*) → inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < ) ≤ inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*),
ℝ*, < )) |
| 43 | 40, 41, 42 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞)) → inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < ) ≤ inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*),
ℝ*, < )) |
| 44 | 43 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠
∅) → inf(((𝐹
“ (𝑖[,)+∞))
∩ ℝ*), ℝ*, < ) ≤ inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*),
ℝ*, < )) |
| 45 | | supxrcl 13357 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*)
⊆ ℝ* → sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*),
ℝ*, < ) ∈ ℝ*) |
| 46 | 15, 45 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢
sup(((𝐹 “
(𝑗[,)+∞)) ∩
ℝ*), ℝ*, < ) ∈
ℝ* |
| 47 | 46 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠
∅) → sup(((𝐹
“ (𝑗[,)+∞))
∩ ℝ*), ℝ*, < ) ∈
ℝ*) |
| 48 | 15 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠
∅) → ((𝐹 “
(𝑗[,)+∞)) ∩
ℝ*) ⊆ ℝ*) |
| 49 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠
∅) → ((𝐹 “
(𝑗[,)+∞)) ∩
ℝ*) ≠ ∅) |
| 50 | 48, 49 | infxrlesupxr 45447 |
. . . . . . . . . . . . 13
⊢ ((((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠
∅) → inf(((𝐹
“ (𝑗[,)+∞))
∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*),
ℝ*, < )) |
| 51 | | rexr 11307 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑙 ∈ ℝ → 𝑙 ∈
ℝ*) |
| 52 | 51 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞)) → 𝑙 ∈ ℝ*) |
| 53 | | max2 13229 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) → 𝑙 ≤ if(𝑖 ≤ 𝑙, 𝑙, 𝑖)) |
| 54 | 53 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞)) → 𝑙 ≤ if(𝑖 ≤ 𝑙, 𝑙, 𝑖)) |
| 55 | 52, 28, 32, 54, 36 | xrletrd 13204 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞)) → 𝑙 ≤ 𝑗) |
| 56 | 52, 26, 55 | icossico2 45577 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞)) → (𝑗[,)+∞) ⊆ (𝑙[,)+∞)) |
| 57 | 56 | imass2d 45268 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞)) → (𝐹 “ (𝑗[,)+∞)) ⊆ (𝐹 “ (𝑙[,)+∞))) |
| 58 | 57 | ssrind 4244 |
. . . . . . . . . . . . . . 15
⊢ (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞)) → ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*)
⊆ ((𝐹 “ (𝑙[,)+∞)) ∩
ℝ*)) |
| 59 | 19 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞)) → ((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*)
⊆ ℝ*) |
| 60 | | supxrss 13374 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*)
⊆ ((𝐹 “ (𝑙[,)+∞)) ∩
ℝ*) ∧ ((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*)
⊆ ℝ*) → sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*),
ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*),
ℝ*, < )) |
| 61 | 58, 59, 60 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞)) → sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*),
ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*),
ℝ*, < )) |
| 62 | 61 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠
∅) → sup(((𝐹
“ (𝑗[,)+∞))
∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*),
ℝ*, < )) |
| 63 | 18, 47, 22, 50, 62 | xrletrd 13204 |
. . . . . . . . . . . 12
⊢ ((((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠
∅) → inf(((𝐹
“ (𝑗[,)+∞))
∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*),
ℝ*, < )) |
| 64 | 14, 18, 22, 44, 63 | xrletrd 13204 |
. . . . . . . . . . 11
⊢ ((((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠
∅) → inf(((𝐹
“ (𝑖[,)+∞))
∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*),
ℝ*, < )) |
| 65 | 64 | ad5ant2345 1372 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑖 ∈ ℝ) ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠
∅) → inf(((𝐹
“ (𝑖[,)+∞))
∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*),
ℝ*, < )) |
| 66 | 65 | rexlimdva2 3157 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ ℝ) ∧ 𝑙 ∈ ℝ) → (∃𝑗 ∈ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠
∅ → inf(((𝐹
“ (𝑖[,)+∞))
∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*),
ℝ*, < ))) |
| 67 | 10, 66 | mpd 15 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ ℝ) ∧ 𝑙 ∈ ℝ) → inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*),
ℝ*, < )) |
| 68 | 67 | ralrimiva 3146 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ ℝ) → ∀𝑙 ∈ ℝ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*),
ℝ*, < )) |
| 69 | | nfv 1914 |
. . . . . . . . 9
⊢
Ⅎ𝑙𝜑 |
| 70 | | xrltso 13183 |
. . . . . . . . . . 11
⊢ < Or
ℝ* |
| 71 | 70 | supex 9503 |
. . . . . . . . . 10
⊢
sup(((𝐹 “
(𝑙[,)+∞)) ∩
ℝ*), ℝ*, < ) ∈ V |
| 72 | 71 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑙 ∈ ℝ) → sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*),
ℝ*, < ) ∈ V) |
| 73 | | breq2 5147 |
. . . . . . . . 9
⊢ (𝑦 = sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*),
ℝ*, < ) → (inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < ) ≤ 𝑦 ↔ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*),
ℝ*, < ))) |
| 74 | 69, 72, 73 | ralrnmpt3 45266 |
. . . . . . . 8
⊢ (𝜑 → (∀𝑦 ∈ ran (𝑙 ∈ ℝ ↦ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*),
ℝ*, < ))inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < ) ≤ 𝑦 ↔ ∀𝑙 ∈ ℝ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*),
ℝ*, < ))) |
| 75 | 74 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ ℝ) → (∀𝑦 ∈ ran (𝑙 ∈ ℝ ↦ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*),
ℝ*, < ))inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < ) ≤ 𝑦 ↔ ∀𝑙 ∈ ℝ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*),
ℝ*, < ))) |
| 76 | 68, 75 | mpbird 257 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ ℝ) → ∀𝑦 ∈ ran (𝑙 ∈ ℝ ↦ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*),
ℝ*, < ))inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < ) ≤ 𝑦) |
| 77 | | oveq1 7438 |
. . . . . . . . . . . . 13
⊢ (𝑙 = 𝑖 → (𝑙[,)+∞) = (𝑖[,)+∞)) |
| 78 | 77 | imaeq2d 6078 |
. . . . . . . . . . . 12
⊢ (𝑙 = 𝑖 → (𝐹 “ (𝑙[,)+∞)) = (𝐹 “ (𝑖[,)+∞))) |
| 79 | 78 | ineq1d 4219 |
. . . . . . . . . . 11
⊢ (𝑙 = 𝑖 → ((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*) =
((𝐹 “ (𝑖[,)+∞)) ∩
ℝ*)) |
| 80 | 79 | supeq1d 9486 |
. . . . . . . . . 10
⊢ (𝑙 = 𝑖 → sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*),
ℝ*, < ) = sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < )) |
| 81 | 80 | cbvmptv 5255 |
. . . . . . . . 9
⊢ (𝑙 ∈ ℝ ↦
sup(((𝐹 “ (𝑙[,)+∞)) ∩
ℝ*), ℝ*, < )) = (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < )) |
| 82 | 81 | rneqi 5948 |
. . . . . . . 8
⊢ ran
(𝑙 ∈ ℝ ↦
sup(((𝐹 “ (𝑙[,)+∞)) ∩
ℝ*), ℝ*, < )) = ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < )) |
| 83 | 82 | raleqi 3324 |
. . . . . . 7
⊢
(∀𝑦 ∈
ran (𝑙 ∈ ℝ
↦ sup(((𝐹 “
(𝑙[,)+∞)) ∩
ℝ*), ℝ*, < ))inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < ) ≤ 𝑦 ↔ ∀𝑦 ∈ ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < ))inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < ) ≤ 𝑦) |
| 84 | 83 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ ℝ) → (∀𝑦 ∈ ran (𝑙 ∈ ℝ ↦ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*),
ℝ*, < ))inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < ) ≤ 𝑦 ↔ ∀𝑦 ∈ ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < ))inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < ) ≤ 𝑦)) |
| 85 | 76, 84 | mpbid 232 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ ℝ) → ∀𝑦 ∈ ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < ))inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < ) ≤ 𝑦) |
| 86 | | supxrcl 13357 |
. . . . . . . . . 10
⊢ (((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*)
⊆ ℝ* → sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < ) ∈ ℝ*) |
| 87 | 11, 86 | ax-mp 5 |
. . . . . . . . 9
⊢
sup(((𝐹 “
(𝑖[,)+∞)) ∩
ℝ*), ℝ*, < ) ∈
ℝ* |
| 88 | 87 | rgenw 3065 |
. . . . . . . 8
⊢
∀𝑖 ∈
ℝ sup(((𝐹 “
(𝑖[,)+∞)) ∩
ℝ*), ℝ*, < ) ∈
ℝ* |
| 89 | | eqid 2737 |
. . . . . . . . 9
⊢ (𝑖 ∈ ℝ ↦
sup(((𝐹 “ (𝑖[,)+∞)) ∩
ℝ*), ℝ*, < )) = (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < )) |
| 90 | 89 | rnmptss 7143 |
. . . . . . . 8
⊢
(∀𝑖 ∈
ℝ sup(((𝐹 “
(𝑖[,)+∞)) ∩
ℝ*), ℝ*, < ) ∈ ℝ*
→ ran (𝑖 ∈
ℝ ↦ sup(((𝐹
“ (𝑖[,)+∞))
∩ ℝ*), ℝ*, < )) ⊆
ℝ*) |
| 91 | 88, 90 | ax-mp 5 |
. . . . . . 7
⊢ ran
(𝑖 ∈ ℝ ↦
sup(((𝐹 “ (𝑖[,)+∞)) ∩
ℝ*), ℝ*, < )) ⊆
ℝ* |
| 92 | 91 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ ℝ) → ran (𝑖 ∈ ℝ ↦
sup(((𝐹 “ (𝑖[,)+∞)) ∩
ℝ*), ℝ*, < )) ⊆
ℝ*) |
| 93 | 13 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ ℝ) → inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < ) ∈ ℝ*) |
| 94 | | infxrgelb 13377 |
. . . . . 6
⊢ ((ran
(𝑖 ∈ ℝ ↦
sup(((𝐹 “ (𝑖[,)+∞)) ∩
ℝ*), ℝ*, < )) ⊆ ℝ*
∧ inf(((𝐹 “
(𝑖[,)+∞)) ∩
ℝ*), ℝ*, < ) ∈ ℝ*)
→ (inf(((𝐹 “
(𝑖[,)+∞)) ∩
ℝ*), ℝ*, < ) ≤ inf(ran (𝑖 ∈ ℝ ↦
sup(((𝐹 “ (𝑖[,)+∞)) ∩
ℝ*), ℝ*, < )), ℝ*, < )
↔ ∀𝑦 ∈ ran
(𝑖 ∈ ℝ ↦
sup(((𝐹 “ (𝑖[,)+∞)) ∩
ℝ*), ℝ*, < ))inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < ) ≤ 𝑦)) |
| 95 | 92, 93, 94 | syl2anc 584 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ ℝ) → (inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < ) ≤ inf(ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < )), ℝ*, < ) ↔ ∀𝑦 ∈ ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < ))inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < ) ≤ 𝑦)) |
| 96 | 85, 95 | mpbird 257 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ ℝ) → inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < ) ≤ inf(ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < )), ℝ*, < )) |
| 97 | 96 | ralrimiva 3146 |
. . 3
⊢ (𝜑 → ∀𝑖 ∈ ℝ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < ) ≤ inf(ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < )), ℝ*, < )) |
| 98 | | nfv 1914 |
. . . 4
⊢
Ⅎ𝑖𝜑 |
| 99 | | nfcv 2905 |
. . . 4
⊢
Ⅎ𝑖ℝ |
| 100 | | nfmpt1 5250 |
. . . . . 6
⊢
Ⅎ𝑖(𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < )) |
| 101 | 100 | nfrn 5963 |
. . . . 5
⊢
Ⅎ𝑖ran
(𝑖 ∈ ℝ ↦
sup(((𝐹 “ (𝑖[,)+∞)) ∩
ℝ*), ℝ*, < )) |
| 102 | | nfcv 2905 |
. . . . 5
⊢
Ⅎ𝑖ℝ* |
| 103 | | nfcv 2905 |
. . . . 5
⊢
Ⅎ𝑖
< |
| 104 | 101, 102,
103 | nfinf 9522 |
. . . 4
⊢
Ⅎ𝑖inf(ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < )), ℝ*, < ) |
| 105 | | infxrcl 13375 |
. . . . . 6
⊢ (ran
(𝑖 ∈ ℝ ↦
sup(((𝐹 “ (𝑖[,)+∞)) ∩
ℝ*), ℝ*, < )) ⊆ ℝ*
→ inf(ran (𝑖 ∈
ℝ ↦ sup(((𝐹
“ (𝑖[,)+∞))
∩ ℝ*), ℝ*, < )), ℝ*,
< ) ∈ ℝ*) |
| 106 | 91, 105 | ax-mp 5 |
. . . . 5
⊢ inf(ran
(𝑖 ∈ ℝ ↦
sup(((𝐹 “ (𝑖[,)+∞)) ∩
ℝ*), ℝ*, < )), ℝ*, < )
∈ ℝ* |
| 107 | 106 | a1i 11 |
. . . 4
⊢ (𝜑 → inf(ran (𝑖 ∈ ℝ ↦
sup(((𝐹 “ (𝑖[,)+∞)) ∩
ℝ*), ℝ*, < )), ℝ*, < )
∈ ℝ*) |
| 108 | 98, 99, 104, 93, 107 | supxrleubrnmptf 45462 |
. . 3
⊢ (𝜑 → (sup(ran (𝑖 ∈ ℝ ↦
inf(((𝐹 “ (𝑖[,)+∞)) ∩
ℝ*), ℝ*, < )), ℝ*, < )
≤ inf(ran (𝑖 ∈
ℝ ↦ sup(((𝐹
“ (𝑖[,)+∞))
∩ ℝ*), ℝ*, < )), ℝ*,
< ) ↔ ∀𝑖
∈ ℝ inf(((𝐹
“ (𝑖[,)+∞))
∩ ℝ*), ℝ*, < ) ≤ inf(ran (𝑖 ∈ ℝ ↦
sup(((𝐹 “ (𝑖[,)+∞)) ∩
ℝ*), ℝ*, < )), ℝ*, <
))) |
| 109 | 97, 108 | mpbird 257 |
. 2
⊢ (𝜑 → sup(ran (𝑖 ∈ ℝ ↦
inf(((𝐹 “ (𝑖[,)+∞)) ∩
ℝ*), ℝ*, < )), ℝ*, < )
≤ inf(ran (𝑖 ∈
ℝ ↦ sup(((𝐹
“ (𝑖[,)+∞))
∩ ℝ*), ℝ*, < )), ℝ*,
< )) |
| 110 | | liminflelimsuplem.1 |
. . . 4
⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| 111 | | eqid 2737 |
. . . 4
⊢ (𝑖 ∈ ℝ ↦
inf(((𝐹 “ (𝑖[,)+∞)) ∩
ℝ*), ℝ*, < )) = (𝑖 ∈ ℝ ↦ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < )) |
| 112 | 110, 111 | liminfvald 45779 |
. . 3
⊢ (𝜑 → (lim inf‘𝐹) = sup(ran (𝑖 ∈ ℝ ↦ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < )), ℝ*, < )) |
| 113 | 110, 89 | limsupvald 45770 |
. . 3
⊢ (𝜑 → (lim sup‘𝐹) = inf(ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < )), ℝ*, < )) |
| 114 | 112, 113 | breq12d 5156 |
. 2
⊢ (𝜑 → ((lim inf‘𝐹) ≤ (lim sup‘𝐹) ↔ sup(ran (𝑖 ∈ ℝ ↦
inf(((𝐹 “ (𝑖[,)+∞)) ∩
ℝ*), ℝ*, < )), ℝ*, < )
≤ inf(ran (𝑖 ∈
ℝ ↦ sup(((𝐹
“ (𝑖[,)+∞))
∩ ℝ*), ℝ*, < )), ℝ*,
< ))) |
| 115 | 109, 114 | mpbird 257 |
1
⊢ (𝜑 → (lim inf‘𝐹) ≤ (lim sup‘𝐹)) |