| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3eqtrri | Structured version Visualization version GIF version | ||
| Description: An inference from three chained equalities. (Contributed by NM, 3-Aug-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| 3eqtri.1 | ⊢ 𝐴 = 𝐵 |
| 3eqtri.2 | ⊢ 𝐵 = 𝐶 |
| 3eqtri.3 | ⊢ 𝐶 = 𝐷 |
| Ref | Expression |
|---|---|
| 3eqtrri | ⊢ 𝐷 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtri.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | 3eqtri.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
| 3 | 1, 2 | eqtri 2754 | . 2 ⊢ 𝐴 = 𝐶 |
| 4 | 3eqtri.3 | . 2 ⊢ 𝐶 = 𝐷 | |
| 5 | 3, 4 | eqtr2i 2755 | 1 ⊢ 𝐷 = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 |
| This theorem is referenced by: dfif5 4489 resindm 5978 difxp1 6112 difxp2 6113 dfdm2 6228 cofunex2g 7882 df1st2 8028 df2nd2 8029 domss2 9049 adderpqlem 10845 dfn2 12394 9p1e10 12590 sqrtm1 15182 0.999... 15788 pockthi 16819 matgsum 22352 indistps 22926 indistps2 22927 refun0 23430 filconn 23798 sincosq3sgn 26436 sincosq4sgn 26437 eff1o 26485 ax5seglem7 28913 0grsubgr 29256 nbupgrres 29342 vtxdginducedm1fi 29523 clwwlknclwwlkdif 29959 cnnvg 30658 cnnvs 30660 cnnvnm 30661 h2hva 30954 h2hsm 30955 h2hnm 30956 hhssva 31237 hhsssm 31238 hhssnm 31239 spansnji 31626 lnopunilem1 31990 lnophmlem2 31997 stadd3i 32228 indifundif 32504 dpmul4 32894 xrsp0 32993 xrsp1 32994 hgt750lemd 34661 hgt750lem 34664 rankeq1o 36213 poimirlem8 37676 mbfposadd 37715 iocunico 43252 corcltrcl 43780 binomcxplemdvsum 44396 cosnegpi 45913 fourierdlem62 46214 fouriersw 46277 salexct3 46388 salgensscntex 46390 caragenuncllem 46558 isomenndlem 46576 usgrexmpl2edg 48068 |
| Copyright terms: Public domain | W3C validator |