| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3eqtrri | Structured version Visualization version GIF version | ||
| Description: An inference from three chained equalities. (Contributed by NM, 3-Aug-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| 3eqtri.1 | ⊢ 𝐴 = 𝐵 |
| 3eqtri.2 | ⊢ 𝐵 = 𝐶 |
| 3eqtri.3 | ⊢ 𝐶 = 𝐷 |
| Ref | Expression |
|---|---|
| 3eqtrri | ⊢ 𝐷 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtri.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | 3eqtri.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
| 3 | 1, 2 | eqtri 2764 | . 2 ⊢ 𝐴 = 𝐶 |
| 4 | 3eqtri.3 | . 2 ⊢ 𝐶 = 𝐷 | |
| 5 | 3, 4 | eqtr2i 2765 | 1 ⊢ 𝐷 = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-9 2117 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-cleq 2728 |
| This theorem is referenced by: dfif5 4541 resindm 6047 difxp1 6184 difxp2 6185 dfdm2 6300 cofunex2g 7975 df1st2 8124 df2nd2 8125 domss2 9177 adderpqlem 10995 dfn2 12541 9p1e10 12737 sqrtm1 15315 0.999... 15918 pockthi 16946 matgsum 22444 indistps 23019 indistps2 23020 refun0 23524 filconn 23892 sincosq3sgn 26543 sincosq4sgn 26544 eff1o 26592 ax5seglem7 28951 0grsubgr 29296 nbupgrres 29382 vtxdginducedm1fi 29563 clwwlknclwwlkdif 29999 cnnvg 30698 cnnvs 30700 cnnvnm 30701 h2hva 30994 h2hsm 30995 h2hnm 30996 hhssva 31277 hhsssm 31278 hhssnm 31279 spansnji 31666 lnopunilem1 32030 lnophmlem2 32037 stadd3i 32268 indifundif 32544 dpmul4 32897 xrsp0 33015 xrsp1 33016 hgt750lemd 34664 hgt750lem 34667 rankeq1o 36173 poimirlem8 37636 mbfposadd 37675 iocunico 43228 corcltrcl 43757 binomcxplemdvsum 44379 cosnegpi 45887 fourierdlem62 46188 fouriersw 46251 salexct3 46362 salgensscntex 46364 caragenuncllem 46532 isomenndlem 46550 usgrexmpl2edg 47993 |
| Copyright terms: Public domain | W3C validator |