| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3eqtrri | Structured version Visualization version GIF version | ||
| Description: An inference from three chained equalities. (Contributed by NM, 3-Aug-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| 3eqtri.1 | ⊢ 𝐴 = 𝐵 |
| 3eqtri.2 | ⊢ 𝐵 = 𝐶 |
| 3eqtri.3 | ⊢ 𝐶 = 𝐷 |
| Ref | Expression |
|---|---|
| 3eqtrri | ⊢ 𝐷 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtri.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | 3eqtri.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
| 3 | 1, 2 | eqtri 2752 | . 2 ⊢ 𝐴 = 𝐶 |
| 4 | 3eqtri.3 | . 2 ⊢ 𝐶 = 𝐷 | |
| 5 | 3, 4 | eqtr2i 2753 | 1 ⊢ 𝐷 = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 |
| This theorem is referenced by: dfif5 4505 resindm 6001 difxp1 6138 difxp2 6139 dfdm2 6254 cofunex2g 7928 df1st2 8077 df2nd2 8078 domss2 9100 adderpqlem 10907 dfn2 12455 9p1e10 12651 sqrtm1 15241 0.999... 15847 pockthi 16878 matgsum 22324 indistps 22898 indistps2 22899 refun0 23402 filconn 23770 sincosq3sgn 26409 sincosq4sgn 26410 eff1o 26458 ax5seglem7 28862 0grsubgr 29205 nbupgrres 29291 vtxdginducedm1fi 29472 clwwlknclwwlkdif 29908 cnnvg 30607 cnnvs 30609 cnnvnm 30610 h2hva 30903 h2hsm 30904 h2hnm 30905 hhssva 31186 hhsssm 31187 hhssnm 31188 spansnji 31575 lnopunilem1 31939 lnophmlem2 31946 stadd3i 32177 indifundif 32453 dpmul4 32834 xrsp0 32950 xrsp1 32951 hgt750lemd 34639 hgt750lem 34642 rankeq1o 36159 poimirlem8 37622 mbfposadd 37661 iocunico 43200 corcltrcl 43728 binomcxplemdvsum 44344 cosnegpi 45865 fourierdlem62 46166 fouriersw 46229 salexct3 46340 salgensscntex 46342 caragenuncllem 46510 isomenndlem 46528 usgrexmpl2edg 48020 |
| Copyright terms: Public domain | W3C validator |