Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminflelimsuplem Structured version   Visualization version   GIF version

Theorem liminflelimsuplem 41932
Description: The superior limit is greater than or equal to the inferior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
liminflelimsuplem.1 (𝜑𝐹𝑉)
liminflelimsuplem.2 (𝜑 → ∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅)
Assertion
Ref Expression
liminflelimsuplem (𝜑 → (lim inf‘𝐹) ≤ (lim sup‘𝐹))
Distinct variable groups:   𝑗,𝐹,𝑘   𝜑,𝑗
Allowed substitution hints:   𝜑(𝑘)   𝑉(𝑗,𝑘)

Proof of Theorem liminflelimsuplem
Dummy variables 𝑖 𝑙 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 485 . . . . . . . . . . . 12 ((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) → 𝑙 ∈ ℝ)
2 simpl 483 . . . . . . . . . . . 12 ((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) → 𝑖 ∈ ℝ)
31, 2ifcld 4508 . . . . . . . . . . 11 ((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) → if(𝑖𝑙, 𝑙, 𝑖) ∈ ℝ)
43adantll 710 . . . . . . . . . 10 (((𝜑𝑖 ∈ ℝ) ∧ 𝑙 ∈ ℝ) → if(𝑖𝑙, 𝑙, 𝑖) ∈ ℝ)
5 liminflelimsuplem.2 . . . . . . . . . . 11 (𝜑 → ∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅)
65ad2antrr 722 . . . . . . . . . 10 (((𝜑𝑖 ∈ ℝ) ∧ 𝑙 ∈ ℝ) → ∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅)
7 oveq1 7152 . . . . . . . . . . . 12 (𝑘 = if(𝑖𝑙, 𝑙, 𝑖) → (𝑘[,)+∞) = (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞))
87rexeqdv 3414 . . . . . . . . . . 11 (𝑘 = if(𝑖𝑙, 𝑙, 𝑖) → (∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅ ↔ ∃𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅))
98rspcva 3618 . . . . . . . . . 10 ((if(𝑖𝑙, 𝑙, 𝑖) ∈ ℝ ∧ ∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) → ∃𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅)
104, 6, 9syl2anc 584 . . . . . . . . 9 (((𝜑𝑖 ∈ ℝ) ∧ 𝑙 ∈ ℝ) → ∃𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅)
11 inss2 4203 . . . . . . . . . . . . . 14 ((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*) ⊆ ℝ*
12 infxrcl 12714 . . . . . . . . . . . . . 14 (((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*) ⊆ ℝ* → inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
1311, 12ax-mp 5 . . . . . . . . . . . . 13 inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*
1413a1i 11 . . . . . . . . . . . 12 ((((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) → inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
15 inss2 4203 . . . . . . . . . . . . . 14 ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ⊆ ℝ*
16 infxrcl 12714 . . . . . . . . . . . . . 14 (((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ⊆ ℝ* → inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
1715, 16ax-mp 5 . . . . . . . . . . . . 13 inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*
1817a1i 11 . . . . . . . . . . . 12 ((((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) → inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
19 inss2 4203 . . . . . . . . . . . . . 14 ((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*) ⊆ ℝ*
20 supxrcl 12696 . . . . . . . . . . . . . 14 (((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*) ⊆ ℝ* → sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
2119, 20ax-mp 5 . . . . . . . . . . . . 13 sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*
2221a1i 11 . . . . . . . . . . . 12 ((((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) → sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
23 rexr 10675 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ ℝ → 𝑖 ∈ ℝ*)
2423ad2antrr 722 . . . . . . . . . . . . . . . . 17 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → 𝑖 ∈ ℝ*)
25 pnfxr 10683 . . . . . . . . . . . . . . . . . 18 +∞ ∈ ℝ*
2625a1i 11 . . . . . . . . . . . . . . . . 17 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → +∞ ∈ ℝ*)
273rexrd 10679 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) → if(𝑖𝑙, 𝑙, 𝑖) ∈ ℝ*)
2827adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → if(𝑖𝑙, 𝑙, 𝑖) ∈ ℝ*)
29 icossxr 12809 . . . . . . . . . . . . . . . . . . . 20 (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞) ⊆ ℝ*
30 id 22 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞) → 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞))
3129, 30sseldi 3962 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞) → 𝑗 ∈ ℝ*)
3231adantl 482 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → 𝑗 ∈ ℝ*)
33 max1 12566 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) → 𝑖 ≤ if(𝑖𝑙, 𝑙, 𝑖))
3433adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → 𝑖 ≤ if(𝑖𝑙, 𝑙, 𝑖))
35 simpr 485 . . . . . . . . . . . . . . . . . . 19 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞))
3628, 26, 35icogelbd 41710 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → if(𝑖𝑙, 𝑙, 𝑖) ≤ 𝑗)
3724, 28, 32, 34, 36xrletrd 12543 . . . . . . . . . . . . . . . . 17 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → 𝑖𝑗)
3824, 26, 37icossico2 41716 . . . . . . . . . . . . . . . 16 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → (𝑗[,)+∞) ⊆ (𝑖[,)+∞))
3938imass2d 41412 . . . . . . . . . . . . . . 15 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → (𝐹 “ (𝑗[,)+∞)) ⊆ (𝐹 “ (𝑖[,)+∞)))
4039ssrind 4209 . . . . . . . . . . . . . 14 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ⊆ ((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*))
4111a1i 11 . . . . . . . . . . . . . 14 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → ((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*) ⊆ ℝ*)
42 infxrss 12720 . . . . . . . . . . . . . 14 ((((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ⊆ ((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*) ∧ ((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*) ⊆ ℝ*) → inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ))
4340, 41, 42syl2anc 584 . . . . . . . . . . . . 13 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ))
4443adantr 481 . . . . . . . . . . . 12 ((((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) → inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ))
45 supxrcl 12696 . . . . . . . . . . . . . . 15 (((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ⊆ ℝ* → sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
4615, 45ax-mp 5 . . . . . . . . . . . . . 14 sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*
4746a1i 11 . . . . . . . . . . . . 13 ((((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) → sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
4815a1i 11 . . . . . . . . . . . . . 14 ((((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) → ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ⊆ ℝ*)
49 simpr 485 . . . . . . . . . . . . . 14 ((((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) → ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅)
5048, 49infxrlesupxr 41586 . . . . . . . . . . . . 13 ((((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) → inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ))
51 rexr 10675 . . . . . . . . . . . . . . . . . . 19 (𝑙 ∈ ℝ → 𝑙 ∈ ℝ*)
5251ad2antlr 723 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → 𝑙 ∈ ℝ*)
53 max2 12568 . . . . . . . . . . . . . . . . . . . 20 ((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) → 𝑙 ≤ if(𝑖𝑙, 𝑙, 𝑖))
5453adantr 481 . . . . . . . . . . . . . . . . . . 19 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → 𝑙 ≤ if(𝑖𝑙, 𝑙, 𝑖))
5552, 28, 32, 54, 36xrletrd 12543 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → 𝑙𝑗)
5652, 26, 55icossico2 41716 . . . . . . . . . . . . . . . . 17 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → (𝑗[,)+∞) ⊆ (𝑙[,)+∞))
5756imass2d 41412 . . . . . . . . . . . . . . . 16 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → (𝐹 “ (𝑗[,)+∞)) ⊆ (𝐹 “ (𝑙[,)+∞)))
5857ssrind 4209 . . . . . . . . . . . . . . 15 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ⊆ ((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*))
5919a1i 11 . . . . . . . . . . . . . . 15 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → ((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*) ⊆ ℝ*)
60 supxrss 12713 . . . . . . . . . . . . . . 15 ((((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ⊆ ((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*) ∧ ((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*) ⊆ ℝ*) → sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ))
6158, 59, 60syl2anc 584 . . . . . . . . . . . . . 14 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ))
6261adantr 481 . . . . . . . . . . . . 13 ((((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) → sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ))
6318, 47, 22, 50, 62xrletrd 12543 . . . . . . . . . . . 12 ((((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) → inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ))
6414, 18, 22, 44, 63xrletrd 12543 . . . . . . . . . . 11 ((((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) → inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ))
6564ad5ant2345 1362 . . . . . . . . . 10 (((((𝜑𝑖 ∈ ℝ) ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) → inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ))
6665rexlimdva2 3284 . . . . . . . . 9 (((𝜑𝑖 ∈ ℝ) ∧ 𝑙 ∈ ℝ) → (∃𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅ → inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < )))
6710, 66mpd 15 . . . . . . . 8 (((𝜑𝑖 ∈ ℝ) ∧ 𝑙 ∈ ℝ) → inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ))
6867ralrimiva 3179 . . . . . . 7 ((𝜑𝑖 ∈ ℝ) → ∀𝑙 ∈ ℝ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ))
69 nfv 1906 . . . . . . . . 9 𝑙𝜑
70 xrltso 12522 . . . . . . . . . . 11 < Or ℝ*
7170supex 8915 . . . . . . . . . 10 sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ V
7271a1i 11 . . . . . . . . 9 ((𝜑𝑙 ∈ ℝ) → sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ V)
73 breq2 5061 . . . . . . . . 9 (𝑦 = sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ) → (inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝑦 ↔ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < )))
7469, 72, 73ralrnmpt3 41407 . . . . . . . 8 (𝜑 → (∀𝑦 ∈ ran (𝑙 ∈ ℝ ↦ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ))inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝑦 ↔ ∀𝑙 ∈ ℝ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < )))
7574adantr 481 . . . . . . 7 ((𝜑𝑖 ∈ ℝ) → (∀𝑦 ∈ ran (𝑙 ∈ ℝ ↦ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ))inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝑦 ↔ ∀𝑙 ∈ ℝ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < )))
7668, 75mpbird 258 . . . . . 6 ((𝜑𝑖 ∈ ℝ) → ∀𝑦 ∈ ran (𝑙 ∈ ℝ ↦ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ))inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝑦)
77 oveq1 7152 . . . . . . . . . . . . 13 (𝑙 = 𝑖 → (𝑙[,)+∞) = (𝑖[,)+∞))
7877imaeq2d 5922 . . . . . . . . . . . 12 (𝑙 = 𝑖 → (𝐹 “ (𝑙[,)+∞)) = (𝐹 “ (𝑖[,)+∞)))
7978ineq1d 4185 . . . . . . . . . . 11 (𝑙 = 𝑖 → ((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*) = ((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*))
8079supeq1d 8898 . . . . . . . . . 10 (𝑙 = 𝑖 → sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ) = sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))
8180cbvmptv 5160 . . . . . . . . 9 (𝑙 ∈ ℝ ↦ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))
8281rneqi 5800 . . . . . . . 8 ran (𝑙 ∈ ℝ ↦ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < )) = ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))
8382raleqi 3411 . . . . . . 7 (∀𝑦 ∈ ran (𝑙 ∈ ℝ ↦ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ))inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝑦 ↔ ∀𝑦 ∈ ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝑦)
8483a1i 11 . . . . . 6 ((𝜑𝑖 ∈ ℝ) → (∀𝑦 ∈ ran (𝑙 ∈ ℝ ↦ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ))inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝑦 ↔ ∀𝑦 ∈ ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝑦))
8576, 84mpbid 233 . . . . 5 ((𝜑𝑖 ∈ ℝ) → ∀𝑦 ∈ ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝑦)
86 supxrcl 12696 . . . . . . . . . 10 (((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*) ⊆ ℝ* → sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
8711, 86ax-mp 5 . . . . . . . . 9 sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*
8887rgenw 3147 . . . . . . . 8 𝑖 ∈ ℝ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*
89 eqid 2818 . . . . . . . . 9 (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))
9089rnmptss 6878 . . . . . . . 8 (∀𝑖 ∈ ℝ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ* → ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) ⊆ ℝ*)
9188, 90ax-mp 5 . . . . . . 7 ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) ⊆ ℝ*
9291a1i 11 . . . . . 6 ((𝜑𝑖 ∈ ℝ) → ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) ⊆ ℝ*)
9313a1i 11 . . . . . 6 ((𝜑𝑖 ∈ ℝ) → inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
94 infxrgelb 12716 . . . . . 6 ((ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) ⊆ ℝ* ∧ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*) → (inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ inf(ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) ↔ ∀𝑦 ∈ ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝑦))
9592, 93, 94syl2anc 584 . . . . 5 ((𝜑𝑖 ∈ ℝ) → (inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ inf(ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) ↔ ∀𝑦 ∈ ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝑦))
9685, 95mpbird 258 . . . 4 ((𝜑𝑖 ∈ ℝ) → inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ inf(ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
9796ralrimiva 3179 . . 3 (𝜑 → ∀𝑖 ∈ ℝ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ inf(ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
98 nfv 1906 . . . 4 𝑖𝜑
99 nfcv 2974 . . . 4 𝑖
100 nfmpt1 5155 . . . . . 6 𝑖(𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))
101100nfrn 5817 . . . . 5 𝑖ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))
102 nfcv 2974 . . . . 5 𝑖*
103 nfcv 2974 . . . . 5 𝑖 <
104101, 102, 103nfinf 8934 . . . 4 𝑖inf(ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )
105 infxrcl 12714 . . . . . 6 (ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) ⊆ ℝ* → inf(ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) ∈ ℝ*)
10691, 105ax-mp 5 . . . . 5 inf(ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) ∈ ℝ*
107106a1i 11 . . . 4 (𝜑 → inf(ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) ∈ ℝ*)
10898, 99, 104, 93, 107supxrleubrnmptf 41603 . . 3 (𝜑 → (sup(ran (𝑖 ∈ ℝ ↦ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) ≤ inf(ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) ↔ ∀𝑖 ∈ ℝ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ inf(ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )))
10997, 108mpbird 258 . 2 (𝜑 → sup(ran (𝑖 ∈ ℝ ↦ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) ≤ inf(ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
110 liminflelimsuplem.1 . . . 4 (𝜑𝐹𝑉)
111 eqid 2818 . . . 4 (𝑖 ∈ ℝ ↦ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑖 ∈ ℝ ↦ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))
112110, 111liminfvald 41921 . . 3 (𝜑 → (lim inf‘𝐹) = sup(ran (𝑖 ∈ ℝ ↦ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
113110, 89limsupvald 41912 . . 3 (𝜑 → (lim sup‘𝐹) = inf(ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
114112, 113breq12d 5070 . 2 (𝜑 → ((lim inf‘𝐹) ≤ (lim sup‘𝐹) ↔ sup(ran (𝑖 ∈ ℝ ↦ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) ≤ inf(ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )))
115109, 114mpbird 258 1 (𝜑 → (lim inf‘𝐹) ≤ (lim sup‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  wne 3013  wral 3135  wrex 3136  Vcvv 3492  cin 3932  wss 3933  c0 4288  ifcif 4463   class class class wbr 5057  cmpt 5137  ran crn 5549  cima 5551  cfv 6348  (class class class)co 7145  supcsup 8892  infcinf 8893  cr 10524  +∞cpnf 10660  *cxr 10662   < clt 10663  cle 10664  [,)cico 12728  lim supclsp 14815  lim infclsi 41908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-po 5467  df-so 5468  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-1st 7678  df-2nd 7679  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-sup 8894  df-inf 8895  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-ico 12732  df-limsup 14816  df-liminf 41909
This theorem is referenced by:  liminflelimsup  41933
  Copyright terms: Public domain W3C validator