![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > measunl | Structured version Visualization version GIF version |
Description: A measure is sub-additive with respect to union. (Contributed by Thierry Arnoux, 20-Oct-2017.) |
Ref | Expression |
---|---|
measunl.1 | ⊢ (𝜑 → 𝑀 ∈ (measures‘𝑆)) |
measunl.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
measunl.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑆) |
Ref | Expression |
---|---|
measunl | ⊢ (𝜑 → (𝑀‘(𝐴 ∪ 𝐵)) ≤ ((𝑀‘𝐴) +𝑒 (𝑀‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | undif1 4499 | . . . 4 ⊢ ((𝐴 ∖ 𝐵) ∪ 𝐵) = (𝐴 ∪ 𝐵) | |
2 | 1 | fveq2i 6925 | . . 3 ⊢ (𝑀‘((𝐴 ∖ 𝐵) ∪ 𝐵)) = (𝑀‘(𝐴 ∪ 𝐵)) |
3 | measunl.1 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ (measures‘𝑆)) | |
4 | measbase 34163 | . . . . . 6 ⊢ (𝑀 ∈ (measures‘𝑆) → 𝑆 ∈ ∪ ran sigAlgebra) | |
5 | 3, 4 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) |
6 | measunl.2 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
7 | measunl.3 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑆) | |
8 | difelsiga 34099 | . . . . 5 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴 ∖ 𝐵) ∈ 𝑆) | |
9 | 5, 6, 7, 8 | syl3anc 1371 | . . . 4 ⊢ (𝜑 → (𝐴 ∖ 𝐵) ∈ 𝑆) |
10 | disjdifr 4496 | . . . . 5 ⊢ ((𝐴 ∖ 𝐵) ∩ 𝐵) = ∅ | |
11 | 10 | a1i 11 | . . . 4 ⊢ (𝜑 → ((𝐴 ∖ 𝐵) ∩ 𝐵) = ∅) |
12 | measun 34177 | . . . 4 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ((𝐴 ∖ 𝐵) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ ((𝐴 ∖ 𝐵) ∩ 𝐵) = ∅) → (𝑀‘((𝐴 ∖ 𝐵) ∪ 𝐵)) = ((𝑀‘(𝐴 ∖ 𝐵)) +𝑒 (𝑀‘𝐵))) | |
13 | 3, 9, 7, 11, 12 | syl121anc 1375 | . . 3 ⊢ (𝜑 → (𝑀‘((𝐴 ∖ 𝐵) ∪ 𝐵)) = ((𝑀‘(𝐴 ∖ 𝐵)) +𝑒 (𝑀‘𝐵))) |
14 | 2, 13 | eqtr3id 2794 | . 2 ⊢ (𝜑 → (𝑀‘(𝐴 ∪ 𝐵)) = ((𝑀‘(𝐴 ∖ 𝐵)) +𝑒 (𝑀‘𝐵))) |
15 | iccssxr 13492 | . . . 4 ⊢ (0[,]+∞) ⊆ ℝ* | |
16 | measvxrge0 34171 | . . . . 5 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∖ 𝐵) ∈ 𝑆) → (𝑀‘(𝐴 ∖ 𝐵)) ∈ (0[,]+∞)) | |
17 | 3, 9, 16 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (𝑀‘(𝐴 ∖ 𝐵)) ∈ (0[,]+∞)) |
18 | 15, 17 | sselid 4006 | . . 3 ⊢ (𝜑 → (𝑀‘(𝐴 ∖ 𝐵)) ∈ ℝ*) |
19 | measvxrge0 34171 | . . . . 5 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) → (𝑀‘𝐴) ∈ (0[,]+∞)) | |
20 | 3, 6, 19 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (𝑀‘𝐴) ∈ (0[,]+∞)) |
21 | 15, 20 | sselid 4006 | . . 3 ⊢ (𝜑 → (𝑀‘𝐴) ∈ ℝ*) |
22 | measvxrge0 34171 | . . . . 5 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐵 ∈ 𝑆) → (𝑀‘𝐵) ∈ (0[,]+∞)) | |
23 | 3, 7, 22 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (𝑀‘𝐵) ∈ (0[,]+∞)) |
24 | 15, 23 | sselid 4006 | . . 3 ⊢ (𝜑 → (𝑀‘𝐵) ∈ ℝ*) |
25 | inelsiga 34101 | . . . . . . . . 9 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴 ∩ 𝐵) ∈ 𝑆) | |
26 | 5, 6, 7, 25 | syl3anc 1371 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 ∩ 𝐵) ∈ 𝑆) |
27 | measvxrge0 34171 | . . . . . . . 8 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∩ 𝐵) ∈ 𝑆) → (𝑀‘(𝐴 ∩ 𝐵)) ∈ (0[,]+∞)) | |
28 | 3, 26, 27 | syl2anc 583 | . . . . . . 7 ⊢ (𝜑 → (𝑀‘(𝐴 ∩ 𝐵)) ∈ (0[,]+∞)) |
29 | elxrge0 13519 | . . . . . . 7 ⊢ ((𝑀‘(𝐴 ∩ 𝐵)) ∈ (0[,]+∞) ↔ ((𝑀‘(𝐴 ∩ 𝐵)) ∈ ℝ* ∧ 0 ≤ (𝑀‘(𝐴 ∩ 𝐵)))) | |
30 | 28, 29 | sylib 218 | . . . . . 6 ⊢ (𝜑 → ((𝑀‘(𝐴 ∩ 𝐵)) ∈ ℝ* ∧ 0 ≤ (𝑀‘(𝐴 ∩ 𝐵)))) |
31 | 30 | simprd 495 | . . . . 5 ⊢ (𝜑 → 0 ≤ (𝑀‘(𝐴 ∩ 𝐵))) |
32 | 15, 28 | sselid 4006 | . . . . . 6 ⊢ (𝜑 → (𝑀‘(𝐴 ∩ 𝐵)) ∈ ℝ*) |
33 | xraddge02 32765 | . . . . . 6 ⊢ (((𝑀‘(𝐴 ∖ 𝐵)) ∈ ℝ* ∧ (𝑀‘(𝐴 ∩ 𝐵)) ∈ ℝ*) → (0 ≤ (𝑀‘(𝐴 ∩ 𝐵)) → (𝑀‘(𝐴 ∖ 𝐵)) ≤ ((𝑀‘(𝐴 ∖ 𝐵)) +𝑒 (𝑀‘(𝐴 ∩ 𝐵))))) | |
34 | 18, 32, 33 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → (0 ≤ (𝑀‘(𝐴 ∩ 𝐵)) → (𝑀‘(𝐴 ∖ 𝐵)) ≤ ((𝑀‘(𝐴 ∖ 𝐵)) +𝑒 (𝑀‘(𝐴 ∩ 𝐵))))) |
35 | 31, 34 | mpd 15 | . . . 4 ⊢ (𝜑 → (𝑀‘(𝐴 ∖ 𝐵)) ≤ ((𝑀‘(𝐴 ∖ 𝐵)) +𝑒 (𝑀‘(𝐴 ∩ 𝐵)))) |
36 | uncom 4181 | . . . . . . 7 ⊢ ((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵)) = ((𝐴 ∖ 𝐵) ∪ (𝐴 ∩ 𝐵)) | |
37 | inundif 4502 | . . . . . . 7 ⊢ ((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵)) = 𝐴 | |
38 | 36, 37 | eqtr3i 2770 | . . . . . 6 ⊢ ((𝐴 ∖ 𝐵) ∪ (𝐴 ∩ 𝐵)) = 𝐴 |
39 | 38 | fveq2i 6925 | . . . . 5 ⊢ (𝑀‘((𝐴 ∖ 𝐵) ∪ (𝐴 ∩ 𝐵))) = (𝑀‘𝐴) |
40 | incom 4230 | . . . . . . . 8 ⊢ ((𝐴 ∩ 𝐵) ∩ (𝐴 ∖ 𝐵)) = ((𝐴 ∖ 𝐵) ∩ (𝐴 ∩ 𝐵)) | |
41 | inindif 32548 | . . . . . . . 8 ⊢ ((𝐴 ∩ 𝐵) ∩ (𝐴 ∖ 𝐵)) = ∅ | |
42 | 40, 41 | eqtr3i 2770 | . . . . . . 7 ⊢ ((𝐴 ∖ 𝐵) ∩ (𝐴 ∩ 𝐵)) = ∅ |
43 | 42 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ((𝐴 ∖ 𝐵) ∩ (𝐴 ∩ 𝐵)) = ∅) |
44 | measun 34177 | . . . . . 6 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ((𝐴 ∖ 𝐵) ∈ 𝑆 ∧ (𝐴 ∩ 𝐵) ∈ 𝑆) ∧ ((𝐴 ∖ 𝐵) ∩ (𝐴 ∩ 𝐵)) = ∅) → (𝑀‘((𝐴 ∖ 𝐵) ∪ (𝐴 ∩ 𝐵))) = ((𝑀‘(𝐴 ∖ 𝐵)) +𝑒 (𝑀‘(𝐴 ∩ 𝐵)))) | |
45 | 3, 9, 26, 43, 44 | syl121anc 1375 | . . . . 5 ⊢ (𝜑 → (𝑀‘((𝐴 ∖ 𝐵) ∪ (𝐴 ∩ 𝐵))) = ((𝑀‘(𝐴 ∖ 𝐵)) +𝑒 (𝑀‘(𝐴 ∩ 𝐵)))) |
46 | 39, 45 | eqtr3id 2794 | . . . 4 ⊢ (𝜑 → (𝑀‘𝐴) = ((𝑀‘(𝐴 ∖ 𝐵)) +𝑒 (𝑀‘(𝐴 ∩ 𝐵)))) |
47 | 35, 46 | breqtrrd 5194 | . . 3 ⊢ (𝜑 → (𝑀‘(𝐴 ∖ 𝐵)) ≤ (𝑀‘𝐴)) |
48 | xleadd1a 13317 | . . 3 ⊢ ((((𝑀‘(𝐴 ∖ 𝐵)) ∈ ℝ* ∧ (𝑀‘𝐴) ∈ ℝ* ∧ (𝑀‘𝐵) ∈ ℝ*) ∧ (𝑀‘(𝐴 ∖ 𝐵)) ≤ (𝑀‘𝐴)) → ((𝑀‘(𝐴 ∖ 𝐵)) +𝑒 (𝑀‘𝐵)) ≤ ((𝑀‘𝐴) +𝑒 (𝑀‘𝐵))) | |
49 | 18, 21, 24, 47, 48 | syl31anc 1373 | . 2 ⊢ (𝜑 → ((𝑀‘(𝐴 ∖ 𝐵)) +𝑒 (𝑀‘𝐵)) ≤ ((𝑀‘𝐴) +𝑒 (𝑀‘𝐵))) |
50 | 14, 49 | eqbrtrd 5188 | 1 ⊢ (𝜑 → (𝑀‘(𝐴 ∪ 𝐵)) ≤ ((𝑀‘𝐴) +𝑒 (𝑀‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∖ cdif 3973 ∪ cun 3974 ∩ cin 3975 ∅c0 4352 ∪ cuni 4931 class class class wbr 5166 ran crn 5701 ‘cfv 6575 (class class class)co 7450 0cc0 11186 +∞cpnf 11323 ℝ*cxr 11325 ≤ cle 11327 +𝑒 cxad 13175 [,]cicc 13412 sigAlgebracsiga 34074 measurescmeas 34161 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 ax-inf2 9712 ax-ac2 10534 ax-cnex 11242 ax-resscn 11243 ax-1cn 11244 ax-icn 11245 ax-addcl 11246 ax-addrcl 11247 ax-mulcl 11248 ax-mulrcl 11249 ax-mulcom 11250 ax-addass 11251 ax-mulass 11252 ax-distr 11253 ax-i2m1 11254 ax-1ne0 11255 ax-1rid 11256 ax-rnegex 11257 ax-rrecex 11258 ax-cnre 11259 ax-pre-lttri 11260 ax-pre-lttrn 11261 ax-pre-ltadd 11262 ax-pre-mulgt0 11263 ax-pre-sup 11264 ax-addf 11265 ax-mulf 11266 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-disj 5134 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6334 df-ord 6400 df-on 6401 df-lim 6402 df-suc 6403 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-isom 6584 df-riota 7406 df-ov 7453 df-oprab 7454 df-mpo 7455 df-of 7716 df-om 7906 df-1st 8032 df-2nd 8033 df-supp 8204 df-frecs 8324 df-wrecs 8355 df-recs 8429 df-rdg 8468 df-1o 8524 df-2o 8525 df-er 8765 df-map 8888 df-pm 8889 df-ixp 8958 df-en 9006 df-dom 9007 df-sdom 9008 df-fin 9009 df-fsupp 9434 df-fi 9482 df-sup 9513 df-inf 9514 df-oi 9581 df-dju 9972 df-card 10010 df-acn 10013 df-ac 10187 df-pnf 11328 df-mnf 11329 df-xr 11330 df-ltxr 11331 df-le 11332 df-sub 11524 df-neg 11525 df-div 11950 df-nn 12296 df-2 12358 df-3 12359 df-4 12360 df-5 12361 df-6 12362 df-7 12363 df-8 12364 df-9 12365 df-n0 12556 df-z 12642 df-dec 12761 df-uz 12906 df-q 13016 df-rp 13060 df-xneg 13177 df-xadd 13178 df-xmul 13179 df-ioo 13413 df-ioc 13414 df-ico 13415 df-icc 13416 df-fz 13570 df-fzo 13714 df-fl 13845 df-mod 13923 df-seq 14055 df-exp 14115 df-fac 14325 df-bc 14354 df-hash 14382 df-shft 15118 df-cj 15150 df-re 15151 df-im 15152 df-sqrt 15286 df-abs 15287 df-limsup 15519 df-clim 15536 df-rlim 15537 df-sum 15737 df-ef 16117 df-sin 16119 df-cos 16120 df-pi 16122 df-struct 17196 df-sets 17213 df-slot 17231 df-ndx 17243 df-base 17261 df-ress 17290 df-plusg 17326 df-mulr 17327 df-starv 17328 df-sca 17329 df-vsca 17330 df-ip 17331 df-tset 17332 df-ple 17333 df-ds 17335 df-unif 17336 df-hom 17337 df-cco 17338 df-rest 17484 df-topn 17485 df-0g 17503 df-gsum 17504 df-topgen 17505 df-pt 17506 df-prds 17509 df-ordt 17563 df-xrs 17564 df-qtop 17569 df-imas 17570 df-xps 17572 df-mre 17646 df-mrc 17647 df-acs 17649 df-ps 18638 df-tsr 18639 df-plusf 18679 df-mgm 18680 df-sgrp 18759 df-mnd 18775 df-mhm 18820 df-submnd 18821 df-grp 18978 df-minusg 18979 df-sbg 18980 df-mulg 19110 df-subg 19165 df-cntz 19359 df-cmn 19826 df-abl 19827 df-mgp 20164 df-rng 20182 df-ur 20211 df-ring 20264 df-cring 20265 df-subrng 20574 df-subrg 20599 df-abv 20834 df-lmod 20884 df-scaf 20885 df-sra 21197 df-rgmod 21198 df-psmet 21381 df-xmet 21382 df-met 21383 df-bl 21384 df-mopn 21385 df-fbas 21386 df-fg 21387 df-cnfld 21390 df-top 22923 df-topon 22940 df-topsp 22962 df-bases 22976 df-cld 23050 df-ntr 23051 df-cls 23052 df-nei 23129 df-lp 23167 df-perf 23168 df-cn 23258 df-cnp 23259 df-haus 23346 df-tx 23593 df-hmeo 23786 df-fil 23877 df-fm 23969 df-flim 23970 df-flf 23971 df-tmd 24103 df-tgp 24104 df-tsms 24158 df-trg 24191 df-xms 24353 df-ms 24354 df-tms 24355 df-nm 24618 df-ngp 24619 df-nrg 24621 df-nlm 24622 df-ii 24924 df-cncf 24925 df-limc 25923 df-dv 25924 df-log 26618 df-esum 33994 df-siga 34075 df-meas 34162 |
This theorem is referenced by: aean 34210 |
Copyright terms: Public domain | W3C validator |