![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3eqtrri | Structured version Visualization version GIF version |
Description: An inference from three chained equalities. (Contributed by NM, 3-Aug-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
3eqtri.1 | ⊢ 𝐴 = 𝐵 |
3eqtri.2 | ⊢ 𝐵 = 𝐶 |
3eqtri.3 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
3eqtrri | ⊢ 𝐷 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtri.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 3eqtri.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
3 | 1, 2 | eqtri 2763 | . 2 ⊢ 𝐴 = 𝐶 |
4 | 3eqtri.3 | . 2 ⊢ 𝐶 = 𝐷 | |
5 | 3, 4 | eqtr2i 2764 | 1 ⊢ 𝐷 = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-cleq 2727 |
This theorem is referenced by: dfif5 4547 resindm 6050 difxp1 6187 difxp2 6188 dfdm2 6303 cofunex2g 7973 df1st2 8122 df2nd2 8123 domss2 9175 adderpqlem 10992 dfn2 12537 9p1e10 12733 sqrtm1 15311 0.999... 15914 pockthi 16941 matgsum 22459 indistps 23034 indistps2 23035 refun0 23539 filconn 23907 sincosq3sgn 26557 sincosq4sgn 26558 eff1o 26606 ax5seglem7 28965 0grsubgr 29310 nbupgrres 29396 vtxdginducedm1fi 29577 clwwlknclwwlkdif 30008 cnnvg 30707 cnnvs 30709 cnnvnm 30710 h2hva 31003 h2hsm 31004 h2hnm 31005 hhssva 31286 hhsssm 31287 hhssnm 31288 spansnji 31675 lnopunilem1 32039 lnophmlem2 32046 stadd3i 32277 indifundif 32552 dpmul4 32881 xrsp0 32997 xrsp1 32998 hgt750lemd 34642 hgt750lem 34645 rankeq1o 36153 poimirlem8 37615 mbfposadd 37654 iocunico 43200 corcltrcl 43729 binomcxplemdvsum 44351 cosnegpi 45823 fourierdlem62 46124 fouriersw 46187 salexct3 46298 salgensscntex 46300 caragenuncllem 46468 isomenndlem 46486 usgrexmpl2edg 47924 |
Copyright terms: Public domain | W3C validator |