![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3eqtrri | Structured version Visualization version GIF version |
Description: An inference from three chained equalities. (Contributed by NM, 3-Aug-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
3eqtri.1 | ⊢ 𝐴 = 𝐵 |
3eqtri.2 | ⊢ 𝐵 = 𝐶 |
3eqtri.3 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
3eqtrri | ⊢ 𝐷 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtri.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 3eqtri.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
3 | 1, 2 | eqtri 2761 | . 2 ⊢ 𝐴 = 𝐶 |
4 | 3eqtri.3 | . 2 ⊢ 𝐶 = 𝐷 | |
5 | 3, 4 | eqtr2i 2762 | 1 ⊢ 𝐷 = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 df-cleq 2725 |
This theorem is referenced by: dfif5 4545 resindm 6031 difxp1 6165 difxp2 6166 dfdm2 6281 cofunex2g 7936 df1st2 8084 df2nd2 8085 domss2 9136 adderpqlem 10949 dfn2 12485 9p1e10 12679 sqrtm1 15222 0.999... 15827 pockthi 16840 matgsum 21939 indistps 22514 indistps2 22515 refun0 23019 filconn 23387 sincosq3sgn 26010 sincosq4sgn 26011 eff1o 26058 ax5seglem7 28224 0grsubgr 28566 nbupgrres 28652 vtxdginducedm1fi 28832 clwwlknclwwlkdif 29263 cnnvg 29962 cnnvs 29964 cnnvnm 29965 h2hva 30258 h2hsm 30259 h2hnm 30260 hhssva 30541 hhsssm 30542 hhssnm 30543 spansnji 30930 lnopunilem1 31294 lnophmlem2 31301 stadd3i 31532 indifundif 31793 dpmul4 32111 xrsp0 32213 xrsp1 32214 hgt750lemd 33691 hgt750lem 33694 rankeq1o 35174 poimirlem8 36544 mbfposadd 36583 iocunico 42008 corcltrcl 42538 binomcxplemdvsum 43162 cosnegpi 44631 fourierdlem62 44932 fouriersw 44995 salexct3 45106 salgensscntex 45108 caragenuncllem 45276 isomenndlem 45294 |
Copyright terms: Public domain | W3C validator |