| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3eqtrri | Structured version Visualization version GIF version | ||
| Description: An inference from three chained equalities. (Contributed by NM, 3-Aug-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| 3eqtri.1 | ⊢ 𝐴 = 𝐵 |
| 3eqtri.2 | ⊢ 𝐵 = 𝐶 |
| 3eqtri.3 | ⊢ 𝐶 = 𝐷 |
| Ref | Expression |
|---|---|
| 3eqtrri | ⊢ 𝐷 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtri.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | 3eqtri.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
| 3 | 1, 2 | eqtri 2757 | . 2 ⊢ 𝐴 = 𝐶 |
| 4 | 3eqtri.3 | . 2 ⊢ 𝐶 = 𝐷 | |
| 5 | 3, 4 | eqtr2i 2758 | 1 ⊢ 𝐷 = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-cleq 2726 |
| This theorem is referenced by: dfif5 4515 resindm 6014 difxp1 6151 difxp2 6152 dfdm2 6267 cofunex2g 7942 df1st2 8091 df2nd2 8092 domss2 9144 adderpqlem 10960 dfn2 12506 9p1e10 12702 sqrtm1 15281 0.999... 15884 pockthi 16912 matgsum 22360 indistps 22934 indistps2 22935 refun0 23438 filconn 23806 sincosq3sgn 26445 sincosq4sgn 26446 eff1o 26494 ax5seglem7 28846 0grsubgr 29189 nbupgrres 29275 vtxdginducedm1fi 29456 clwwlknclwwlkdif 29892 cnnvg 30591 cnnvs 30593 cnnvnm 30594 h2hva 30887 h2hsm 30888 h2hnm 30889 hhssva 31170 hhsssm 31171 hhssnm 31172 spansnji 31559 lnopunilem1 31923 lnophmlem2 31930 stadd3i 32161 indifundif 32437 dpmul4 32806 xrsp0 32923 xrsp1 32924 hgt750lemd 34601 hgt750lem 34604 rankeq1o 36110 poimirlem8 37573 mbfposadd 37612 iocunico 43160 corcltrcl 43688 binomcxplemdvsum 44305 cosnegpi 45826 fourierdlem62 46127 fouriersw 46190 salexct3 46301 salgensscntex 46303 caragenuncllem 46471 isomenndlem 46489 usgrexmpl2edg 47933 |
| Copyright terms: Public domain | W3C validator |