Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminflelimsuplem Structured version   Visualization version   GIF version

Theorem liminflelimsuplem 42417
Description: The superior limit is greater than or equal to the inferior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
liminflelimsuplem.1 (𝜑𝐹𝑉)
liminflelimsuplem.2 (𝜑 → ∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅)
Assertion
Ref Expression
liminflelimsuplem (𝜑 → (lim inf‘𝐹) ≤ (lim sup‘𝐹))
Distinct variable groups:   𝑗,𝐹,𝑘   𝜑,𝑗
Allowed substitution hints:   𝜑(𝑘)   𝑉(𝑗,𝑘)

Proof of Theorem liminflelimsuplem
Dummy variables 𝑖 𝑙 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 488 . . . . . . . . . . . 12 ((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) → 𝑙 ∈ ℝ)
2 simpl 486 . . . . . . . . . . . 12 ((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) → 𝑖 ∈ ℝ)
31, 2ifcld 4470 . . . . . . . . . . 11 ((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) → if(𝑖𝑙, 𝑙, 𝑖) ∈ ℝ)
43adantll 713 . . . . . . . . . 10 (((𝜑𝑖 ∈ ℝ) ∧ 𝑙 ∈ ℝ) → if(𝑖𝑙, 𝑙, 𝑖) ∈ ℝ)
5 liminflelimsuplem.2 . . . . . . . . . . 11 (𝜑 → ∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅)
65ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑖 ∈ ℝ) ∧ 𝑙 ∈ ℝ) → ∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅)
7 oveq1 7142 . . . . . . . . . . . 12 (𝑘 = if(𝑖𝑙, 𝑙, 𝑖) → (𝑘[,)+∞) = (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞))
87rexeqdv 3365 . . . . . . . . . . 11 (𝑘 = if(𝑖𝑙, 𝑙, 𝑖) → (∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅ ↔ ∃𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅))
98rspcva 3569 . . . . . . . . . 10 ((if(𝑖𝑙, 𝑙, 𝑖) ∈ ℝ ∧ ∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) → ∃𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅)
104, 6, 9syl2anc 587 . . . . . . . . 9 (((𝜑𝑖 ∈ ℝ) ∧ 𝑙 ∈ ℝ) → ∃𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅)
11 inss2 4156 . . . . . . . . . . . . . 14 ((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*) ⊆ ℝ*
12 infxrcl 12714 . . . . . . . . . . . . . 14 (((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*) ⊆ ℝ* → inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
1311, 12ax-mp 5 . . . . . . . . . . . . 13 inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*
1413a1i 11 . . . . . . . . . . . 12 ((((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) → inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
15 inss2 4156 . . . . . . . . . . . . . 14 ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ⊆ ℝ*
16 infxrcl 12714 . . . . . . . . . . . . . 14 (((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ⊆ ℝ* → inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
1715, 16ax-mp 5 . . . . . . . . . . . . 13 inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*
1817a1i 11 . . . . . . . . . . . 12 ((((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) → inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
19 inss2 4156 . . . . . . . . . . . . . 14 ((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*) ⊆ ℝ*
20 supxrcl 12696 . . . . . . . . . . . . . 14 (((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*) ⊆ ℝ* → sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
2119, 20ax-mp 5 . . . . . . . . . . . . 13 sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*
2221a1i 11 . . . . . . . . . . . 12 ((((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) → sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
23 rexr 10676 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ ℝ → 𝑖 ∈ ℝ*)
2423ad2antrr 725 . . . . . . . . . . . . . . . . 17 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → 𝑖 ∈ ℝ*)
25 pnfxr 10684 . . . . . . . . . . . . . . . . . 18 +∞ ∈ ℝ*
2625a1i 11 . . . . . . . . . . . . . . . . 17 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → +∞ ∈ ℝ*)
273rexrd 10680 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) → if(𝑖𝑙, 𝑙, 𝑖) ∈ ℝ*)
2827adantr 484 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → if(𝑖𝑙, 𝑙, 𝑖) ∈ ℝ*)
29 icossxr 12810 . . . . . . . . . . . . . . . . . . . 20 (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞) ⊆ ℝ*
30 id 22 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞) → 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞))
3129, 30sseldi 3913 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞) → 𝑗 ∈ ℝ*)
3231adantl 485 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → 𝑗 ∈ ℝ*)
33 max1 12566 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) → 𝑖 ≤ if(𝑖𝑙, 𝑙, 𝑖))
3433adantr 484 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → 𝑖 ≤ if(𝑖𝑙, 𝑙, 𝑖))
35 simpr 488 . . . . . . . . . . . . . . . . . . 19 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞))
3628, 26, 35icogelbd 42195 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → if(𝑖𝑙, 𝑙, 𝑖) ≤ 𝑗)
3724, 28, 32, 34, 36xrletrd 12543 . . . . . . . . . . . . . . . . 17 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → 𝑖𝑗)
3824, 26, 37icossico2 42201 . . . . . . . . . . . . . . . 16 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → (𝑗[,)+∞) ⊆ (𝑖[,)+∞))
3938imass2d 41901 . . . . . . . . . . . . . . 15 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → (𝐹 “ (𝑗[,)+∞)) ⊆ (𝐹 “ (𝑖[,)+∞)))
4039ssrind 4162 . . . . . . . . . . . . . 14 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ⊆ ((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*))
4111a1i 11 . . . . . . . . . . . . . 14 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → ((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*) ⊆ ℝ*)
42 infxrss 12720 . . . . . . . . . . . . . 14 ((((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ⊆ ((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*) ∧ ((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*) ⊆ ℝ*) → inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ))
4340, 41, 42syl2anc 587 . . . . . . . . . . . . 13 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ))
4443adantr 484 . . . . . . . . . . . 12 ((((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) → inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ))
45 supxrcl 12696 . . . . . . . . . . . . . . 15 (((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ⊆ ℝ* → sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
4615, 45ax-mp 5 . . . . . . . . . . . . . 14 sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*
4746a1i 11 . . . . . . . . . . . . 13 ((((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) → sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
4815a1i 11 . . . . . . . . . . . . . 14 ((((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) → ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ⊆ ℝ*)
49 simpr 488 . . . . . . . . . . . . . 14 ((((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) → ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅)
5048, 49infxrlesupxr 42073 . . . . . . . . . . . . 13 ((((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) → inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ))
51 rexr 10676 . . . . . . . . . . . . . . . . . . 19 (𝑙 ∈ ℝ → 𝑙 ∈ ℝ*)
5251ad2antlr 726 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → 𝑙 ∈ ℝ*)
53 max2 12568 . . . . . . . . . . . . . . . . . . . 20 ((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) → 𝑙 ≤ if(𝑖𝑙, 𝑙, 𝑖))
5453adantr 484 . . . . . . . . . . . . . . . . . . 19 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → 𝑙 ≤ if(𝑖𝑙, 𝑙, 𝑖))
5552, 28, 32, 54, 36xrletrd 12543 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → 𝑙𝑗)
5652, 26, 55icossico2 42201 . . . . . . . . . . . . . . . . 17 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → (𝑗[,)+∞) ⊆ (𝑙[,)+∞))
5756imass2d 41901 . . . . . . . . . . . . . . . 16 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → (𝐹 “ (𝑗[,)+∞)) ⊆ (𝐹 “ (𝑙[,)+∞)))
5857ssrind 4162 . . . . . . . . . . . . . . 15 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ⊆ ((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*))
5919a1i 11 . . . . . . . . . . . . . . 15 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → ((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*) ⊆ ℝ*)
60 supxrss 12713 . . . . . . . . . . . . . . 15 ((((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ⊆ ((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*) ∧ ((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*) ⊆ ℝ*) → sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ))
6158, 59, 60syl2anc 587 . . . . . . . . . . . . . 14 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ))
6261adantr 484 . . . . . . . . . . . . 13 ((((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) → sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ))
6318, 47, 22, 50, 62xrletrd 12543 . . . . . . . . . . . 12 ((((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) → inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ))
6414, 18, 22, 44, 63xrletrd 12543 . . . . . . . . . . 11 ((((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) → inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ))
6564ad5ant2345 1367 . . . . . . . . . 10 (((((𝜑𝑖 ∈ ℝ) ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) → inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ))
6665rexlimdva2 3246 . . . . . . . . 9 (((𝜑𝑖 ∈ ℝ) ∧ 𝑙 ∈ ℝ) → (∃𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅ → inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < )))
6710, 66mpd 15 . . . . . . . 8 (((𝜑𝑖 ∈ ℝ) ∧ 𝑙 ∈ ℝ) → inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ))
6867ralrimiva 3149 . . . . . . 7 ((𝜑𝑖 ∈ ℝ) → ∀𝑙 ∈ ℝ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ))
69 nfv 1915 . . . . . . . . 9 𝑙𝜑
70 xrltso 12522 . . . . . . . . . . 11 < Or ℝ*
7170supex 8911 . . . . . . . . . 10 sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ V
7271a1i 11 . . . . . . . . 9 ((𝜑𝑙 ∈ ℝ) → sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ V)
73 breq2 5034 . . . . . . . . 9 (𝑦 = sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ) → (inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝑦 ↔ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < )))
7469, 72, 73ralrnmpt3 41897 . . . . . . . 8 (𝜑 → (∀𝑦 ∈ ran (𝑙 ∈ ℝ ↦ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ))inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝑦 ↔ ∀𝑙 ∈ ℝ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < )))
7574adantr 484 . . . . . . 7 ((𝜑𝑖 ∈ ℝ) → (∀𝑦 ∈ ran (𝑙 ∈ ℝ ↦ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ))inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝑦 ↔ ∀𝑙 ∈ ℝ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < )))
7668, 75mpbird 260 . . . . . 6 ((𝜑𝑖 ∈ ℝ) → ∀𝑦 ∈ ran (𝑙 ∈ ℝ ↦ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ))inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝑦)
77 oveq1 7142 . . . . . . . . . . . . 13 (𝑙 = 𝑖 → (𝑙[,)+∞) = (𝑖[,)+∞))
7877imaeq2d 5896 . . . . . . . . . . . 12 (𝑙 = 𝑖 → (𝐹 “ (𝑙[,)+∞)) = (𝐹 “ (𝑖[,)+∞)))
7978ineq1d 4138 . . . . . . . . . . 11 (𝑙 = 𝑖 → ((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*) = ((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*))
8079supeq1d 8894 . . . . . . . . . 10 (𝑙 = 𝑖 → sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ) = sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))
8180cbvmptv 5133 . . . . . . . . 9 (𝑙 ∈ ℝ ↦ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))
8281rneqi 5771 . . . . . . . 8 ran (𝑙 ∈ ℝ ↦ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < )) = ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))
8382raleqi 3362 . . . . . . 7 (∀𝑦 ∈ ran (𝑙 ∈ ℝ ↦ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ))inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝑦 ↔ ∀𝑦 ∈ ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝑦)
8483a1i 11 . . . . . 6 ((𝜑𝑖 ∈ ℝ) → (∀𝑦 ∈ ran (𝑙 ∈ ℝ ↦ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ))inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝑦 ↔ ∀𝑦 ∈ ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝑦))
8576, 84mpbid 235 . . . . 5 ((𝜑𝑖 ∈ ℝ) → ∀𝑦 ∈ ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝑦)
86 supxrcl 12696 . . . . . . . . . 10 (((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*) ⊆ ℝ* → sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
8711, 86ax-mp 5 . . . . . . . . 9 sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*
8887rgenw 3118 . . . . . . . 8 𝑖 ∈ ℝ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*
89 eqid 2798 . . . . . . . . 9 (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))
9089rnmptss 6863 . . . . . . . 8 (∀𝑖 ∈ ℝ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ* → ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) ⊆ ℝ*)
9188, 90ax-mp 5 . . . . . . 7 ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) ⊆ ℝ*
9291a1i 11 . . . . . 6 ((𝜑𝑖 ∈ ℝ) → ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) ⊆ ℝ*)
9313a1i 11 . . . . . 6 ((𝜑𝑖 ∈ ℝ) → inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
94 infxrgelb 12716 . . . . . 6 ((ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) ⊆ ℝ* ∧ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*) → (inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ inf(ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) ↔ ∀𝑦 ∈ ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝑦))
9592, 93, 94syl2anc 587 . . . . 5 ((𝜑𝑖 ∈ ℝ) → (inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ inf(ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) ↔ ∀𝑦 ∈ ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝑦))
9685, 95mpbird 260 . . . 4 ((𝜑𝑖 ∈ ℝ) → inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ inf(ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
9796ralrimiva 3149 . . 3 (𝜑 → ∀𝑖 ∈ ℝ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ inf(ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
98 nfv 1915 . . . 4 𝑖𝜑
99 nfcv 2955 . . . 4 𝑖
100 nfmpt1 5128 . . . . . 6 𝑖(𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))
101100nfrn 5788 . . . . 5 𝑖ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))
102 nfcv 2955 . . . . 5 𝑖*
103 nfcv 2955 . . . . 5 𝑖 <
104101, 102, 103nfinf 8930 . . . 4 𝑖inf(ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )
105 infxrcl 12714 . . . . . 6 (ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) ⊆ ℝ* → inf(ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) ∈ ℝ*)
10691, 105ax-mp 5 . . . . 5 inf(ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) ∈ ℝ*
107106a1i 11 . . . 4 (𝜑 → inf(ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) ∈ ℝ*)
10898, 99, 104, 93, 107supxrleubrnmptf 42090 . . 3 (𝜑 → (sup(ran (𝑖 ∈ ℝ ↦ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) ≤ inf(ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) ↔ ∀𝑖 ∈ ℝ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ inf(ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )))
10997, 108mpbird 260 . 2 (𝜑 → sup(ran (𝑖 ∈ ℝ ↦ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) ≤ inf(ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
110 liminflelimsuplem.1 . . . 4 (𝜑𝐹𝑉)
111 eqid 2798 . . . 4 (𝑖 ∈ ℝ ↦ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑖 ∈ ℝ ↦ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))
112110, 111liminfvald 42406 . . 3 (𝜑 → (lim inf‘𝐹) = sup(ran (𝑖 ∈ ℝ ↦ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
113110, 89limsupvald 42397 . . 3 (𝜑 → (lim sup‘𝐹) = inf(ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
114112, 113breq12d 5043 . 2 (𝜑 → ((lim inf‘𝐹) ≤ (lim sup‘𝐹) ↔ sup(ran (𝑖 ∈ ℝ ↦ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) ≤ inf(ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )))
115109, 114mpbird 260 1 (𝜑 → (lim inf‘𝐹) ≤ (lim sup‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  Vcvv 3441  cin 3880  wss 3881  c0 4243  ifcif 4425   class class class wbr 5030  cmpt 5110  ran crn 5520  cima 5522  cfv 6324  (class class class)co 7135  supcsup 8888  infcinf 8889  cr 10525  +∞cpnf 10661  *cxr 10663   < clt 10664  cle 10665  [,)cico 12728  lim supclsp 14819  lim infclsi 42393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-ico 12732  df-limsup 14820  df-liminf 42394
This theorem is referenced by:  liminflelimsup  42418
  Copyright terms: Public domain W3C validator