| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3eqtrri | Structured version Visualization version GIF version | ||
| Description: An inference from three chained equalities. (Contributed by NM, 3-Aug-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| 3eqtri.1 | ⊢ 𝐴 = 𝐵 |
| 3eqtri.2 | ⊢ 𝐵 = 𝐶 |
| 3eqtri.3 | ⊢ 𝐶 = 𝐷 |
| Ref | Expression |
|---|---|
| 3eqtrri | ⊢ 𝐷 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtri.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | 3eqtri.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
| 3 | 1, 2 | eqtri 2759 | . 2 ⊢ 𝐴 = 𝐶 |
| 4 | 3eqtri.3 | . 2 ⊢ 𝐶 = 𝐷 | |
| 5 | 3, 4 | eqtr2i 2760 | 1 ⊢ 𝐷 = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2728 |
| This theorem is referenced by: dfif5 4522 resindm 6022 difxp1 6159 difxp2 6160 dfdm2 6275 cofunex2g 7953 df1st2 8102 df2nd2 8103 domss2 9155 adderpqlem 10973 dfn2 12519 9p1e10 12715 sqrtm1 15299 0.999... 15902 pockthi 16932 matgsum 22380 indistps 22954 indistps2 22955 refun0 23458 filconn 23826 sincosq3sgn 26466 sincosq4sgn 26467 eff1o 26515 ax5seglem7 28919 0grsubgr 29262 nbupgrres 29348 vtxdginducedm1fi 29529 clwwlknclwwlkdif 29965 cnnvg 30664 cnnvs 30666 cnnvnm 30667 h2hva 30960 h2hsm 30961 h2hnm 30962 hhssva 31243 hhsssm 31244 hhssnm 31245 spansnji 31632 lnopunilem1 31996 lnophmlem2 32003 stadd3i 32234 indifundif 32510 dpmul4 32893 xrsp0 33009 xrsp1 33010 hgt750lemd 34685 hgt750lem 34688 rankeq1o 36194 poimirlem8 37657 mbfposadd 37696 iocunico 43210 corcltrcl 43738 binomcxplemdvsum 44354 cosnegpi 45876 fourierdlem62 46177 fouriersw 46240 salexct3 46351 salgensscntex 46353 caragenuncllem 46521 isomenndlem 46539 usgrexmpl2edg 48013 |
| Copyright terms: Public domain | W3C validator |