| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3eqtrri | Structured version Visualization version GIF version | ||
| Description: An inference from three chained equalities. (Contributed by NM, 3-Aug-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| 3eqtri.1 | ⊢ 𝐴 = 𝐵 |
| 3eqtri.2 | ⊢ 𝐵 = 𝐶 |
| 3eqtri.3 | ⊢ 𝐶 = 𝐷 |
| Ref | Expression |
|---|---|
| 3eqtrri | ⊢ 𝐷 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtri.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | 3eqtri.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
| 3 | 1, 2 | eqtri 2752 | . 2 ⊢ 𝐴 = 𝐶 |
| 4 | 3eqtri.3 | . 2 ⊢ 𝐶 = 𝐷 | |
| 5 | 3, 4 | eqtr2i 2753 | 1 ⊢ 𝐷 = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 |
| This theorem is referenced by: dfif5 4501 resindm 5990 difxp1 6126 difxp2 6127 dfdm2 6242 cofunex2g 7908 df1st2 8054 df2nd2 8055 domss2 9077 adderpqlem 10883 dfn2 12431 9p1e10 12627 sqrtm1 15217 0.999... 15823 pockthi 16854 matgsum 22357 indistps 22931 indistps2 22932 refun0 23435 filconn 23803 sincosq3sgn 26442 sincosq4sgn 26443 eff1o 26491 ax5seglem7 28915 0grsubgr 29258 nbupgrres 29344 vtxdginducedm1fi 29525 clwwlknclwwlkdif 29958 cnnvg 30657 cnnvs 30659 cnnvnm 30660 h2hva 30953 h2hsm 30954 h2hnm 30955 hhssva 31236 hhsssm 31237 hhssnm 31238 spansnji 31625 lnopunilem1 31989 lnophmlem2 31996 stadd3i 32227 indifundif 32503 dpmul4 32884 xrsp0 32996 xrsp1 32997 hgt750lemd 34632 hgt750lem 34635 rankeq1o 36152 poimirlem8 37615 mbfposadd 37654 iocunico 43193 corcltrcl 43721 binomcxplemdvsum 44337 cosnegpi 45858 fourierdlem62 46159 fouriersw 46222 salexct3 46333 salgensscntex 46335 caragenuncllem 46503 isomenndlem 46521 usgrexmpl2edg 48013 |
| Copyright terms: Public domain | W3C validator |