Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > measunl | Structured version Visualization version GIF version |
Description: A measure is sub-additive with respect to union. (Contributed by Thierry Arnoux, 20-Oct-2017.) |
Ref | Expression |
---|---|
measunl.1 | ⊢ (𝜑 → 𝑀 ∈ (measures‘𝑆)) |
measunl.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
measunl.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑆) |
Ref | Expression |
---|---|
measunl | ⊢ (𝜑 → (𝑀‘(𝐴 ∪ 𝐵)) ≤ ((𝑀‘𝐴) +𝑒 (𝑀‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | undif1 4409 | . . . 4 ⊢ ((𝐴 ∖ 𝐵) ∪ 𝐵) = (𝐴 ∪ 𝐵) | |
2 | 1 | fveq2i 6777 | . . 3 ⊢ (𝑀‘((𝐴 ∖ 𝐵) ∪ 𝐵)) = (𝑀‘(𝐴 ∪ 𝐵)) |
3 | measunl.1 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ (measures‘𝑆)) | |
4 | measbase 32165 | . . . . . 6 ⊢ (𝑀 ∈ (measures‘𝑆) → 𝑆 ∈ ∪ ran sigAlgebra) | |
5 | 3, 4 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) |
6 | measunl.2 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
7 | measunl.3 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑆) | |
8 | difelsiga 32101 | . . . . 5 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴 ∖ 𝐵) ∈ 𝑆) | |
9 | 5, 6, 7, 8 | syl3anc 1370 | . . . 4 ⊢ (𝜑 → (𝐴 ∖ 𝐵) ∈ 𝑆) |
10 | disjdifr 4406 | . . . . 5 ⊢ ((𝐴 ∖ 𝐵) ∩ 𝐵) = ∅ | |
11 | 10 | a1i 11 | . . . 4 ⊢ (𝜑 → ((𝐴 ∖ 𝐵) ∩ 𝐵) = ∅) |
12 | measun 32179 | . . . 4 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ((𝐴 ∖ 𝐵) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ ((𝐴 ∖ 𝐵) ∩ 𝐵) = ∅) → (𝑀‘((𝐴 ∖ 𝐵) ∪ 𝐵)) = ((𝑀‘(𝐴 ∖ 𝐵)) +𝑒 (𝑀‘𝐵))) | |
13 | 3, 9, 7, 11, 12 | syl121anc 1374 | . . 3 ⊢ (𝜑 → (𝑀‘((𝐴 ∖ 𝐵) ∪ 𝐵)) = ((𝑀‘(𝐴 ∖ 𝐵)) +𝑒 (𝑀‘𝐵))) |
14 | 2, 13 | eqtr3id 2792 | . 2 ⊢ (𝜑 → (𝑀‘(𝐴 ∪ 𝐵)) = ((𝑀‘(𝐴 ∖ 𝐵)) +𝑒 (𝑀‘𝐵))) |
15 | iccssxr 13162 | . . . 4 ⊢ (0[,]+∞) ⊆ ℝ* | |
16 | measvxrge0 32173 | . . . . 5 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∖ 𝐵) ∈ 𝑆) → (𝑀‘(𝐴 ∖ 𝐵)) ∈ (0[,]+∞)) | |
17 | 3, 9, 16 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑀‘(𝐴 ∖ 𝐵)) ∈ (0[,]+∞)) |
18 | 15, 17 | sselid 3919 | . . 3 ⊢ (𝜑 → (𝑀‘(𝐴 ∖ 𝐵)) ∈ ℝ*) |
19 | measvxrge0 32173 | . . . . 5 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) → (𝑀‘𝐴) ∈ (0[,]+∞)) | |
20 | 3, 6, 19 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑀‘𝐴) ∈ (0[,]+∞)) |
21 | 15, 20 | sselid 3919 | . . 3 ⊢ (𝜑 → (𝑀‘𝐴) ∈ ℝ*) |
22 | measvxrge0 32173 | . . . . 5 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐵 ∈ 𝑆) → (𝑀‘𝐵) ∈ (0[,]+∞)) | |
23 | 3, 7, 22 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑀‘𝐵) ∈ (0[,]+∞)) |
24 | 15, 23 | sselid 3919 | . . 3 ⊢ (𝜑 → (𝑀‘𝐵) ∈ ℝ*) |
25 | inelsiga 32103 | . . . . . . . . 9 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴 ∩ 𝐵) ∈ 𝑆) | |
26 | 5, 6, 7, 25 | syl3anc 1370 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 ∩ 𝐵) ∈ 𝑆) |
27 | measvxrge0 32173 | . . . . . . . 8 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∩ 𝐵) ∈ 𝑆) → (𝑀‘(𝐴 ∩ 𝐵)) ∈ (0[,]+∞)) | |
28 | 3, 26, 27 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → (𝑀‘(𝐴 ∩ 𝐵)) ∈ (0[,]+∞)) |
29 | elxrge0 13189 | . . . . . . 7 ⊢ ((𝑀‘(𝐴 ∩ 𝐵)) ∈ (0[,]+∞) ↔ ((𝑀‘(𝐴 ∩ 𝐵)) ∈ ℝ* ∧ 0 ≤ (𝑀‘(𝐴 ∩ 𝐵)))) | |
30 | 28, 29 | sylib 217 | . . . . . 6 ⊢ (𝜑 → ((𝑀‘(𝐴 ∩ 𝐵)) ∈ ℝ* ∧ 0 ≤ (𝑀‘(𝐴 ∩ 𝐵)))) |
31 | 30 | simprd 496 | . . . . 5 ⊢ (𝜑 → 0 ≤ (𝑀‘(𝐴 ∩ 𝐵))) |
32 | 15, 28 | sselid 3919 | . . . . . 6 ⊢ (𝜑 → (𝑀‘(𝐴 ∩ 𝐵)) ∈ ℝ*) |
33 | xraddge02 31079 | . . . . . 6 ⊢ (((𝑀‘(𝐴 ∖ 𝐵)) ∈ ℝ* ∧ (𝑀‘(𝐴 ∩ 𝐵)) ∈ ℝ*) → (0 ≤ (𝑀‘(𝐴 ∩ 𝐵)) → (𝑀‘(𝐴 ∖ 𝐵)) ≤ ((𝑀‘(𝐴 ∖ 𝐵)) +𝑒 (𝑀‘(𝐴 ∩ 𝐵))))) | |
34 | 18, 32, 33 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (0 ≤ (𝑀‘(𝐴 ∩ 𝐵)) → (𝑀‘(𝐴 ∖ 𝐵)) ≤ ((𝑀‘(𝐴 ∖ 𝐵)) +𝑒 (𝑀‘(𝐴 ∩ 𝐵))))) |
35 | 31, 34 | mpd 15 | . . . 4 ⊢ (𝜑 → (𝑀‘(𝐴 ∖ 𝐵)) ≤ ((𝑀‘(𝐴 ∖ 𝐵)) +𝑒 (𝑀‘(𝐴 ∩ 𝐵)))) |
36 | uncom 4087 | . . . . . . 7 ⊢ ((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵)) = ((𝐴 ∖ 𝐵) ∪ (𝐴 ∩ 𝐵)) | |
37 | inundif 4412 | . . . . . . 7 ⊢ ((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵)) = 𝐴 | |
38 | 36, 37 | eqtr3i 2768 | . . . . . 6 ⊢ ((𝐴 ∖ 𝐵) ∪ (𝐴 ∩ 𝐵)) = 𝐴 |
39 | 38 | fveq2i 6777 | . . . . 5 ⊢ (𝑀‘((𝐴 ∖ 𝐵) ∪ (𝐴 ∩ 𝐵))) = (𝑀‘𝐴) |
40 | incom 4135 | . . . . . . . 8 ⊢ ((𝐴 ∩ 𝐵) ∩ (𝐴 ∖ 𝐵)) = ((𝐴 ∖ 𝐵) ∩ (𝐴 ∩ 𝐵)) | |
41 | inindif 30863 | . . . . . . . 8 ⊢ ((𝐴 ∩ 𝐵) ∩ (𝐴 ∖ 𝐵)) = ∅ | |
42 | 40, 41 | eqtr3i 2768 | . . . . . . 7 ⊢ ((𝐴 ∖ 𝐵) ∩ (𝐴 ∩ 𝐵)) = ∅ |
43 | 42 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ((𝐴 ∖ 𝐵) ∩ (𝐴 ∩ 𝐵)) = ∅) |
44 | measun 32179 | . . . . . 6 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ((𝐴 ∖ 𝐵) ∈ 𝑆 ∧ (𝐴 ∩ 𝐵) ∈ 𝑆) ∧ ((𝐴 ∖ 𝐵) ∩ (𝐴 ∩ 𝐵)) = ∅) → (𝑀‘((𝐴 ∖ 𝐵) ∪ (𝐴 ∩ 𝐵))) = ((𝑀‘(𝐴 ∖ 𝐵)) +𝑒 (𝑀‘(𝐴 ∩ 𝐵)))) | |
45 | 3, 9, 26, 43, 44 | syl121anc 1374 | . . . . 5 ⊢ (𝜑 → (𝑀‘((𝐴 ∖ 𝐵) ∪ (𝐴 ∩ 𝐵))) = ((𝑀‘(𝐴 ∖ 𝐵)) +𝑒 (𝑀‘(𝐴 ∩ 𝐵)))) |
46 | 39, 45 | eqtr3id 2792 | . . . 4 ⊢ (𝜑 → (𝑀‘𝐴) = ((𝑀‘(𝐴 ∖ 𝐵)) +𝑒 (𝑀‘(𝐴 ∩ 𝐵)))) |
47 | 35, 46 | breqtrrd 5102 | . . 3 ⊢ (𝜑 → (𝑀‘(𝐴 ∖ 𝐵)) ≤ (𝑀‘𝐴)) |
48 | xleadd1a 12987 | . . 3 ⊢ ((((𝑀‘(𝐴 ∖ 𝐵)) ∈ ℝ* ∧ (𝑀‘𝐴) ∈ ℝ* ∧ (𝑀‘𝐵) ∈ ℝ*) ∧ (𝑀‘(𝐴 ∖ 𝐵)) ≤ (𝑀‘𝐴)) → ((𝑀‘(𝐴 ∖ 𝐵)) +𝑒 (𝑀‘𝐵)) ≤ ((𝑀‘𝐴) +𝑒 (𝑀‘𝐵))) | |
49 | 18, 21, 24, 47, 48 | syl31anc 1372 | . 2 ⊢ (𝜑 → ((𝑀‘(𝐴 ∖ 𝐵)) +𝑒 (𝑀‘𝐵)) ≤ ((𝑀‘𝐴) +𝑒 (𝑀‘𝐵))) |
50 | 14, 49 | eqbrtrd 5096 | 1 ⊢ (𝜑 → (𝑀‘(𝐴 ∪ 𝐵)) ≤ ((𝑀‘𝐴) +𝑒 (𝑀‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∖ cdif 3884 ∪ cun 3885 ∩ cin 3886 ∅c0 4256 ∪ cuni 4839 class class class wbr 5074 ran crn 5590 ‘cfv 6433 (class class class)co 7275 0cc0 10871 +∞cpnf 11006 ℝ*cxr 11008 ≤ cle 11010 +𝑒 cxad 12846 [,]cicc 13082 sigAlgebracsiga 32076 measurescmeas 32163 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-ac2 10219 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 ax-addf 10950 ax-mulf 10951 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-disj 5040 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-er 8498 df-map 8617 df-pm 8618 df-ixp 8686 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fsupp 9129 df-fi 9170 df-sup 9201 df-inf 9202 df-oi 9269 df-dju 9659 df-card 9697 df-acn 9700 df-ac 9872 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-q 12689 df-rp 12731 df-xneg 12848 df-xadd 12849 df-xmul 12850 df-ioo 13083 df-ioc 13084 df-ico 13085 df-icc 13086 df-fz 13240 df-fzo 13383 df-fl 13512 df-mod 13590 df-seq 13722 df-exp 13783 df-fac 13988 df-bc 14017 df-hash 14045 df-shft 14778 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-limsup 15180 df-clim 15197 df-rlim 15198 df-sum 15398 df-ef 15777 df-sin 15779 df-cos 15780 df-pi 15782 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-starv 16977 df-sca 16978 df-vsca 16979 df-ip 16980 df-tset 16981 df-ple 16982 df-ds 16984 df-unif 16985 df-hom 16986 df-cco 16987 df-rest 17133 df-topn 17134 df-0g 17152 df-gsum 17153 df-topgen 17154 df-pt 17155 df-prds 17158 df-ordt 17212 df-xrs 17213 df-qtop 17218 df-imas 17219 df-xps 17221 df-mre 17295 df-mrc 17296 df-acs 17298 df-ps 18284 df-tsr 18285 df-plusf 18325 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-mhm 18430 df-submnd 18431 df-grp 18580 df-minusg 18581 df-sbg 18582 df-mulg 18701 df-subg 18752 df-cntz 18923 df-cmn 19388 df-abl 19389 df-mgp 19721 df-ur 19738 df-ring 19785 df-cring 19786 df-subrg 20022 df-abv 20077 df-lmod 20125 df-scaf 20126 df-sra 20434 df-rgmod 20435 df-psmet 20589 df-xmet 20590 df-met 20591 df-bl 20592 df-mopn 20593 df-fbas 20594 df-fg 20595 df-cnfld 20598 df-top 22043 df-topon 22060 df-topsp 22082 df-bases 22096 df-cld 22170 df-ntr 22171 df-cls 22172 df-nei 22249 df-lp 22287 df-perf 22288 df-cn 22378 df-cnp 22379 df-haus 22466 df-tx 22713 df-hmeo 22906 df-fil 22997 df-fm 23089 df-flim 23090 df-flf 23091 df-tmd 23223 df-tgp 23224 df-tsms 23278 df-trg 23311 df-xms 23473 df-ms 23474 df-tms 23475 df-nm 23738 df-ngp 23739 df-nrg 23741 df-nlm 23742 df-ii 24040 df-cncf 24041 df-limc 25030 df-dv 25031 df-log 25712 df-esum 31996 df-siga 32077 df-meas 32164 |
This theorem is referenced by: aean 32212 |
Copyright terms: Public domain | W3C validator |