Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminflelimsuplem Structured version   Visualization version   GIF version

Theorem liminflelimsuplem 42828
Description: The superior limit is greater than or equal to the inferior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
liminflelimsuplem.1 (𝜑𝐹𝑉)
liminflelimsuplem.2 (𝜑 → ∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅)
Assertion
Ref Expression
liminflelimsuplem (𝜑 → (lim inf‘𝐹) ≤ (lim sup‘𝐹))
Distinct variable groups:   𝑗,𝐹,𝑘   𝜑,𝑗
Allowed substitution hints:   𝜑(𝑘)   𝑉(𝑗,𝑘)

Proof of Theorem liminflelimsuplem
Dummy variables 𝑖 𝑙 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 488 . . . . . . . . . . . 12 ((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) → 𝑙 ∈ ℝ)
2 simpl 486 . . . . . . . . . . . 12 ((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) → 𝑖 ∈ ℝ)
31, 2ifcld 4469 . . . . . . . . . . 11 ((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) → if(𝑖𝑙, 𝑙, 𝑖) ∈ ℝ)
43adantll 713 . . . . . . . . . 10 (((𝜑𝑖 ∈ ℝ) ∧ 𝑙 ∈ ℝ) → if(𝑖𝑙, 𝑙, 𝑖) ∈ ℝ)
5 liminflelimsuplem.2 . . . . . . . . . . 11 (𝜑 → ∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅)
65ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑖 ∈ ℝ) ∧ 𝑙 ∈ ℝ) → ∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅)
7 oveq1 7163 . . . . . . . . . . . 12 (𝑘 = if(𝑖𝑙, 𝑙, 𝑖) → (𝑘[,)+∞) = (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞))
87rexeqdv 3330 . . . . . . . . . . 11 (𝑘 = if(𝑖𝑙, 𝑙, 𝑖) → (∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅ ↔ ∃𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅))
98rspcva 3541 . . . . . . . . . 10 ((if(𝑖𝑙, 𝑙, 𝑖) ∈ ℝ ∧ ∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) → ∃𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅)
104, 6, 9syl2anc 587 . . . . . . . . 9 (((𝜑𝑖 ∈ ℝ) ∧ 𝑙 ∈ ℝ) → ∃𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅)
11 inss2 4136 . . . . . . . . . . . . . 14 ((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*) ⊆ ℝ*
12 infxrcl 12780 . . . . . . . . . . . . . 14 (((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*) ⊆ ℝ* → inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
1311, 12ax-mp 5 . . . . . . . . . . . . 13 inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*
1413a1i 11 . . . . . . . . . . . 12 ((((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) → inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
15 inss2 4136 . . . . . . . . . . . . . 14 ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ⊆ ℝ*
16 infxrcl 12780 . . . . . . . . . . . . . 14 (((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ⊆ ℝ* → inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
1715, 16ax-mp 5 . . . . . . . . . . . . 13 inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*
1817a1i 11 . . . . . . . . . . . 12 ((((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) → inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
19 inss2 4136 . . . . . . . . . . . . . 14 ((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*) ⊆ ℝ*
20 supxrcl 12762 . . . . . . . . . . . . . 14 (((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*) ⊆ ℝ* → sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
2119, 20ax-mp 5 . . . . . . . . . . . . 13 sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*
2221a1i 11 . . . . . . . . . . . 12 ((((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) → sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
23 rexr 10738 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ ℝ → 𝑖 ∈ ℝ*)
2423ad2antrr 725 . . . . . . . . . . . . . . . . 17 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → 𝑖 ∈ ℝ*)
25 pnfxr 10746 . . . . . . . . . . . . . . . . . 18 +∞ ∈ ℝ*
2625a1i 11 . . . . . . . . . . . . . . . . 17 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → +∞ ∈ ℝ*)
273rexrd 10742 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) → if(𝑖𝑙, 𝑙, 𝑖) ∈ ℝ*)
2827adantr 484 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → if(𝑖𝑙, 𝑙, 𝑖) ∈ ℝ*)
29 icossxr 12877 . . . . . . . . . . . . . . . . . . . 20 (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞) ⊆ ℝ*
30 id 22 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞) → 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞))
3129, 30sseldi 3892 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞) → 𝑗 ∈ ℝ*)
3231adantl 485 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → 𝑗 ∈ ℝ*)
33 max1 12632 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) → 𝑖 ≤ if(𝑖𝑙, 𝑙, 𝑖))
3433adantr 484 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → 𝑖 ≤ if(𝑖𝑙, 𝑙, 𝑖))
35 simpr 488 . . . . . . . . . . . . . . . . . . 19 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞))
3628, 26, 35icogelbd 42606 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → if(𝑖𝑙, 𝑙, 𝑖) ≤ 𝑗)
3724, 28, 32, 34, 36xrletrd 12609 . . . . . . . . . . . . . . . . 17 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → 𝑖𝑗)
3824, 26, 37icossico2 42612 . . . . . . . . . . . . . . . 16 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → (𝑗[,)+∞) ⊆ (𝑖[,)+∞))
3938imass2d 42314 . . . . . . . . . . . . . . 15 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → (𝐹 “ (𝑗[,)+∞)) ⊆ (𝐹 “ (𝑖[,)+∞)))
4039ssrind 4142 . . . . . . . . . . . . . 14 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ⊆ ((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*))
4111a1i 11 . . . . . . . . . . . . . 14 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → ((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*) ⊆ ℝ*)
42 infxrss 12786 . . . . . . . . . . . . . 14 ((((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ⊆ ((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*) ∧ ((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*) ⊆ ℝ*) → inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ))
4340, 41, 42syl2anc 587 . . . . . . . . . . . . 13 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ))
4443adantr 484 . . . . . . . . . . . 12 ((((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) → inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ))
45 supxrcl 12762 . . . . . . . . . . . . . . 15 (((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ⊆ ℝ* → sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
4615, 45ax-mp 5 . . . . . . . . . . . . . 14 sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*
4746a1i 11 . . . . . . . . . . . . 13 ((((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) → sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
4815a1i 11 . . . . . . . . . . . . . 14 ((((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) → ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ⊆ ℝ*)
49 simpr 488 . . . . . . . . . . . . . 14 ((((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) → ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅)
5048, 49infxrlesupxr 42484 . . . . . . . . . . . . 13 ((((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) → inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ))
51 rexr 10738 . . . . . . . . . . . . . . . . . . 19 (𝑙 ∈ ℝ → 𝑙 ∈ ℝ*)
5251ad2antlr 726 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → 𝑙 ∈ ℝ*)
53 max2 12634 . . . . . . . . . . . . . . . . . . . 20 ((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) → 𝑙 ≤ if(𝑖𝑙, 𝑙, 𝑖))
5453adantr 484 . . . . . . . . . . . . . . . . . . 19 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → 𝑙 ≤ if(𝑖𝑙, 𝑙, 𝑖))
5552, 28, 32, 54, 36xrletrd 12609 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → 𝑙𝑗)
5652, 26, 55icossico2 42612 . . . . . . . . . . . . . . . . 17 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → (𝑗[,)+∞) ⊆ (𝑙[,)+∞))
5756imass2d 42314 . . . . . . . . . . . . . . . 16 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → (𝐹 “ (𝑗[,)+∞)) ⊆ (𝐹 “ (𝑙[,)+∞)))
5857ssrind 4142 . . . . . . . . . . . . . . 15 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ⊆ ((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*))
5919a1i 11 . . . . . . . . . . . . . . 15 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → ((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*) ⊆ ℝ*)
60 supxrss 12779 . . . . . . . . . . . . . . 15 ((((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ⊆ ((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*) ∧ ((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*) ⊆ ℝ*) → sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ))
6158, 59, 60syl2anc 587 . . . . . . . . . . . . . 14 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ))
6261adantr 484 . . . . . . . . . . . . 13 ((((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) → sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ))
6318, 47, 22, 50, 62xrletrd 12609 . . . . . . . . . . . 12 ((((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) → inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ))
6414, 18, 22, 44, 63xrletrd 12609 . . . . . . . . . . 11 ((((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) → inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ))
6564ad5ant2345 1367 . . . . . . . . . 10 (((((𝜑𝑖 ∈ ℝ) ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) → inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ))
6665rexlimdva2 3211 . . . . . . . . 9 (((𝜑𝑖 ∈ ℝ) ∧ 𝑙 ∈ ℝ) → (∃𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅ → inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < )))
6710, 66mpd 15 . . . . . . . 8 (((𝜑𝑖 ∈ ℝ) ∧ 𝑙 ∈ ℝ) → inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ))
6867ralrimiva 3113 . . . . . . 7 ((𝜑𝑖 ∈ ℝ) → ∀𝑙 ∈ ℝ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ))
69 nfv 1915 . . . . . . . . 9 𝑙𝜑
70 xrltso 12588 . . . . . . . . . . 11 < Or ℝ*
7170supex 8973 . . . . . . . . . 10 sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ V
7271a1i 11 . . . . . . . . 9 ((𝜑𝑙 ∈ ℝ) → sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ V)
73 breq2 5040 . . . . . . . . 9 (𝑦 = sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ) → (inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝑦 ↔ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < )))
7469, 72, 73ralrnmpt3 42310 . . . . . . . 8 (𝜑 → (∀𝑦 ∈ ran (𝑙 ∈ ℝ ↦ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ))inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝑦 ↔ ∀𝑙 ∈ ℝ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < )))
7574adantr 484 . . . . . . 7 ((𝜑𝑖 ∈ ℝ) → (∀𝑦 ∈ ran (𝑙 ∈ ℝ ↦ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ))inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝑦 ↔ ∀𝑙 ∈ ℝ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < )))
7668, 75mpbird 260 . . . . . 6 ((𝜑𝑖 ∈ ℝ) → ∀𝑦 ∈ ran (𝑙 ∈ ℝ ↦ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ))inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝑦)
77 oveq1 7163 . . . . . . . . . . . . 13 (𝑙 = 𝑖 → (𝑙[,)+∞) = (𝑖[,)+∞))
7877imaeq2d 5906 . . . . . . . . . . . 12 (𝑙 = 𝑖 → (𝐹 “ (𝑙[,)+∞)) = (𝐹 “ (𝑖[,)+∞)))
7978ineq1d 4118 . . . . . . . . . . 11 (𝑙 = 𝑖 → ((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*) = ((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*))
8079supeq1d 8956 . . . . . . . . . 10 (𝑙 = 𝑖 → sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ) = sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))
8180cbvmptv 5139 . . . . . . . . 9 (𝑙 ∈ ℝ ↦ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))
8281rneqi 5783 . . . . . . . 8 ran (𝑙 ∈ ℝ ↦ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < )) = ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))
8382raleqi 3327 . . . . . . 7 (∀𝑦 ∈ ran (𝑙 ∈ ℝ ↦ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ))inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝑦 ↔ ∀𝑦 ∈ ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝑦)
8483a1i 11 . . . . . 6 ((𝜑𝑖 ∈ ℝ) → (∀𝑦 ∈ ran (𝑙 ∈ ℝ ↦ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ))inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝑦 ↔ ∀𝑦 ∈ ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝑦))
8576, 84mpbid 235 . . . . 5 ((𝜑𝑖 ∈ ℝ) → ∀𝑦 ∈ ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝑦)
86 supxrcl 12762 . . . . . . . . . 10 (((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*) ⊆ ℝ* → sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
8711, 86ax-mp 5 . . . . . . . . 9 sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*
8887rgenw 3082 . . . . . . . 8 𝑖 ∈ ℝ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*
89 eqid 2758 . . . . . . . . 9 (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))
9089rnmptss 6883 . . . . . . . 8 (∀𝑖 ∈ ℝ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ* → ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) ⊆ ℝ*)
9188, 90ax-mp 5 . . . . . . 7 ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) ⊆ ℝ*
9291a1i 11 . . . . . 6 ((𝜑𝑖 ∈ ℝ) → ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) ⊆ ℝ*)
9313a1i 11 . . . . . 6 ((𝜑𝑖 ∈ ℝ) → inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
94 infxrgelb 12782 . . . . . 6 ((ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) ⊆ ℝ* ∧ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*) → (inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ inf(ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) ↔ ∀𝑦 ∈ ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝑦))
9592, 93, 94syl2anc 587 . . . . 5 ((𝜑𝑖 ∈ ℝ) → (inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ inf(ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) ↔ ∀𝑦 ∈ ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝑦))
9685, 95mpbird 260 . . . 4 ((𝜑𝑖 ∈ ℝ) → inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ inf(ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
9796ralrimiva 3113 . . 3 (𝜑 → ∀𝑖 ∈ ℝ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ inf(ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
98 nfv 1915 . . . 4 𝑖𝜑
99 nfcv 2919 . . . 4 𝑖
100 nfmpt1 5134 . . . . . 6 𝑖(𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))
101100nfrn 5798 . . . . 5 𝑖ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))
102 nfcv 2919 . . . . 5 𝑖*
103 nfcv 2919 . . . . 5 𝑖 <
104101, 102, 103nfinf 8992 . . . 4 𝑖inf(ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )
105 infxrcl 12780 . . . . . 6 (ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) ⊆ ℝ* → inf(ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) ∈ ℝ*)
10691, 105ax-mp 5 . . . . 5 inf(ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) ∈ ℝ*
107106a1i 11 . . . 4 (𝜑 → inf(ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) ∈ ℝ*)
10898, 99, 104, 93, 107supxrleubrnmptf 42501 . . 3 (𝜑 → (sup(ran (𝑖 ∈ ℝ ↦ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) ≤ inf(ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) ↔ ∀𝑖 ∈ ℝ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ inf(ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )))
10997, 108mpbird 260 . 2 (𝜑 → sup(ran (𝑖 ∈ ℝ ↦ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) ≤ inf(ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
110 liminflelimsuplem.1 . . . 4 (𝜑𝐹𝑉)
111 eqid 2758 . . . 4 (𝑖 ∈ ℝ ↦ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑖 ∈ ℝ ↦ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))
112110, 111liminfvald 42817 . . 3 (𝜑 → (lim inf‘𝐹) = sup(ran (𝑖 ∈ ℝ ↦ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
113110, 89limsupvald 42808 . . 3 (𝜑 → (lim sup‘𝐹) = inf(ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
114112, 113breq12d 5049 . 2 (𝜑 → ((lim inf‘𝐹) ≤ (lim sup‘𝐹) ↔ sup(ran (𝑖 ∈ ℝ ↦ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) ≤ inf(ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )))
115109, 114mpbird 260 1 (𝜑 → (lim inf‘𝐹) ≤ (lim sup‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2951  wral 3070  wrex 3071  Vcvv 3409  cin 3859  wss 3860  c0 4227  ifcif 4423   class class class wbr 5036  cmpt 5116  ran crn 5529  cima 5531  cfv 6340  (class class class)co 7156  supcsup 8950  infcinf 8951  cr 10587  +∞cpnf 10723  *cxr 10725   < clt 10726  cle 10727  [,)cico 12794  lim supclsp 14888  lim infclsi 42804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665  ax-pre-sup 10666
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-id 5434  df-po 5447  df-so 5448  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-1st 7699  df-2nd 7700  df-er 8305  df-en 8541  df-dom 8542  df-sdom 8543  df-sup 8952  df-inf 8953  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-ico 12798  df-limsup 14889  df-liminf 42805
This theorem is referenced by:  liminflelimsup  42829
  Copyright terms: Public domain W3C validator