Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3eqtrri | Structured version Visualization version GIF version |
Description: An inference from three chained equalities. (Contributed by NM, 3-Aug-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
3eqtri.1 | ⊢ 𝐴 = 𝐵 |
3eqtri.2 | ⊢ 𝐵 = 𝐶 |
3eqtri.3 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
3eqtrri | ⊢ 𝐷 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtri.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 3eqtri.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
3 | 1, 2 | eqtri 2766 | . 2 ⊢ 𝐴 = 𝐶 |
4 | 3eqtri.3 | . 2 ⊢ 𝐶 = 𝐷 | |
5 | 3, 4 | eqtr2i 2767 | 1 ⊢ 𝐷 = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-cleq 2730 |
This theorem is referenced by: dfif5 4475 resindm 5940 difxp1 6068 difxp2 6069 dfdm2 6184 cofunex2g 7792 df1st2 7938 df2nd2 7939 domss2 8923 adderpqlem 10710 dfn2 12246 9p1e10 12439 sqrtm1 14987 0.999... 15593 pockthi 16608 matgsum 21586 indistps 22161 indistps2 22162 refun0 22666 filconn 23034 sincosq3sgn 25657 sincosq4sgn 25658 eff1o 25705 ax5seglem7 27303 0grsubgr 27645 nbupgrres 27731 vtxdginducedm1fi 27911 clwwlknclwwlkdif 28343 cnnvg 29040 cnnvs 29042 cnnvnm 29043 h2hva 29336 h2hsm 29337 h2hnm 29338 hhssva 29619 hhsssm 29620 hhssnm 29621 spansnji 30008 lnopunilem1 30372 lnophmlem2 30379 stadd3i 30610 indifundif 30873 dpmul4 31188 xrsp0 31290 xrsp1 31291 hgt750lemd 32628 hgt750lem 32631 rankeq1o 34473 poimirlem8 35785 mbfposadd 35824 iocunico 41042 corcltrcl 41347 binomcxplemdvsum 41973 cosnegpi 43408 fourierdlem62 43709 fouriersw 43772 salexct3 43881 salgensscntex 43883 caragenuncllem 44050 isomenndlem 44068 |
Copyright terms: Public domain | W3C validator |