Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3eqtrri | Structured version Visualization version GIF version |
Description: An inference from three chained equalities. (Contributed by NM, 3-Aug-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
3eqtri.1 | ⊢ 𝐴 = 𝐵 |
3eqtri.2 | ⊢ 𝐵 = 𝐶 |
3eqtri.3 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
3eqtrri | ⊢ 𝐷 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtri.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 3eqtri.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
3 | 1, 2 | eqtri 2766 | . 2 ⊢ 𝐴 = 𝐶 |
4 | 3eqtri.3 | . 2 ⊢ 𝐶 = 𝐷 | |
5 | 3, 4 | eqtr2i 2767 | 1 ⊢ 𝐷 = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 |
This theorem is referenced by: dfif5 4472 resindm 5929 difxp1 6057 difxp2 6058 dfdm2 6173 cofunex2g 7766 df1st2 7909 df2nd2 7910 domss2 8872 adderpqlem 10641 dfn2 12176 9p1e10 12368 sqrtm1 14915 0.999... 15521 pockthi 16536 matgsum 21494 indistps 22069 indistps2 22070 refun0 22574 filconn 22942 sincosq3sgn 25562 sincosq4sgn 25563 eff1o 25610 ax5seglem7 27206 0grsubgr 27548 nbupgrres 27634 vtxdginducedm1fi 27814 clwwlknclwwlkdif 28244 cnnvg 28941 cnnvs 28943 cnnvnm 28944 h2hva 29237 h2hsm 29238 h2hnm 29239 hhssva 29520 hhsssm 29521 hhssnm 29522 spansnji 29909 lnopunilem1 30273 lnophmlem2 30280 stadd3i 30511 indifundif 30774 dpmul4 31090 xrsp0 31192 xrsp1 31193 hgt750lemd 32528 hgt750lem 32531 rankeq1o 34400 poimirlem8 35712 mbfposadd 35751 iocunico 40958 corcltrcl 41236 binomcxplemdvsum 41862 cosnegpi 43298 fourierdlem62 43599 fouriersw 43662 salexct3 43771 salgensscntex 43773 caragenuncllem 43940 isomenndlem 43958 |
Copyright terms: Public domain | W3C validator |