![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3eqtrri | Structured version Visualization version GIF version |
Description: An inference from three chained equalities. (Contributed by NM, 3-Aug-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
3eqtri.1 | ⊢ 𝐴 = 𝐵 |
3eqtri.2 | ⊢ 𝐵 = 𝐶 |
3eqtri.3 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
3eqtrri | ⊢ 𝐷 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtri.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 3eqtri.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
3 | 1, 2 | eqtri 2768 | . 2 ⊢ 𝐴 = 𝐶 |
4 | 3eqtri.3 | . 2 ⊢ 𝐶 = 𝐷 | |
5 | 3, 4 | eqtr2i 2769 | 1 ⊢ 𝐷 = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 |
This theorem is referenced by: dfif5 4564 resindm 6059 difxp1 6196 difxp2 6197 dfdm2 6312 cofunex2g 7990 df1st2 8139 df2nd2 8140 domss2 9202 adderpqlem 11023 dfn2 12566 9p1e10 12760 sqrtm1 15324 0.999... 15929 pockthi 16954 matgsum 22464 indistps 23039 indistps2 23040 refun0 23544 filconn 23912 sincosq3sgn 26560 sincosq4sgn 26561 eff1o 26609 ax5seglem7 28968 0grsubgr 29313 nbupgrres 29399 vtxdginducedm1fi 29580 clwwlknclwwlkdif 30011 cnnvg 30710 cnnvs 30712 cnnvnm 30713 h2hva 31006 h2hsm 31007 h2hnm 31008 hhssva 31289 hhsssm 31290 hhssnm 31291 spansnji 31678 lnopunilem1 32042 lnophmlem2 32049 stadd3i 32280 indifundif 32554 dpmul4 32878 xrsp0 32995 xrsp1 32996 hgt750lemd 34625 hgt750lem 34628 rankeq1o 36135 poimirlem8 37588 mbfposadd 37627 iocunico 43172 corcltrcl 43701 binomcxplemdvsum 44324 cosnegpi 45788 fourierdlem62 46089 fouriersw 46152 salexct3 46263 salgensscntex 46265 caragenuncllem 46433 isomenndlem 46451 usgrexmpl2edg 47844 |
Copyright terms: Public domain | W3C validator |