| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3eqtrri | Structured version Visualization version GIF version | ||
| Description: An inference from three chained equalities. (Contributed by NM, 3-Aug-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| 3eqtri.1 | ⊢ 𝐴 = 𝐵 |
| 3eqtri.2 | ⊢ 𝐵 = 𝐶 |
| 3eqtri.3 | ⊢ 𝐶 = 𝐷 |
| Ref | Expression |
|---|---|
| 3eqtrri | ⊢ 𝐷 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtri.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | 3eqtri.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
| 3 | 1, 2 | eqtri 2752 | . 2 ⊢ 𝐴 = 𝐶 |
| 4 | 3eqtri.3 | . 2 ⊢ 𝐶 = 𝐷 | |
| 5 | 3, 4 | eqtr2i 2753 | 1 ⊢ 𝐷 = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 |
| This theorem is referenced by: dfif5 4493 resindm 5981 difxp1 6114 difxp2 6115 dfdm2 6229 cofunex2g 7885 df1st2 8031 df2nd2 8032 domss2 9053 adderpqlem 10848 dfn2 12397 9p1e10 12593 sqrtm1 15182 0.999... 15788 pockthi 16819 matgsum 22322 indistps 22896 indistps2 22897 refun0 23400 filconn 23768 sincosq3sgn 26407 sincosq4sgn 26408 eff1o 26456 ax5seglem7 28880 0grsubgr 29223 nbupgrres 29309 vtxdginducedm1fi 29490 clwwlknclwwlkdif 29923 cnnvg 30622 cnnvs 30624 cnnvnm 30625 h2hva 30918 h2hsm 30919 h2hnm 30920 hhssva 31201 hhsssm 31202 hhssnm 31203 spansnji 31590 lnopunilem1 31954 lnophmlem2 31961 stadd3i 32192 indifundif 32468 dpmul4 32854 xrsp0 32966 xrsp1 32967 hgt750lemd 34616 hgt750lem 34619 rankeq1o 36145 poimirlem8 37608 mbfposadd 37647 iocunico 43184 corcltrcl 43712 binomcxplemdvsum 44328 cosnegpi 45848 fourierdlem62 46149 fouriersw 46212 salexct3 46323 salgensscntex 46325 caragenuncllem 46493 isomenndlem 46511 usgrexmpl2edg 48013 |
| Copyright terms: Public domain | W3C validator |