| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3eqtrri | Structured version Visualization version GIF version | ||
| Description: An inference from three chained equalities. (Contributed by NM, 3-Aug-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| 3eqtri.1 | ⊢ 𝐴 = 𝐵 |
| 3eqtri.2 | ⊢ 𝐵 = 𝐶 |
| 3eqtri.3 | ⊢ 𝐶 = 𝐷 |
| Ref | Expression |
|---|---|
| 3eqtrri | ⊢ 𝐷 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtri.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | 3eqtri.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
| 3 | 1, 2 | eqtri 2752 | . 2 ⊢ 𝐴 = 𝐶 |
| 4 | 3eqtri.3 | . 2 ⊢ 𝐶 = 𝐷 | |
| 5 | 3, 4 | eqtr2i 2753 | 1 ⊢ 𝐷 = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 |
| This theorem is referenced by: dfif5 4501 resindm 5990 difxp1 6126 difxp2 6127 dfdm2 6242 cofunex2g 7908 df1st2 8054 df2nd2 8055 domss2 9077 adderpqlem 10883 dfn2 12431 9p1e10 12627 sqrtm1 15217 0.999... 15823 pockthi 16854 matgsum 22300 indistps 22874 indistps2 22875 refun0 23378 filconn 23746 sincosq3sgn 26385 sincosq4sgn 26386 eff1o 26434 ax5seglem7 28838 0grsubgr 29181 nbupgrres 29267 vtxdginducedm1fi 29448 clwwlknclwwlkdif 29881 cnnvg 30580 cnnvs 30582 cnnvnm 30583 h2hva 30876 h2hsm 30877 h2hnm 30878 hhssva 31159 hhsssm 31160 hhssnm 31161 spansnji 31548 lnopunilem1 31912 lnophmlem2 31919 stadd3i 32150 indifundif 32426 dpmul4 32807 xrsp0 32923 xrsp1 32924 hgt750lemd 34612 hgt750lem 34615 rankeq1o 36132 poimirlem8 37595 mbfposadd 37634 iocunico 43173 corcltrcl 43701 binomcxplemdvsum 44317 cosnegpi 45838 fourierdlem62 46139 fouriersw 46202 salexct3 46313 salgensscntex 46315 caragenuncllem 46483 isomenndlem 46501 usgrexmpl2edg 47993 |
| Copyright terms: Public domain | W3C validator |