Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminflelimsuplem Structured version   Visualization version   GIF version

Theorem liminflelimsuplem 43316
Description: The superior limit is greater than or equal to the inferior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
liminflelimsuplem.1 (𝜑𝐹𝑉)
liminflelimsuplem.2 (𝜑 → ∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅)
Assertion
Ref Expression
liminflelimsuplem (𝜑 → (lim inf‘𝐹) ≤ (lim sup‘𝐹))
Distinct variable groups:   𝑗,𝐹,𝑘   𝜑,𝑗
Allowed substitution hints:   𝜑(𝑘)   𝑉(𝑗,𝑘)

Proof of Theorem liminflelimsuplem
Dummy variables 𝑖 𝑙 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 485 . . . . . . . . . . . 12 ((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) → 𝑙 ∈ ℝ)
2 simpl 483 . . . . . . . . . . . 12 ((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) → 𝑖 ∈ ℝ)
31, 2ifcld 4505 . . . . . . . . . . 11 ((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) → if(𝑖𝑙, 𝑙, 𝑖) ∈ ℝ)
43adantll 711 . . . . . . . . . 10 (((𝜑𝑖 ∈ ℝ) ∧ 𝑙 ∈ ℝ) → if(𝑖𝑙, 𝑙, 𝑖) ∈ ℝ)
5 liminflelimsuplem.2 . . . . . . . . . . 11 (𝜑 → ∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅)
65ad2antrr 723 . . . . . . . . . 10 (((𝜑𝑖 ∈ ℝ) ∧ 𝑙 ∈ ℝ) → ∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅)
7 oveq1 7282 . . . . . . . . . . . 12 (𝑘 = if(𝑖𝑙, 𝑙, 𝑖) → (𝑘[,)+∞) = (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞))
87rexeqdv 3349 . . . . . . . . . . 11 (𝑘 = if(𝑖𝑙, 𝑙, 𝑖) → (∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅ ↔ ∃𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅))
98rspcva 3559 . . . . . . . . . 10 ((if(𝑖𝑙, 𝑙, 𝑖) ∈ ℝ ∧ ∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) → ∃𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅)
104, 6, 9syl2anc 584 . . . . . . . . 9 (((𝜑𝑖 ∈ ℝ) ∧ 𝑙 ∈ ℝ) → ∃𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅)
11 inss2 4163 . . . . . . . . . . . . . 14 ((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*) ⊆ ℝ*
12 infxrcl 13067 . . . . . . . . . . . . . 14 (((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*) ⊆ ℝ* → inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
1311, 12ax-mp 5 . . . . . . . . . . . . 13 inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*
1413a1i 11 . . . . . . . . . . . 12 ((((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) → inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
15 inss2 4163 . . . . . . . . . . . . . 14 ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ⊆ ℝ*
16 infxrcl 13067 . . . . . . . . . . . . . 14 (((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ⊆ ℝ* → inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
1715, 16ax-mp 5 . . . . . . . . . . . . 13 inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*
1817a1i 11 . . . . . . . . . . . 12 ((((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) → inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
19 inss2 4163 . . . . . . . . . . . . . 14 ((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*) ⊆ ℝ*
20 supxrcl 13049 . . . . . . . . . . . . . 14 (((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*) ⊆ ℝ* → sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
2119, 20ax-mp 5 . . . . . . . . . . . . 13 sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*
2221a1i 11 . . . . . . . . . . . 12 ((((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) → sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
23 rexr 11021 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ ℝ → 𝑖 ∈ ℝ*)
2423ad2antrr 723 . . . . . . . . . . . . . . . . 17 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → 𝑖 ∈ ℝ*)
25 pnfxr 11029 . . . . . . . . . . . . . . . . . 18 +∞ ∈ ℝ*
2625a1i 11 . . . . . . . . . . . . . . . . 17 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → +∞ ∈ ℝ*)
273rexrd 11025 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) → if(𝑖𝑙, 𝑙, 𝑖) ∈ ℝ*)
2827adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → if(𝑖𝑙, 𝑙, 𝑖) ∈ ℝ*)
29 icossxr 13164 . . . . . . . . . . . . . . . . . . . 20 (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞) ⊆ ℝ*
30 id 22 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞) → 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞))
3129, 30sselid 3919 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞) → 𝑗 ∈ ℝ*)
3231adantl 482 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → 𝑗 ∈ ℝ*)
33 max1 12919 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) → 𝑖 ≤ if(𝑖𝑙, 𝑙, 𝑖))
3433adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → 𝑖 ≤ if(𝑖𝑙, 𝑙, 𝑖))
35 simpr 485 . . . . . . . . . . . . . . . . . . 19 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞))
3628, 26, 35icogelbd 43096 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → if(𝑖𝑙, 𝑙, 𝑖) ≤ 𝑗)
3724, 28, 32, 34, 36xrletrd 12896 . . . . . . . . . . . . . . . . 17 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → 𝑖𝑗)
3824, 26, 37icossico2 43102 . . . . . . . . . . . . . . . 16 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → (𝑗[,)+∞) ⊆ (𝑖[,)+∞))
3938imass2d 42809 . . . . . . . . . . . . . . 15 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → (𝐹 “ (𝑗[,)+∞)) ⊆ (𝐹 “ (𝑖[,)+∞)))
4039ssrind 4169 . . . . . . . . . . . . . 14 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ⊆ ((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*))
4111a1i 11 . . . . . . . . . . . . . 14 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → ((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*) ⊆ ℝ*)
42 infxrss 13073 . . . . . . . . . . . . . 14 ((((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ⊆ ((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*) ∧ ((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*) ⊆ ℝ*) → inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ))
4340, 41, 42syl2anc 584 . . . . . . . . . . . . 13 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ))
4443adantr 481 . . . . . . . . . . . 12 ((((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) → inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ))
45 supxrcl 13049 . . . . . . . . . . . . . . 15 (((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ⊆ ℝ* → sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
4615, 45ax-mp 5 . . . . . . . . . . . . . 14 sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*
4746a1i 11 . . . . . . . . . . . . 13 ((((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) → sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
4815a1i 11 . . . . . . . . . . . . . 14 ((((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) → ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ⊆ ℝ*)
49 simpr 485 . . . . . . . . . . . . . 14 ((((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) → ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅)
5048, 49infxrlesupxr 42976 . . . . . . . . . . . . 13 ((((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) → inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ))
51 rexr 11021 . . . . . . . . . . . . . . . . . . 19 (𝑙 ∈ ℝ → 𝑙 ∈ ℝ*)
5251ad2antlr 724 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → 𝑙 ∈ ℝ*)
53 max2 12921 . . . . . . . . . . . . . . . . . . . 20 ((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) → 𝑙 ≤ if(𝑖𝑙, 𝑙, 𝑖))
5453adantr 481 . . . . . . . . . . . . . . . . . . 19 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → 𝑙 ≤ if(𝑖𝑙, 𝑙, 𝑖))
5552, 28, 32, 54, 36xrletrd 12896 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → 𝑙𝑗)
5652, 26, 55icossico2 43102 . . . . . . . . . . . . . . . . 17 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → (𝑗[,)+∞) ⊆ (𝑙[,)+∞))
5756imass2d 42809 . . . . . . . . . . . . . . . 16 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → (𝐹 “ (𝑗[,)+∞)) ⊆ (𝐹 “ (𝑙[,)+∞)))
5857ssrind 4169 . . . . . . . . . . . . . . 15 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ⊆ ((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*))
5919a1i 11 . . . . . . . . . . . . . . 15 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → ((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*) ⊆ ℝ*)
60 supxrss 13066 . . . . . . . . . . . . . . 15 ((((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ⊆ ((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*) ∧ ((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*) ⊆ ℝ*) → sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ))
6158, 59, 60syl2anc 584 . . . . . . . . . . . . . 14 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ))
6261adantr 481 . . . . . . . . . . . . 13 ((((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) → sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ))
6318, 47, 22, 50, 62xrletrd 12896 . . . . . . . . . . . 12 ((((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) → inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ))
6414, 18, 22, 44, 63xrletrd 12896 . . . . . . . . . . 11 ((((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) → inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ))
6564ad5ant2345 1369 . . . . . . . . . 10 (((((𝜑𝑖 ∈ ℝ) ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) → inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ))
6665rexlimdva2 3216 . . . . . . . . 9 (((𝜑𝑖 ∈ ℝ) ∧ 𝑙 ∈ ℝ) → (∃𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅ → inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < )))
6710, 66mpd 15 . . . . . . . 8 (((𝜑𝑖 ∈ ℝ) ∧ 𝑙 ∈ ℝ) → inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ))
6867ralrimiva 3103 . . . . . . 7 ((𝜑𝑖 ∈ ℝ) → ∀𝑙 ∈ ℝ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ))
69 nfv 1917 . . . . . . . . 9 𝑙𝜑
70 xrltso 12875 . . . . . . . . . . 11 < Or ℝ*
7170supex 9222 . . . . . . . . . 10 sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ V
7271a1i 11 . . . . . . . . 9 ((𝜑𝑙 ∈ ℝ) → sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ V)
73 breq2 5078 . . . . . . . . 9 (𝑦 = sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ) → (inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝑦 ↔ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < )))
7469, 72, 73ralrnmpt3 42805 . . . . . . . 8 (𝜑 → (∀𝑦 ∈ ran (𝑙 ∈ ℝ ↦ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ))inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝑦 ↔ ∀𝑙 ∈ ℝ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < )))
7574adantr 481 . . . . . . 7 ((𝜑𝑖 ∈ ℝ) → (∀𝑦 ∈ ran (𝑙 ∈ ℝ ↦ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ))inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝑦 ↔ ∀𝑙 ∈ ℝ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < )))
7668, 75mpbird 256 . . . . . 6 ((𝜑𝑖 ∈ ℝ) → ∀𝑦 ∈ ran (𝑙 ∈ ℝ ↦ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ))inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝑦)
77 oveq1 7282 . . . . . . . . . . . . 13 (𝑙 = 𝑖 → (𝑙[,)+∞) = (𝑖[,)+∞))
7877imaeq2d 5969 . . . . . . . . . . . 12 (𝑙 = 𝑖 → (𝐹 “ (𝑙[,)+∞)) = (𝐹 “ (𝑖[,)+∞)))
7978ineq1d 4145 . . . . . . . . . . 11 (𝑙 = 𝑖 → ((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*) = ((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*))
8079supeq1d 9205 . . . . . . . . . 10 (𝑙 = 𝑖 → sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ) = sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))
8180cbvmptv 5187 . . . . . . . . 9 (𝑙 ∈ ℝ ↦ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))
8281rneqi 5846 . . . . . . . 8 ran (𝑙 ∈ ℝ ↦ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < )) = ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))
8382raleqi 3346 . . . . . . 7 (∀𝑦 ∈ ran (𝑙 ∈ ℝ ↦ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ))inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝑦 ↔ ∀𝑦 ∈ ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝑦)
8483a1i 11 . . . . . 6 ((𝜑𝑖 ∈ ℝ) → (∀𝑦 ∈ ran (𝑙 ∈ ℝ ↦ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ))inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝑦 ↔ ∀𝑦 ∈ ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝑦))
8576, 84mpbid 231 . . . . 5 ((𝜑𝑖 ∈ ℝ) → ∀𝑦 ∈ ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝑦)
86 supxrcl 13049 . . . . . . . . . 10 (((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*) ⊆ ℝ* → sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
8711, 86ax-mp 5 . . . . . . . . 9 sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*
8887rgenw 3076 . . . . . . . 8 𝑖 ∈ ℝ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*
89 eqid 2738 . . . . . . . . 9 (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))
9089rnmptss 6996 . . . . . . . 8 (∀𝑖 ∈ ℝ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ* → ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) ⊆ ℝ*)
9188, 90ax-mp 5 . . . . . . 7 ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) ⊆ ℝ*
9291a1i 11 . . . . . 6 ((𝜑𝑖 ∈ ℝ) → ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) ⊆ ℝ*)
9313a1i 11 . . . . . 6 ((𝜑𝑖 ∈ ℝ) → inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
94 infxrgelb 13069 . . . . . 6 ((ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) ⊆ ℝ* ∧ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*) → (inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ inf(ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) ↔ ∀𝑦 ∈ ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝑦))
9592, 93, 94syl2anc 584 . . . . 5 ((𝜑𝑖 ∈ ℝ) → (inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ inf(ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) ↔ ∀𝑦 ∈ ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝑦))
9685, 95mpbird 256 . . . 4 ((𝜑𝑖 ∈ ℝ) → inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ inf(ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
9796ralrimiva 3103 . . 3 (𝜑 → ∀𝑖 ∈ ℝ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ inf(ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
98 nfv 1917 . . . 4 𝑖𝜑
99 nfcv 2907 . . . 4 𝑖
100 nfmpt1 5182 . . . . . 6 𝑖(𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))
101100nfrn 5861 . . . . 5 𝑖ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))
102 nfcv 2907 . . . . 5 𝑖*
103 nfcv 2907 . . . . 5 𝑖 <
104101, 102, 103nfinf 9241 . . . 4 𝑖inf(ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )
105 infxrcl 13067 . . . . . 6 (ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) ⊆ ℝ* → inf(ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) ∈ ℝ*)
10691, 105ax-mp 5 . . . . 5 inf(ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) ∈ ℝ*
107106a1i 11 . . . 4 (𝜑 → inf(ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) ∈ ℝ*)
10898, 99, 104, 93, 107supxrleubrnmptf 42991 . . 3 (𝜑 → (sup(ran (𝑖 ∈ ℝ ↦ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) ≤ inf(ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) ↔ ∀𝑖 ∈ ℝ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ inf(ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )))
10997, 108mpbird 256 . 2 (𝜑 → sup(ran (𝑖 ∈ ℝ ↦ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) ≤ inf(ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
110 liminflelimsuplem.1 . . . 4 (𝜑𝐹𝑉)
111 eqid 2738 . . . 4 (𝑖 ∈ ℝ ↦ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑖 ∈ ℝ ↦ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))
112110, 111liminfvald 43305 . . 3 (𝜑 → (lim inf‘𝐹) = sup(ran (𝑖 ∈ ℝ ↦ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
113110, 89limsupvald 43296 . . 3 (𝜑 → (lim sup‘𝐹) = inf(ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
114112, 113breq12d 5087 . 2 (𝜑 → ((lim inf‘𝐹) ≤ (lim sup‘𝐹) ↔ sup(ran (𝑖 ∈ ℝ ↦ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) ≤ inf(ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )))
115109, 114mpbird 256 1 (𝜑 → (lim inf‘𝐹) ≤ (lim sup‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  Vcvv 3432  cin 3886  wss 3887  c0 4256  ifcif 4459   class class class wbr 5074  cmpt 5157  ran crn 5590  cima 5592  cfv 6433  (class class class)co 7275  supcsup 9199  infcinf 9200  cr 10870  +∞cpnf 11006  *cxr 11008   < clt 11009  cle 11010  [,)cico 13081  lim supclsp 15179  lim infclsi 43292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-ico 13085  df-limsup 15180  df-liminf 43293
This theorem is referenced by:  liminflelimsup  43317
  Copyright terms: Public domain W3C validator