| Step | Hyp | Ref
| Expression |
| 1 | | inss2 4213 |
. . . . . . . . . . . . 13
⊢ ((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*)
⊆ ℝ* |
| 2 | | infxrcl 13350 |
. . . . . . . . . . . . 13
⊢ (((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*)
⊆ ℝ* → inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < ) ∈ ℝ*) |
| 3 | 1, 2 | ax-mp 5 |
. . . . . . . . . . . 12
⊢
inf(((𝐹 “
(𝑖[,)+∞)) ∩
ℝ*), ℝ*, < ) ∈
ℝ* |
| 4 | 3 | a1i 11 |
. . . . . . . . . . 11
⊢ ((((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠
∅) → inf(((𝐹
“ (𝑖[,)+∞))
∩ ℝ*), ℝ*, < ) ∈
ℝ*) |
| 5 | | inss2 4213 |
. . . . . . . . . . . . 13
⊢ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*)
⊆ ℝ* |
| 6 | | infxrcl 13350 |
. . . . . . . . . . . . 13
⊢ (((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*)
⊆ ℝ* → inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*),
ℝ*, < ) ∈ ℝ*) |
| 7 | 5, 6 | ax-mp 5 |
. . . . . . . . . . . 12
⊢
inf(((𝐹 “
(𝑗[,)+∞)) ∩
ℝ*), ℝ*, < ) ∈
ℝ* |
| 8 | 7 | a1i 11 |
. . . . . . . . . . 11
⊢ ((((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠
∅) → inf(((𝐹
“ (𝑗[,)+∞))
∩ ℝ*), ℝ*, < ) ∈
ℝ*) |
| 9 | | inss2 4213 |
. . . . . . . . . . . . 13
⊢ ((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*)
⊆ ℝ* |
| 10 | 9 | supxrcli 45461 |
. . . . . . . . . . . 12
⊢
sup(((𝐹 “
(𝑙[,)+∞)) ∩
ℝ*), ℝ*, < ) ∈
ℝ* |
| 11 | 10 | a1i 11 |
. . . . . . . . . . 11
⊢ ((((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠
∅) → sup(((𝐹
“ (𝑙[,)+∞))
∩ ℝ*), ℝ*, < ) ∈
ℝ*) |
| 12 | | rexr 11281 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ ℝ → 𝑖 ∈
ℝ*) |
| 13 | 12 | ad2antrr 726 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞)) → 𝑖 ∈ ℝ*) |
| 14 | | pnfxr 11289 |
. . . . . . . . . . . . . . . . 17
⊢ +∞
∈ ℝ* |
| 15 | 14 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞)) → +∞ ∈
ℝ*) |
| 16 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) → 𝑙 ∈
ℝ) |
| 17 | | simpl 482 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) → 𝑖 ∈
ℝ) |
| 18 | 16, 17 | ifcld 4547 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) → if(𝑖 ≤ 𝑙, 𝑙, 𝑖) ∈ ℝ) |
| 19 | 18 | rexrd 11285 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) → if(𝑖 ≤ 𝑙, 𝑙, 𝑖) ∈
ℝ*) |
| 20 | 19 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞)) → if(𝑖 ≤ 𝑙, 𝑙, 𝑖) ∈
ℝ*) |
| 21 | | icossxr 13449 |
. . . . . . . . . . . . . . . . . . 19
⊢ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞) ⊆
ℝ* |
| 22 | 21 | sseli 3954 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞) → 𝑗 ∈ ℝ*) |
| 23 | 22 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞)) → 𝑗 ∈ ℝ*) |
| 24 | | max1 13201 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) → 𝑖 ≤ if(𝑖 ≤ 𝑙, 𝑙, 𝑖)) |
| 25 | 24 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞)) → 𝑖 ≤ if(𝑖 ≤ 𝑙, 𝑙, 𝑖)) |
| 26 | | simpr 484 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞)) → 𝑗 ∈ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞)) |
| 27 | 20, 15, 26 | icogelbd 13414 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞)) → if(𝑖 ≤ 𝑙, 𝑙, 𝑖) ≤ 𝑗) |
| 28 | 13, 20, 23, 25, 27 | xrletrd 13178 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞)) → 𝑖 ≤ 𝑗) |
| 29 | 13, 15, 28 | icossico2d 13438 |
. . . . . . . . . . . . . . 15
⊢ (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞)) → (𝑗[,)+∞) ⊆ (𝑖[,)+∞)) |
| 30 | 29 | imass2d 45285 |
. . . . . . . . . . . . . 14
⊢ (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞)) → (𝐹 “ (𝑗[,)+∞)) ⊆ (𝐹 “ (𝑖[,)+∞))) |
| 31 | 30 | ssrind 4219 |
. . . . . . . . . . . . 13
⊢ (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞)) → ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*)
⊆ ((𝐹 “ (𝑖[,)+∞)) ∩
ℝ*)) |
| 32 | | infxrss 13356 |
. . . . . . . . . . . . 13
⊢ ((((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*)
⊆ ((𝐹 “ (𝑖[,)+∞)) ∩
ℝ*) ∧ ((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*)
⊆ ℝ*) → inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < ) ≤ inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*),
ℝ*, < )) |
| 33 | 31, 1, 32 | sylancl 586 |
. . . . . . . . . . . 12
⊢ (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞)) → inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < ) ≤ inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*),
ℝ*, < )) |
| 34 | 33 | adantr 480 |
. . . . . . . . . . 11
⊢ ((((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠
∅) → inf(((𝐹
“ (𝑖[,)+∞))
∩ ℝ*), ℝ*, < ) ≤ inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*),
ℝ*, < )) |
| 35 | 5 | supxrcli 45461 |
. . . . . . . . . . . . 13
⊢
sup(((𝐹 “
(𝑗[,)+∞)) ∩
ℝ*), ℝ*, < ) ∈
ℝ* |
| 36 | 35 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠
∅) → sup(((𝐹
“ (𝑗[,)+∞))
∩ ℝ*), ℝ*, < ) ∈
ℝ*) |
| 37 | 5 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠
∅) → ((𝐹 “
(𝑗[,)+∞)) ∩
ℝ*) ⊆ ℝ*) |
| 38 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠
∅) → ((𝐹 “
(𝑗[,)+∞)) ∩
ℝ*) ≠ ∅) |
| 39 | 37, 38 | infxrlesupxr 45463 |
. . . . . . . . . . . 12
⊢ ((((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠
∅) → inf(((𝐹
“ (𝑗[,)+∞))
∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*),
ℝ*, < )) |
| 40 | | rexr 11281 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑙 ∈ ℝ → 𝑙 ∈
ℝ*) |
| 41 | 40 | ad2antlr 727 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞)) → 𝑙 ∈ ℝ*) |
| 42 | | max2 13203 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) → 𝑙 ≤ if(𝑖 ≤ 𝑙, 𝑙, 𝑖)) |
| 43 | 42 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞)) → 𝑙 ≤ if(𝑖 ≤ 𝑙, 𝑙, 𝑖)) |
| 44 | 41, 20, 23, 43, 27 | xrletrd 13178 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞)) → 𝑙 ≤ 𝑗) |
| 45 | 41, 15, 44 | icossico2d 13438 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞)) → (𝑗[,)+∞) ⊆ (𝑙[,)+∞)) |
| 46 | 45 | imass2d 45285 |
. . . . . . . . . . . . . . 15
⊢ (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞)) → (𝐹 “ (𝑗[,)+∞)) ⊆ (𝐹 “ (𝑙[,)+∞))) |
| 47 | 46 | ssrind 4219 |
. . . . . . . . . . . . . 14
⊢ (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞)) → ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*)
⊆ ((𝐹 “ (𝑙[,)+∞)) ∩
ℝ*)) |
| 48 | 9 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞)) → ((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*)
⊆ ℝ*) |
| 49 | 47, 48 | xrsupssd 13349 |
. . . . . . . . . . . . 13
⊢ (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞)) → sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*),
ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*),
ℝ*, < )) |
| 50 | 49 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠
∅) → sup(((𝐹
“ (𝑗[,)+∞))
∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*),
ℝ*, < )) |
| 51 | 8, 36, 11, 39, 50 | xrletrd 13178 |
. . . . . . . . . . 11
⊢ ((((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠
∅) → inf(((𝐹
“ (𝑗[,)+∞))
∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*),
ℝ*, < )) |
| 52 | 4, 8, 11, 34, 51 | xrletrd 13178 |
. . . . . . . . . 10
⊢ ((((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠
∅) → inf(((𝐹
“ (𝑖[,)+∞))
∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*),
ℝ*, < )) |
| 53 | 52 | ad5ant2345 1372 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑖 ∈ ℝ) ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠
∅) → inf(((𝐹
“ (𝑖[,)+∞))
∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*),
ℝ*, < )) |
| 54 | | oveq1 7412 |
. . . . . . . . . . 11
⊢ (𝑘 = if(𝑖 ≤ 𝑙, 𝑙, 𝑖) → (𝑘[,)+∞) = (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞)) |
| 55 | 54 | rexeqdv 3306 |
. . . . . . . . . 10
⊢ (𝑘 = if(𝑖 ≤ 𝑙, 𝑙, 𝑖) → (∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠
∅ ↔ ∃𝑗
∈ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠
∅)) |
| 56 | | liminflelimsuplem.2 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠
∅) |
| 57 | 56 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ ℝ) ∧ 𝑙 ∈ ℝ) → ∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠
∅) |
| 58 | 18 | adantll 714 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ ℝ) ∧ 𝑙 ∈ ℝ) → if(𝑖 ≤ 𝑙, 𝑙, 𝑖) ∈ ℝ) |
| 59 | 55, 57, 58 | rspcdva 3602 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ ℝ) ∧ 𝑙 ∈ ℝ) → ∃𝑗 ∈ (if(𝑖 ≤ 𝑙, 𝑙, 𝑖)[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠
∅) |
| 60 | 53, 59 | r19.29a 3148 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ ℝ) ∧ 𝑙 ∈ ℝ) → inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*),
ℝ*, < )) |
| 61 | 60 | ralrimiva 3132 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ ℝ) → ∀𝑙 ∈ ℝ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*),
ℝ*, < )) |
| 62 | | nfv 1914 |
. . . . . . . . 9
⊢
Ⅎ𝑙𝜑 |
| 63 | | xrltso 13157 |
. . . . . . . . . . 11
⊢ < Or
ℝ* |
| 64 | 63 | supex 9476 |
. . . . . . . . . 10
⊢
sup(((𝐹 “
(𝑙[,)+∞)) ∩
ℝ*), ℝ*, < ) ∈ V |
| 65 | 64 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑙 ∈ ℝ) → sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*),
ℝ*, < ) ∈ V) |
| 66 | | breq2 5123 |
. . . . . . . . 9
⊢ (𝑦 = sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*),
ℝ*, < ) → (inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < ) ≤ 𝑦 ↔ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*),
ℝ*, < ))) |
| 67 | 62, 65, 66 | ralrnmpt3 45283 |
. . . . . . . 8
⊢ (𝜑 → (∀𝑦 ∈ ran (𝑙 ∈ ℝ ↦ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*),
ℝ*, < ))inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < ) ≤ 𝑦 ↔ ∀𝑙 ∈ ℝ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*),
ℝ*, < ))) |
| 68 | 67 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ ℝ) → (∀𝑦 ∈ ran (𝑙 ∈ ℝ ↦ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*),
ℝ*, < ))inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < ) ≤ 𝑦 ↔ ∀𝑙 ∈ ℝ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*),
ℝ*, < ))) |
| 69 | 61, 68 | mpbird 257 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ ℝ) → ∀𝑦 ∈ ran (𝑙 ∈ ℝ ↦ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*),
ℝ*, < ))inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < ) ≤ 𝑦) |
| 70 | | oveq1 7412 |
. . . . . . . . . . . 12
⊢ (𝑙 = 𝑖 → (𝑙[,)+∞) = (𝑖[,)+∞)) |
| 71 | 70 | imaeq2d 6047 |
. . . . . . . . . . 11
⊢ (𝑙 = 𝑖 → (𝐹 “ (𝑙[,)+∞)) = (𝐹 “ (𝑖[,)+∞))) |
| 72 | 71 | ineq1d 4194 |
. . . . . . . . . 10
⊢ (𝑙 = 𝑖 → ((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*) =
((𝐹 “ (𝑖[,)+∞)) ∩
ℝ*)) |
| 73 | 72 | supeq1d 9458 |
. . . . . . . . 9
⊢ (𝑙 = 𝑖 → sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*),
ℝ*, < ) = sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < )) |
| 74 | 73 | cbvmptv 5225 |
. . . . . . . 8
⊢ (𝑙 ∈ ℝ ↦
sup(((𝐹 “ (𝑙[,)+∞)) ∩
ℝ*), ℝ*, < )) = (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < )) |
| 75 | 74 | rneqi 5917 |
. . . . . . 7
⊢ ran
(𝑙 ∈ ℝ ↦
sup(((𝐹 “ (𝑙[,)+∞)) ∩
ℝ*), ℝ*, < )) = ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < )) |
| 76 | 75 | raleqi 3303 |
. . . . . 6
⊢
(∀𝑦 ∈
ran (𝑙 ∈ ℝ
↦ sup(((𝐹 “
(𝑙[,)+∞)) ∩
ℝ*), ℝ*, < ))inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < ) ≤ 𝑦 ↔ ∀𝑦 ∈ ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < ))inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < ) ≤ 𝑦) |
| 77 | 69, 76 | sylib 218 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ ℝ) → ∀𝑦 ∈ ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < ))inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < ) ≤ 𝑦) |
| 78 | 1 | supxrcli 45461 |
. . . . . . . . 9
⊢
sup(((𝐹 “
(𝑖[,)+∞)) ∩
ℝ*), ℝ*, < ) ∈
ℝ* |
| 79 | 78 | rgenw 3055 |
. . . . . . . 8
⊢
∀𝑖 ∈
ℝ sup(((𝐹 “
(𝑖[,)+∞)) ∩
ℝ*), ℝ*, < ) ∈
ℝ* |
| 80 | | eqid 2735 |
. . . . . . . . 9
⊢ (𝑖 ∈ ℝ ↦
sup(((𝐹 “ (𝑖[,)+∞)) ∩
ℝ*), ℝ*, < )) = (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < )) |
| 81 | 80 | rnmptss 7113 |
. . . . . . . 8
⊢
(∀𝑖 ∈
ℝ sup(((𝐹 “
(𝑖[,)+∞)) ∩
ℝ*), ℝ*, < ) ∈ ℝ*
→ ran (𝑖 ∈
ℝ ↦ sup(((𝐹
“ (𝑖[,)+∞))
∩ ℝ*), ℝ*, < )) ⊆
ℝ*) |
| 82 | 79, 81 | ax-mp 5 |
. . . . . . 7
⊢ ran
(𝑖 ∈ ℝ ↦
sup(((𝐹 “ (𝑖[,)+∞)) ∩
ℝ*), ℝ*, < )) ⊆
ℝ* |
| 83 | 82 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ ℝ) → ran (𝑖 ∈ ℝ ↦
sup(((𝐹 “ (𝑖[,)+∞)) ∩
ℝ*), ℝ*, < )) ⊆
ℝ*) |
| 84 | | infxrgelb 13352 |
. . . . . 6
⊢ ((ran
(𝑖 ∈ ℝ ↦
sup(((𝐹 “ (𝑖[,)+∞)) ∩
ℝ*), ℝ*, < )) ⊆ ℝ*
∧ inf(((𝐹 “
(𝑖[,)+∞)) ∩
ℝ*), ℝ*, < ) ∈ ℝ*)
→ (inf(((𝐹 “
(𝑖[,)+∞)) ∩
ℝ*), ℝ*, < ) ≤ inf(ran (𝑖 ∈ ℝ ↦
sup(((𝐹 “ (𝑖[,)+∞)) ∩
ℝ*), ℝ*, < )), ℝ*, < )
↔ ∀𝑦 ∈ ran
(𝑖 ∈ ℝ ↦
sup(((𝐹 “ (𝑖[,)+∞)) ∩
ℝ*), ℝ*, < ))inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < ) ≤ 𝑦)) |
| 85 | 83, 3, 84 | sylancl 586 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ ℝ) → (inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < ) ≤ inf(ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < )), ℝ*, < ) ↔ ∀𝑦 ∈ ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < ))inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < ) ≤ 𝑦)) |
| 86 | 77, 85 | mpbird 257 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ ℝ) → inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < ) ≤ inf(ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < )), ℝ*, < )) |
| 87 | 86 | ralrimiva 3132 |
. . 3
⊢ (𝜑 → ∀𝑖 ∈ ℝ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < ) ≤ inf(ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < )), ℝ*, < )) |
| 88 | | nfv 1914 |
. . . 4
⊢
Ⅎ𝑖𝜑 |
| 89 | | nfcv 2898 |
. . . 4
⊢
Ⅎ𝑖ℝ |
| 90 | | nfmpt1 5220 |
. . . . . 6
⊢
Ⅎ𝑖(𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < )) |
| 91 | 90 | nfrn 5932 |
. . . . 5
⊢
Ⅎ𝑖ran
(𝑖 ∈ ℝ ↦
sup(((𝐹 “ (𝑖[,)+∞)) ∩
ℝ*), ℝ*, < )) |
| 92 | | nfcv 2898 |
. . . . 5
⊢
Ⅎ𝑖ℝ* |
| 93 | | nfcv 2898 |
. . . . 5
⊢
Ⅎ𝑖
< |
| 94 | 91, 92, 93 | nfinf 9495 |
. . . 4
⊢
Ⅎ𝑖inf(ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < )), ℝ*, < ) |
| 95 | 3 | a1i 11 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ ℝ) → inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < ) ∈ ℝ*) |
| 96 | | infxrcl 13350 |
. . . . . 6
⊢ (ran
(𝑖 ∈ ℝ ↦
sup(((𝐹 “ (𝑖[,)+∞)) ∩
ℝ*), ℝ*, < )) ⊆ ℝ*
→ inf(ran (𝑖 ∈
ℝ ↦ sup(((𝐹
“ (𝑖[,)+∞))
∩ ℝ*), ℝ*, < )), ℝ*,
< ) ∈ ℝ*) |
| 97 | 82, 96 | ax-mp 5 |
. . . . 5
⊢ inf(ran
(𝑖 ∈ ℝ ↦
sup(((𝐹 “ (𝑖[,)+∞)) ∩
ℝ*), ℝ*, < )), ℝ*, < )
∈ ℝ* |
| 98 | 97 | a1i 11 |
. . . 4
⊢ (𝜑 → inf(ran (𝑖 ∈ ℝ ↦
sup(((𝐹 “ (𝑖[,)+∞)) ∩
ℝ*), ℝ*, < )), ℝ*, < )
∈ ℝ*) |
| 99 | 88, 89, 94, 95, 98 | supxrleubrnmptf 45478 |
. . 3
⊢ (𝜑 → (sup(ran (𝑖 ∈ ℝ ↦
inf(((𝐹 “ (𝑖[,)+∞)) ∩
ℝ*), ℝ*, < )), ℝ*, < )
≤ inf(ran (𝑖 ∈
ℝ ↦ sup(((𝐹
“ (𝑖[,)+∞))
∩ ℝ*), ℝ*, < )), ℝ*,
< ) ↔ ∀𝑖
∈ ℝ inf(((𝐹
“ (𝑖[,)+∞))
∩ ℝ*), ℝ*, < ) ≤ inf(ran (𝑖 ∈ ℝ ↦
sup(((𝐹 “ (𝑖[,)+∞)) ∩
ℝ*), ℝ*, < )), ℝ*, <
))) |
| 100 | 87, 99 | mpbird 257 |
. 2
⊢ (𝜑 → sup(ran (𝑖 ∈ ℝ ↦
inf(((𝐹 “ (𝑖[,)+∞)) ∩
ℝ*), ℝ*, < )), ℝ*, < )
≤ inf(ran (𝑖 ∈
ℝ ↦ sup(((𝐹
“ (𝑖[,)+∞))
∩ ℝ*), ℝ*, < )), ℝ*,
< )) |
| 101 | | liminflelimsuplem.1 |
. . 3
⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| 102 | | eqid 2735 |
. . 3
⊢ (𝑖 ∈ ℝ ↦
inf(((𝐹 “ (𝑖[,)+∞)) ∩
ℝ*), ℝ*, < )) = (𝑖 ∈ ℝ ↦ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < )) |
| 103 | 101, 102 | liminfvald 45793 |
. 2
⊢ (𝜑 → (lim inf‘𝐹) = sup(ran (𝑖 ∈ ℝ ↦ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < )), ℝ*, < )) |
| 104 | 101, 80 | limsupvald 45784 |
. 2
⊢ (𝜑 → (lim sup‘𝐹) = inf(ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < )), ℝ*, < )) |
| 105 | 100, 103,
104 | 3brtr4d 5151 |
1
⊢ (𝜑 → (lim inf‘𝐹) ≤ (lim sup‘𝐹)) |