![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3eqtrri | Structured version Visualization version GIF version |
Description: An inference from three chained equalities. (Contributed by NM, 3-Aug-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
3eqtri.1 | ⊢ 𝐴 = 𝐵 |
3eqtri.2 | ⊢ 𝐵 = 𝐶 |
3eqtri.3 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
3eqtrri | ⊢ 𝐷 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtri.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 3eqtri.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
3 | 1, 2 | eqtri 2759 | . 2 ⊢ 𝐴 = 𝐶 |
4 | 3eqtri.3 | . 2 ⊢ 𝐶 = 𝐷 | |
5 | 3, 4 | eqtr2i 2760 | 1 ⊢ 𝐷 = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1781 df-cleq 2723 |
This theorem is referenced by: dfif5 4544 resindm 6030 difxp1 6164 difxp2 6165 dfdm2 6280 cofunex2g 7939 df1st2 8087 df2nd2 8088 domss2 9139 adderpqlem 10952 dfn2 12490 9p1e10 12684 sqrtm1 15227 0.999... 15832 pockthi 16845 matgsum 22160 indistps 22735 indistps2 22736 refun0 23240 filconn 23608 sincosq3sgn 26247 sincosq4sgn 26248 eff1o 26295 ax5seglem7 28461 0grsubgr 28803 nbupgrres 28889 vtxdginducedm1fi 29069 clwwlknclwwlkdif 29500 cnnvg 30199 cnnvs 30201 cnnvnm 30202 h2hva 30495 h2hsm 30496 h2hnm 30497 hhssva 30778 hhsssm 30779 hhssnm 30780 spansnji 31167 lnopunilem1 31531 lnophmlem2 31538 stadd3i 31769 indifundif 32030 dpmul4 32348 xrsp0 32450 xrsp1 32451 hgt750lemd 33959 hgt750lem 33962 rankeq1o 35448 poimirlem8 36800 mbfposadd 36839 iocunico 42263 corcltrcl 42793 binomcxplemdvsum 43417 cosnegpi 44882 fourierdlem62 45183 fouriersw 45246 salexct3 45357 salgensscntex 45359 caragenuncllem 45527 isomenndlem 45545 |
Copyright terms: Public domain | W3C validator |