Step | Hyp | Ref
| Expression |
1 | | resf1o.2 |
. 2
⊢ 𝐹 = (𝑓 ∈ 𝑋 ↦ (𝑓 ↾ 𝐶)) |
2 | | resexg 5926 |
. . 3
⊢ (𝑓 ∈ 𝑋 → (𝑓 ↾ 𝐶) ∈ V) |
3 | 2 | adantl 481 |
. 2
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ⊆ 𝐴) ∧ 𝑍 ∈ 𝐵) ∧ 𝑓 ∈ 𝑋) → (𝑓 ↾ 𝐶) ∈ V) |
4 | | simpr 484 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ⊆ 𝐴) ∧ 𝑔 ∈ (𝐵 ↑m 𝐶)) → 𝑔 ∈ (𝐵 ↑m 𝐶)) |
5 | | difexg 5246 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∖ 𝐶) ∈ V) |
6 | 5 | 3ad2ant1 1131 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ⊆ 𝐴) → (𝐴 ∖ 𝐶) ∈ V) |
7 | | snex 5349 |
. . . . . 6
⊢ {𝑍} ∈ V |
8 | | xpexg 7578 |
. . . . . 6
⊢ (((𝐴 ∖ 𝐶) ∈ V ∧ {𝑍} ∈ V) → ((𝐴 ∖ 𝐶) × {𝑍}) ∈ V) |
9 | 6, 7, 8 | sylancl 585 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ⊆ 𝐴) → ((𝐴 ∖ 𝐶) × {𝑍}) ∈ V) |
10 | 9 | adantr 480 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ⊆ 𝐴) ∧ 𝑔 ∈ (𝐵 ↑m 𝐶)) → ((𝐴 ∖ 𝐶) × {𝑍}) ∈ V) |
11 | | unexg 7577 |
. . . 4
⊢ ((𝑔 ∈ (𝐵 ↑m 𝐶) ∧ ((𝐴 ∖ 𝐶) × {𝑍}) ∈ V) → (𝑔 ∪ ((𝐴 ∖ 𝐶) × {𝑍})) ∈ V) |
12 | 4, 10, 11 | syl2anc 583 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ⊆ 𝐴) ∧ 𝑔 ∈ (𝐵 ↑m 𝐶)) → (𝑔 ∪ ((𝐴 ∖ 𝐶) × {𝑍})) ∈ V) |
13 | 12 | adantlr 711 |
. 2
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ⊆ 𝐴) ∧ 𝑍 ∈ 𝐵) ∧ 𝑔 ∈ (𝐵 ↑m 𝐶)) → (𝑔 ∪ ((𝐴 ∖ 𝐶) × {𝑍})) ∈ V) |
14 | | resf1o.1 |
. . . . 5
⊢ 𝑋 = {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (◡𝑓 “ (𝐵 ∖ {𝑍})) ⊆ 𝐶} |
15 | 14 | rabeq2i 3412 |
. . . 4
⊢ (𝑓 ∈ 𝑋 ↔ (𝑓 ∈ (𝐵 ↑m 𝐴) ∧ (◡𝑓 “ (𝐵 ∖ {𝑍})) ⊆ 𝐶)) |
16 | 15 | anbi1i 623 |
. . 3
⊢ ((𝑓 ∈ 𝑋 ∧ 𝑔 = (𝑓 ↾ 𝐶)) ↔ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ (◡𝑓 “ (𝐵 ∖ {𝑍})) ⊆ 𝐶) ∧ 𝑔 = (𝑓 ↾ 𝐶))) |
17 | | simprr 769 |
. . . . . 6
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ⊆ 𝐴) ∧ 𝑍 ∈ 𝐵) ∧ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ (◡𝑓 “ (𝐵 ∖ {𝑍})) ⊆ 𝐶) ∧ 𝑔 = (𝑓 ↾ 𝐶))) → 𝑔 = (𝑓 ↾ 𝐶)) |
18 | | simprll 775 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ⊆ 𝐴) ∧ 𝑍 ∈ 𝐵) ∧ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ (◡𝑓 “ (𝐵 ∖ {𝑍})) ⊆ 𝐶) ∧ 𝑔 = (𝑓 ↾ 𝐶))) → 𝑓 ∈ (𝐵 ↑m 𝐴)) |
19 | | elmapi 8595 |
. . . . . . . . 9
⊢ (𝑓 ∈ (𝐵 ↑m 𝐴) → 𝑓:𝐴⟶𝐵) |
20 | 18, 19 | syl 17 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ⊆ 𝐴) ∧ 𝑍 ∈ 𝐵) ∧ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ (◡𝑓 “ (𝐵 ∖ {𝑍})) ⊆ 𝐶) ∧ 𝑔 = (𝑓 ↾ 𝐶))) → 𝑓:𝐴⟶𝐵) |
21 | | simp3 1136 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ⊆ 𝐴) → 𝐶 ⊆ 𝐴) |
22 | 21 | ad2antrr 722 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ⊆ 𝐴) ∧ 𝑍 ∈ 𝐵) ∧ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ (◡𝑓 “ (𝐵 ∖ {𝑍})) ⊆ 𝐶) ∧ 𝑔 = (𝑓 ↾ 𝐶))) → 𝐶 ⊆ 𝐴) |
23 | 20, 22 | fssresd 6625 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ⊆ 𝐴) ∧ 𝑍 ∈ 𝐵) ∧ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ (◡𝑓 “ (𝐵 ∖ {𝑍})) ⊆ 𝐶) ∧ 𝑔 = (𝑓 ↾ 𝐶))) → (𝑓 ↾ 𝐶):𝐶⟶𝐵) |
24 | | simp2 1135 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ⊆ 𝐴) → 𝐵 ∈ 𝑊) |
25 | | simp1 1134 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ⊆ 𝐴) → 𝐴 ∈ 𝑉) |
26 | 25, 21 | ssexd 5243 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ⊆ 𝐴) → 𝐶 ∈ V) |
27 | | elmapg 8586 |
. . . . . . . . 9
⊢ ((𝐵 ∈ 𝑊 ∧ 𝐶 ∈ V) → ((𝑓 ↾ 𝐶) ∈ (𝐵 ↑m 𝐶) ↔ (𝑓 ↾ 𝐶):𝐶⟶𝐵)) |
28 | 24, 26, 27 | syl2anc 583 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ⊆ 𝐴) → ((𝑓 ↾ 𝐶) ∈ (𝐵 ↑m 𝐶) ↔ (𝑓 ↾ 𝐶):𝐶⟶𝐵)) |
29 | 28 | ad2antrr 722 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ⊆ 𝐴) ∧ 𝑍 ∈ 𝐵) ∧ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ (◡𝑓 “ (𝐵 ∖ {𝑍})) ⊆ 𝐶) ∧ 𝑔 = (𝑓 ↾ 𝐶))) → ((𝑓 ↾ 𝐶) ∈ (𝐵 ↑m 𝐶) ↔ (𝑓 ↾ 𝐶):𝐶⟶𝐵)) |
30 | 23, 29 | mpbird 256 |
. . . . . 6
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ⊆ 𝐴) ∧ 𝑍 ∈ 𝐵) ∧ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ (◡𝑓 “ (𝐵 ∖ {𝑍})) ⊆ 𝐶) ∧ 𝑔 = (𝑓 ↾ 𝐶))) → (𝑓 ↾ 𝐶) ∈ (𝐵 ↑m 𝐶)) |
31 | 17, 30 | eqeltrd 2839 |
. . . . 5
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ⊆ 𝐴) ∧ 𝑍 ∈ 𝐵) ∧ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ (◡𝑓 “ (𝐵 ∖ {𝑍})) ⊆ 𝐶) ∧ 𝑔 = (𝑓 ↾ 𝐶))) → 𝑔 ∈ (𝐵 ↑m 𝐶)) |
32 | | undif 4412 |
. . . . . . . . . . 11
⊢ (𝐶 ⊆ 𝐴 ↔ (𝐶 ∪ (𝐴 ∖ 𝐶)) = 𝐴) |
33 | 32 | biimpi 215 |
. . . . . . . . . 10
⊢ (𝐶 ⊆ 𝐴 → (𝐶 ∪ (𝐴 ∖ 𝐶)) = 𝐴) |
34 | 33 | reseq2d 5880 |
. . . . . . . . 9
⊢ (𝐶 ⊆ 𝐴 → (𝑓 ↾ (𝐶 ∪ (𝐴 ∖ 𝐶))) = (𝑓 ↾ 𝐴)) |
35 | 22, 34 | syl 17 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ⊆ 𝐴) ∧ 𝑍 ∈ 𝐵) ∧ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ (◡𝑓 “ (𝐵 ∖ {𝑍})) ⊆ 𝐶) ∧ 𝑔 = (𝑓 ↾ 𝐶))) → (𝑓 ↾ (𝐶 ∪ (𝐴 ∖ 𝐶))) = (𝑓 ↾ 𝐴)) |
36 | | ffn 6584 |
. . . . . . . . 9
⊢ (𝑓:𝐴⟶𝐵 → 𝑓 Fn 𝐴) |
37 | | fnresdm 6535 |
. . . . . . . . 9
⊢ (𝑓 Fn 𝐴 → (𝑓 ↾ 𝐴) = 𝑓) |
38 | 20, 36, 37 | 3syl 18 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ⊆ 𝐴) ∧ 𝑍 ∈ 𝐵) ∧ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ (◡𝑓 “ (𝐵 ∖ {𝑍})) ⊆ 𝐶) ∧ 𝑔 = (𝑓 ↾ 𝐶))) → (𝑓 ↾ 𝐴) = 𝑓) |
39 | 35, 38 | eqtr2d 2779 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ⊆ 𝐴) ∧ 𝑍 ∈ 𝐵) ∧ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ (◡𝑓 “ (𝐵 ∖ {𝑍})) ⊆ 𝐶) ∧ 𝑔 = (𝑓 ↾ 𝐶))) → 𝑓 = (𝑓 ↾ (𝐶 ∪ (𝐴 ∖ 𝐶)))) |
40 | | resundi 5894 |
. . . . . . 7
⊢ (𝑓 ↾ (𝐶 ∪ (𝐴 ∖ 𝐶))) = ((𝑓 ↾ 𝐶) ∪ (𝑓 ↾ (𝐴 ∖ 𝐶))) |
41 | 39, 40 | eqtrdi 2795 |
. . . . . 6
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ⊆ 𝐴) ∧ 𝑍 ∈ 𝐵) ∧ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ (◡𝑓 “ (𝐵 ∖ {𝑍})) ⊆ 𝐶) ∧ 𝑔 = (𝑓 ↾ 𝐶))) → 𝑓 = ((𝑓 ↾ 𝐶) ∪ (𝑓 ↾ (𝐴 ∖ 𝐶)))) |
42 | 17 | eqcomd 2744 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ⊆ 𝐴) ∧ 𝑍 ∈ 𝐵) ∧ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ (◡𝑓 “ (𝐵 ∖ {𝑍})) ⊆ 𝐶) ∧ 𝑔 = (𝑓 ↾ 𝐶))) → (𝑓 ↾ 𝐶) = 𝑔) |
43 | | simprlr 776 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ⊆ 𝐴) ∧ 𝑍 ∈ 𝐵) ∧ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ (◡𝑓 “ (𝐵 ∖ {𝑍})) ⊆ 𝐶) ∧ 𝑔 = (𝑓 ↾ 𝐶))) → (◡𝑓 “ (𝐵 ∖ {𝑍})) ⊆ 𝐶) |
44 | 25 | ad2antrr 722 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ⊆ 𝐴) ∧ 𝑍 ∈ 𝐵) ∧ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ (◡𝑓 “ (𝐵 ∖ {𝑍})) ⊆ 𝐶) ∧ 𝑔 = (𝑓 ↾ 𝐶))) → 𝐴 ∈ 𝑉) |
45 | | simplr 765 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ⊆ 𝐴) ∧ 𝑍 ∈ 𝐵) ∧ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ (◡𝑓 “ (𝐵 ∖ {𝑍})) ⊆ 𝐶) ∧ 𝑔 = (𝑓 ↾ 𝐶))) → 𝑍 ∈ 𝐵) |
46 | | eqid 2738 |
. . . . . . . . . . 11
⊢ (𝐵 ∖ {𝑍}) = (𝐵 ∖ {𝑍}) |
47 | 46 | ffs2 30965 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑍 ∈ 𝐵 ∧ 𝑓:𝐴⟶𝐵) → (𝑓 supp 𝑍) = (◡𝑓 “ (𝐵 ∖ {𝑍}))) |
48 | 44, 45, 20, 47 | syl3anc 1369 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ⊆ 𝐴) ∧ 𝑍 ∈ 𝐵) ∧ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ (◡𝑓 “ (𝐵 ∖ {𝑍})) ⊆ 𝐶) ∧ 𝑔 = (𝑓 ↾ 𝐶))) → (𝑓 supp 𝑍) = (◡𝑓 “ (𝐵 ∖ {𝑍}))) |
49 | | sseqin2 4146 |
. . . . . . . . . . 11
⊢ (𝐶 ⊆ 𝐴 ↔ (𝐴 ∩ 𝐶) = 𝐶) |
50 | 49 | biimpi 215 |
. . . . . . . . . 10
⊢ (𝐶 ⊆ 𝐴 → (𝐴 ∩ 𝐶) = 𝐶) |
51 | 22, 50 | syl 17 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ⊆ 𝐴) ∧ 𝑍 ∈ 𝐵) ∧ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ (◡𝑓 “ (𝐵 ∖ {𝑍})) ⊆ 𝐶) ∧ 𝑔 = (𝑓 ↾ 𝐶))) → (𝐴 ∩ 𝐶) = 𝐶) |
52 | 43, 48, 51 | 3sstr4d 3964 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ⊆ 𝐴) ∧ 𝑍 ∈ 𝐵) ∧ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ (◡𝑓 “ (𝐵 ∖ {𝑍})) ⊆ 𝐶) ∧ 𝑔 = (𝑓 ↾ 𝐶))) → (𝑓 supp 𝑍) ⊆ (𝐴 ∩ 𝐶)) |
53 | | simpl 482 |
. . . . . . . . . . . 12
⊢ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ 𝑍 ∈ 𝐵) → 𝑓 ∈ (𝐵 ↑m 𝐴)) |
54 | 53, 19, 36 | 3syl 18 |
. . . . . . . . . . 11
⊢ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ 𝑍 ∈ 𝐵) → 𝑓 Fn 𝐴) |
55 | | inundif 4409 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∩ 𝐶) ∪ (𝐴 ∖ 𝐶)) = 𝐴 |
56 | 55 | fneq2i 6515 |
. . . . . . . . . . 11
⊢ (𝑓 Fn ((𝐴 ∩ 𝐶) ∪ (𝐴 ∖ 𝐶)) ↔ 𝑓 Fn 𝐴) |
57 | 54, 56 | sylibr 233 |
. . . . . . . . . 10
⊢ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ 𝑍 ∈ 𝐵) → 𝑓 Fn ((𝐴 ∩ 𝐶) ∪ (𝐴 ∖ 𝐶))) |
58 | | vex 3426 |
. . . . . . . . . . 11
⊢ 𝑓 ∈ V |
59 | 58 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ 𝑍 ∈ 𝐵) → 𝑓 ∈ V) |
60 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ 𝑍 ∈ 𝐵) → 𝑍 ∈ 𝐵) |
61 | | inindif 30764 |
. . . . . . . . . . 11
⊢ ((𝐴 ∩ 𝐶) ∩ (𝐴 ∖ 𝐶)) = ∅ |
62 | 61 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ 𝑍 ∈ 𝐵) → ((𝐴 ∩ 𝐶) ∩ (𝐴 ∖ 𝐶)) = ∅) |
63 | | fnsuppres 7978 |
. . . . . . . . . 10
⊢ ((𝑓 Fn ((𝐴 ∩ 𝐶) ∪ (𝐴 ∖ 𝐶)) ∧ (𝑓 ∈ V ∧ 𝑍 ∈ 𝐵) ∧ ((𝐴 ∩ 𝐶) ∩ (𝐴 ∖ 𝐶)) = ∅) → ((𝑓 supp 𝑍) ⊆ (𝐴 ∩ 𝐶) ↔ (𝑓 ↾ (𝐴 ∖ 𝐶)) = ((𝐴 ∖ 𝐶) × {𝑍}))) |
64 | 57, 59, 60, 62, 63 | syl121anc 1373 |
. . . . . . . . 9
⊢ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ 𝑍 ∈ 𝐵) → ((𝑓 supp 𝑍) ⊆ (𝐴 ∩ 𝐶) ↔ (𝑓 ↾ (𝐴 ∖ 𝐶)) = ((𝐴 ∖ 𝐶) × {𝑍}))) |
65 | 18, 45, 64 | syl2anc 583 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ⊆ 𝐴) ∧ 𝑍 ∈ 𝐵) ∧ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ (◡𝑓 “ (𝐵 ∖ {𝑍})) ⊆ 𝐶) ∧ 𝑔 = (𝑓 ↾ 𝐶))) → ((𝑓 supp 𝑍) ⊆ (𝐴 ∩ 𝐶) ↔ (𝑓 ↾ (𝐴 ∖ 𝐶)) = ((𝐴 ∖ 𝐶) × {𝑍}))) |
66 | 52, 65 | mpbid 231 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ⊆ 𝐴) ∧ 𝑍 ∈ 𝐵) ∧ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ (◡𝑓 “ (𝐵 ∖ {𝑍})) ⊆ 𝐶) ∧ 𝑔 = (𝑓 ↾ 𝐶))) → (𝑓 ↾ (𝐴 ∖ 𝐶)) = ((𝐴 ∖ 𝐶) × {𝑍})) |
67 | 42, 66 | uneq12d 4094 |
. . . . . 6
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ⊆ 𝐴) ∧ 𝑍 ∈ 𝐵) ∧ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ (◡𝑓 “ (𝐵 ∖ {𝑍})) ⊆ 𝐶) ∧ 𝑔 = (𝑓 ↾ 𝐶))) → ((𝑓 ↾ 𝐶) ∪ (𝑓 ↾ (𝐴 ∖ 𝐶))) = (𝑔 ∪ ((𝐴 ∖ 𝐶) × {𝑍}))) |
68 | 41, 67 | eqtrd 2778 |
. . . . 5
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ⊆ 𝐴) ∧ 𝑍 ∈ 𝐵) ∧ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ (◡𝑓 “ (𝐵 ∖ {𝑍})) ⊆ 𝐶) ∧ 𝑔 = (𝑓 ↾ 𝐶))) → 𝑓 = (𝑔 ∪ ((𝐴 ∖ 𝐶) × {𝑍}))) |
69 | 31, 68 | jca 511 |
. . . 4
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ⊆ 𝐴) ∧ 𝑍 ∈ 𝐵) ∧ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ (◡𝑓 “ (𝐵 ∖ {𝑍})) ⊆ 𝐶) ∧ 𝑔 = (𝑓 ↾ 𝐶))) → (𝑔 ∈ (𝐵 ↑m 𝐶) ∧ 𝑓 = (𝑔 ∪ ((𝐴 ∖ 𝐶) × {𝑍})))) |
70 | 24 | ad2antrr 722 |
. . . . . 6
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ⊆ 𝐴) ∧ 𝑍 ∈ 𝐵) ∧ (𝑔 ∈ (𝐵 ↑m 𝐶) ∧ 𝑓 = (𝑔 ∪ ((𝐴 ∖ 𝐶) × {𝑍})))) → 𝐵 ∈ 𝑊) |
71 | 25 | ad2antrr 722 |
. . . . . 6
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ⊆ 𝐴) ∧ 𝑍 ∈ 𝐵) ∧ (𝑔 ∈ (𝐵 ↑m 𝐶) ∧ 𝑓 = (𝑔 ∪ ((𝐴 ∖ 𝐶) × {𝑍})))) → 𝐴 ∈ 𝑉) |
72 | | elmapi 8595 |
. . . . . . . . 9
⊢ (𝑔 ∈ (𝐵 ↑m 𝐶) → 𝑔:𝐶⟶𝐵) |
73 | 72 | ad2antrl 724 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ⊆ 𝐴) ∧ 𝑍 ∈ 𝐵) ∧ (𝑔 ∈ (𝐵 ↑m 𝐶) ∧ 𝑓 = (𝑔 ∪ ((𝐴 ∖ 𝐶) × {𝑍})))) → 𝑔:𝐶⟶𝐵) |
74 | | simplr 765 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ⊆ 𝐴) ∧ 𝑍 ∈ 𝐵) ∧ (𝑔 ∈ (𝐵 ↑m 𝐶) ∧ 𝑓 = (𝑔 ∪ ((𝐴 ∖ 𝐶) × {𝑍})))) → 𝑍 ∈ 𝐵) |
75 | | fconst6g 6647 |
. . . . . . . . 9
⊢ (𝑍 ∈ 𝐵 → ((𝐴 ∖ 𝐶) × {𝑍}):(𝐴 ∖ 𝐶)⟶𝐵) |
76 | 74, 75 | syl 17 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ⊆ 𝐴) ∧ 𝑍 ∈ 𝐵) ∧ (𝑔 ∈ (𝐵 ↑m 𝐶) ∧ 𝑓 = (𝑔 ∪ ((𝐴 ∖ 𝐶) × {𝑍})))) → ((𝐴 ∖ 𝐶) × {𝑍}):(𝐴 ∖ 𝐶)⟶𝐵) |
77 | | disjdif 4402 |
. . . . . . . . 9
⊢ (𝐶 ∩ (𝐴 ∖ 𝐶)) = ∅ |
78 | 77 | a1i 11 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ⊆ 𝐴) ∧ 𝑍 ∈ 𝐵) ∧ (𝑔 ∈ (𝐵 ↑m 𝐶) ∧ 𝑓 = (𝑔 ∪ ((𝐴 ∖ 𝐶) × {𝑍})))) → (𝐶 ∩ (𝐴 ∖ 𝐶)) = ∅) |
79 | | fun2 6621 |
. . . . . . . 8
⊢ (((𝑔:𝐶⟶𝐵 ∧ ((𝐴 ∖ 𝐶) × {𝑍}):(𝐴 ∖ 𝐶)⟶𝐵) ∧ (𝐶 ∩ (𝐴 ∖ 𝐶)) = ∅) → (𝑔 ∪ ((𝐴 ∖ 𝐶) × {𝑍})):(𝐶 ∪ (𝐴 ∖ 𝐶))⟶𝐵) |
80 | 73, 76, 78, 79 | syl21anc 834 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ⊆ 𝐴) ∧ 𝑍 ∈ 𝐵) ∧ (𝑔 ∈ (𝐵 ↑m 𝐶) ∧ 𝑓 = (𝑔 ∪ ((𝐴 ∖ 𝐶) × {𝑍})))) → (𝑔 ∪ ((𝐴 ∖ 𝐶) × {𝑍})):(𝐶 ∪ (𝐴 ∖ 𝐶))⟶𝐵) |
81 | | simprr 769 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ⊆ 𝐴) ∧ 𝑍 ∈ 𝐵) ∧ (𝑔 ∈ (𝐵 ↑m 𝐶) ∧ 𝑓 = (𝑔 ∪ ((𝐴 ∖ 𝐶) × {𝑍})))) → 𝑓 = (𝑔 ∪ ((𝐴 ∖ 𝐶) × {𝑍}))) |
82 | 81 | eqcomd 2744 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ⊆ 𝐴) ∧ 𝑍 ∈ 𝐵) ∧ (𝑔 ∈ (𝐵 ↑m 𝐶) ∧ 𝑓 = (𝑔 ∪ ((𝐴 ∖ 𝐶) × {𝑍})))) → (𝑔 ∪ ((𝐴 ∖ 𝐶) × {𝑍})) = 𝑓) |
83 | 21 | ad2antrr 722 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ⊆ 𝐴) ∧ 𝑍 ∈ 𝐵) ∧ (𝑔 ∈ (𝐵 ↑m 𝐶) ∧ 𝑓 = (𝑔 ∪ ((𝐴 ∖ 𝐶) × {𝑍})))) → 𝐶 ⊆ 𝐴) |
84 | 83, 33 | syl 17 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ⊆ 𝐴) ∧ 𝑍 ∈ 𝐵) ∧ (𝑔 ∈ (𝐵 ↑m 𝐶) ∧ 𝑓 = (𝑔 ∪ ((𝐴 ∖ 𝐶) × {𝑍})))) → (𝐶 ∪ (𝐴 ∖ 𝐶)) = 𝐴) |
85 | 82, 84 | feq12d 6572 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ⊆ 𝐴) ∧ 𝑍 ∈ 𝐵) ∧ (𝑔 ∈ (𝐵 ↑m 𝐶) ∧ 𝑓 = (𝑔 ∪ ((𝐴 ∖ 𝐶) × {𝑍})))) → ((𝑔 ∪ ((𝐴 ∖ 𝐶) × {𝑍})):(𝐶 ∪ (𝐴 ∖ 𝐶))⟶𝐵 ↔ 𝑓:𝐴⟶𝐵)) |
86 | 80, 85 | mpbid 231 |
. . . . . 6
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ⊆ 𝐴) ∧ 𝑍 ∈ 𝐵) ∧ (𝑔 ∈ (𝐵 ↑m 𝐶) ∧ 𝑓 = (𝑔 ∪ ((𝐴 ∖ 𝐶) × {𝑍})))) → 𝑓:𝐴⟶𝐵) |
87 | | elmapg 8586 |
. . . . . . 7
⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → (𝑓 ∈ (𝐵 ↑m 𝐴) ↔ 𝑓:𝐴⟶𝐵)) |
88 | 87 | biimpar 477 |
. . . . . 6
⊢ (((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) ∧ 𝑓:𝐴⟶𝐵) → 𝑓 ∈ (𝐵 ↑m 𝐴)) |
89 | 70, 71, 86, 88 | syl21anc 834 |
. . . . 5
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ⊆ 𝐴) ∧ 𝑍 ∈ 𝐵) ∧ (𝑔 ∈ (𝐵 ↑m 𝐶) ∧ 𝑓 = (𝑔 ∪ ((𝐴 ∖ 𝐶) × {𝑍})))) → 𝑓 ∈ (𝐵 ↑m 𝐴)) |
90 | 71, 74, 86, 47 | syl3anc 1369 |
. . . . . 6
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ⊆ 𝐴) ∧ 𝑍 ∈ 𝐵) ∧ (𝑔 ∈ (𝐵 ↑m 𝐶) ∧ 𝑓 = (𝑔 ∪ ((𝐴 ∖ 𝐶) × {𝑍})))) → (𝑓 supp 𝑍) = (◡𝑓 “ (𝐵 ∖ {𝑍}))) |
91 | 81 | adantr 480 |
. . . . . . . . 9
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ⊆ 𝐴) ∧ 𝑍 ∈ 𝐵) ∧ (𝑔 ∈ (𝐵 ↑m 𝐶) ∧ 𝑓 = (𝑔 ∪ ((𝐴 ∖ 𝐶) × {𝑍})))) ∧ 𝑥 ∈ (𝐴 ∖ 𝐶)) → 𝑓 = (𝑔 ∪ ((𝐴 ∖ 𝐶) × {𝑍}))) |
92 | 91 | fveq1d 6758 |
. . . . . . . 8
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ⊆ 𝐴) ∧ 𝑍 ∈ 𝐵) ∧ (𝑔 ∈ (𝐵 ↑m 𝐶) ∧ 𝑓 = (𝑔 ∪ ((𝐴 ∖ 𝐶) × {𝑍})))) ∧ 𝑥 ∈ (𝐴 ∖ 𝐶)) → (𝑓‘𝑥) = ((𝑔 ∪ ((𝐴 ∖ 𝐶) × {𝑍}))‘𝑥)) |
93 | 73 | adantr 480 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ⊆ 𝐴) ∧ 𝑍 ∈ 𝐵) ∧ (𝑔 ∈ (𝐵 ↑m 𝐶) ∧ 𝑓 = (𝑔 ∪ ((𝐴 ∖ 𝐶) × {𝑍})))) ∧ 𝑥 ∈ (𝐴 ∖ 𝐶)) → 𝑔:𝐶⟶𝐵) |
94 | 93 | ffnd 6585 |
. . . . . . . . 9
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ⊆ 𝐴) ∧ 𝑍 ∈ 𝐵) ∧ (𝑔 ∈ (𝐵 ↑m 𝐶) ∧ 𝑓 = (𝑔 ∪ ((𝐴 ∖ 𝐶) × {𝑍})))) ∧ 𝑥 ∈ (𝐴 ∖ 𝐶)) → 𝑔 Fn 𝐶) |
95 | | fconstg 6645 |
. . . . . . . . . . 11
⊢ (𝑍 ∈ 𝐵 → ((𝐴 ∖ 𝐶) × {𝑍}):(𝐴 ∖ 𝐶)⟶{𝑍}) |
96 | 95 | ad3antlr 727 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ⊆ 𝐴) ∧ 𝑍 ∈ 𝐵) ∧ (𝑔 ∈ (𝐵 ↑m 𝐶) ∧ 𝑓 = (𝑔 ∪ ((𝐴 ∖ 𝐶) × {𝑍})))) ∧ 𝑥 ∈ (𝐴 ∖ 𝐶)) → ((𝐴 ∖ 𝐶) × {𝑍}):(𝐴 ∖ 𝐶)⟶{𝑍}) |
97 | 96 | ffnd 6585 |
. . . . . . . . 9
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ⊆ 𝐴) ∧ 𝑍 ∈ 𝐵) ∧ (𝑔 ∈ (𝐵 ↑m 𝐶) ∧ 𝑓 = (𝑔 ∪ ((𝐴 ∖ 𝐶) × {𝑍})))) ∧ 𝑥 ∈ (𝐴 ∖ 𝐶)) → ((𝐴 ∖ 𝐶) × {𝑍}) Fn (𝐴 ∖ 𝐶)) |
98 | 77 | a1i 11 |
. . . . . . . . 9
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ⊆ 𝐴) ∧ 𝑍 ∈ 𝐵) ∧ (𝑔 ∈ (𝐵 ↑m 𝐶) ∧ 𝑓 = (𝑔 ∪ ((𝐴 ∖ 𝐶) × {𝑍})))) ∧ 𝑥 ∈ (𝐴 ∖ 𝐶)) → (𝐶 ∩ (𝐴 ∖ 𝐶)) = ∅) |
99 | | simpr 484 |
. . . . . . . . 9
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ⊆ 𝐴) ∧ 𝑍 ∈ 𝐵) ∧ (𝑔 ∈ (𝐵 ↑m 𝐶) ∧ 𝑓 = (𝑔 ∪ ((𝐴 ∖ 𝐶) × {𝑍})))) ∧ 𝑥 ∈ (𝐴 ∖ 𝐶)) → 𝑥 ∈ (𝐴 ∖ 𝐶)) |
100 | | fvun2 6842 |
. . . . . . . . 9
⊢ ((𝑔 Fn 𝐶 ∧ ((𝐴 ∖ 𝐶) × {𝑍}) Fn (𝐴 ∖ 𝐶) ∧ ((𝐶 ∩ (𝐴 ∖ 𝐶)) = ∅ ∧ 𝑥 ∈ (𝐴 ∖ 𝐶))) → ((𝑔 ∪ ((𝐴 ∖ 𝐶) × {𝑍}))‘𝑥) = (((𝐴 ∖ 𝐶) × {𝑍})‘𝑥)) |
101 | 94, 97, 98, 99, 100 | syl112anc 1372 |
. . . . . . . 8
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ⊆ 𝐴) ∧ 𝑍 ∈ 𝐵) ∧ (𝑔 ∈ (𝐵 ↑m 𝐶) ∧ 𝑓 = (𝑔 ∪ ((𝐴 ∖ 𝐶) × {𝑍})))) ∧ 𝑥 ∈ (𝐴 ∖ 𝐶)) → ((𝑔 ∪ ((𝐴 ∖ 𝐶) × {𝑍}))‘𝑥) = (((𝐴 ∖ 𝐶) × {𝑍})‘𝑥)) |
102 | | fvconst 7018 |
. . . . . . . . 9
⊢ ((((𝐴 ∖ 𝐶) × {𝑍}):(𝐴 ∖ 𝐶)⟶{𝑍} ∧ 𝑥 ∈ (𝐴 ∖ 𝐶)) → (((𝐴 ∖ 𝐶) × {𝑍})‘𝑥) = 𝑍) |
103 | 96, 99, 102 | syl2anc 583 |
. . . . . . . 8
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ⊆ 𝐴) ∧ 𝑍 ∈ 𝐵) ∧ (𝑔 ∈ (𝐵 ↑m 𝐶) ∧ 𝑓 = (𝑔 ∪ ((𝐴 ∖ 𝐶) × {𝑍})))) ∧ 𝑥 ∈ (𝐴 ∖ 𝐶)) → (((𝐴 ∖ 𝐶) × {𝑍})‘𝑥) = 𝑍) |
104 | 92, 101, 103 | 3eqtrd 2782 |
. . . . . . 7
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ⊆ 𝐴) ∧ 𝑍 ∈ 𝐵) ∧ (𝑔 ∈ (𝐵 ↑m 𝐶) ∧ 𝑓 = (𝑔 ∪ ((𝐴 ∖ 𝐶) × {𝑍})))) ∧ 𝑥 ∈ (𝐴 ∖ 𝐶)) → (𝑓‘𝑥) = 𝑍) |
105 | 86, 104 | suppss 7981 |
. . . . . 6
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ⊆ 𝐴) ∧ 𝑍 ∈ 𝐵) ∧ (𝑔 ∈ (𝐵 ↑m 𝐶) ∧ 𝑓 = (𝑔 ∪ ((𝐴 ∖ 𝐶) × {𝑍})))) → (𝑓 supp 𝑍) ⊆ 𝐶) |
106 | 90, 105 | eqsstrrd 3956 |
. . . . 5
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ⊆ 𝐴) ∧ 𝑍 ∈ 𝐵) ∧ (𝑔 ∈ (𝐵 ↑m 𝐶) ∧ 𝑓 = (𝑔 ∪ ((𝐴 ∖ 𝐶) × {𝑍})))) → (◡𝑓 “ (𝐵 ∖ {𝑍})) ⊆ 𝐶) |
107 | 81 | reseq1d 5879 |
. . . . . 6
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ⊆ 𝐴) ∧ 𝑍 ∈ 𝐵) ∧ (𝑔 ∈ (𝐵 ↑m 𝐶) ∧ 𝑓 = (𝑔 ∪ ((𝐴 ∖ 𝐶) × {𝑍})))) → (𝑓 ↾ 𝐶) = ((𝑔 ∪ ((𝐴 ∖ 𝐶) × {𝑍})) ↾ 𝐶)) |
108 | | res0 5884 |
. . . . . . . . . 10
⊢ (((𝐴 ∖ 𝐶) × {𝑍}) ↾ ∅) =
∅ |
109 | | res0 5884 |
. . . . . . . . . 10
⊢ (𝑔 ↾ ∅) =
∅ |
110 | 108, 109 | eqtr4i 2769 |
. . . . . . . . 9
⊢ (((𝐴 ∖ 𝐶) × {𝑍}) ↾ ∅) = (𝑔 ↾ ∅) |
111 | 77 | reseq2i 5877 |
. . . . . . . . 9
⊢ (((𝐴 ∖ 𝐶) × {𝑍}) ↾ (𝐶 ∩ (𝐴 ∖ 𝐶))) = (((𝐴 ∖ 𝐶) × {𝑍}) ↾ ∅) |
112 | 77 | reseq2i 5877 |
. . . . . . . . 9
⊢ (𝑔 ↾ (𝐶 ∩ (𝐴 ∖ 𝐶))) = (𝑔 ↾ ∅) |
113 | 110, 111,
112 | 3eqtr4ri 2777 |
. . . . . . . 8
⊢ (𝑔 ↾ (𝐶 ∩ (𝐴 ∖ 𝐶))) = (((𝐴 ∖ 𝐶) × {𝑍}) ↾ (𝐶 ∩ (𝐴 ∖ 𝐶))) |
114 | 113 | a1i 11 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ⊆ 𝐴) ∧ 𝑍 ∈ 𝐵) ∧ (𝑔 ∈ (𝐵 ↑m 𝐶) ∧ 𝑓 = (𝑔 ∪ ((𝐴 ∖ 𝐶) × {𝑍})))) → (𝑔 ↾ (𝐶 ∩ (𝐴 ∖ 𝐶))) = (((𝐴 ∖ 𝐶) × {𝑍}) ↾ (𝐶 ∩ (𝐴 ∖ 𝐶)))) |
115 | | fresaunres1 6631 |
. . . . . . 7
⊢ ((𝑔:𝐶⟶𝐵 ∧ ((𝐴 ∖ 𝐶) × {𝑍}):(𝐴 ∖ 𝐶)⟶𝐵 ∧ (𝑔 ↾ (𝐶 ∩ (𝐴 ∖ 𝐶))) = (((𝐴 ∖ 𝐶) × {𝑍}) ↾ (𝐶 ∩ (𝐴 ∖ 𝐶)))) → ((𝑔 ∪ ((𝐴 ∖ 𝐶) × {𝑍})) ↾ 𝐶) = 𝑔) |
116 | 73, 76, 114, 115 | syl3anc 1369 |
. . . . . 6
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ⊆ 𝐴) ∧ 𝑍 ∈ 𝐵) ∧ (𝑔 ∈ (𝐵 ↑m 𝐶) ∧ 𝑓 = (𝑔 ∪ ((𝐴 ∖ 𝐶) × {𝑍})))) → ((𝑔 ∪ ((𝐴 ∖ 𝐶) × {𝑍})) ↾ 𝐶) = 𝑔) |
117 | 107, 116 | eqtr2d 2779 |
. . . . 5
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ⊆ 𝐴) ∧ 𝑍 ∈ 𝐵) ∧ (𝑔 ∈ (𝐵 ↑m 𝐶) ∧ 𝑓 = (𝑔 ∪ ((𝐴 ∖ 𝐶) × {𝑍})))) → 𝑔 = (𝑓 ↾ 𝐶)) |
118 | 89, 106, 117 | jca31 514 |
. . . 4
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ⊆ 𝐴) ∧ 𝑍 ∈ 𝐵) ∧ (𝑔 ∈ (𝐵 ↑m 𝐶) ∧ 𝑓 = (𝑔 ∪ ((𝐴 ∖ 𝐶) × {𝑍})))) → ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ (◡𝑓 “ (𝐵 ∖ {𝑍})) ⊆ 𝐶) ∧ 𝑔 = (𝑓 ↾ 𝐶))) |
119 | 69, 118 | impbida 797 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ⊆ 𝐴) ∧ 𝑍 ∈ 𝐵) → (((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ (◡𝑓 “ (𝐵 ∖ {𝑍})) ⊆ 𝐶) ∧ 𝑔 = (𝑓 ↾ 𝐶)) ↔ (𝑔 ∈ (𝐵 ↑m 𝐶) ∧ 𝑓 = (𝑔 ∪ ((𝐴 ∖ 𝐶) × {𝑍}))))) |
120 | 16, 119 | syl5bb 282 |
. 2
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ⊆ 𝐴) ∧ 𝑍 ∈ 𝐵) → ((𝑓 ∈ 𝑋 ∧ 𝑔 = (𝑓 ↾ 𝐶)) ↔ (𝑔 ∈ (𝐵 ↑m 𝐶) ∧ 𝑓 = (𝑔 ∪ ((𝐴 ∖ 𝐶) × {𝑍}))))) |
121 | 1, 3, 13, 120 | f1od 7499 |
1
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ⊆ 𝐴) ∧ 𝑍 ∈ 𝐵) → 𝐹:𝑋–1-1-onto→(𝐵 ↑m 𝐶)) |