Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  measunl Structured version   Visualization version   GIF version

Theorem measunl 31477
Description: A measure is sub-additive with respect to union. (Contributed by Thierry Arnoux, 20-Oct-2017.)
Hypotheses
Ref Expression
measunl.1 (𝜑𝑀 ∈ (measures‘𝑆))
measunl.2 (𝜑𝐴𝑆)
measunl.3 (𝜑𝐵𝑆)
Assertion
Ref Expression
measunl (𝜑 → (𝑀‘(𝐴𝐵)) ≤ ((𝑀𝐴) +𝑒 (𝑀𝐵)))

Proof of Theorem measunl
StepHypRef Expression
1 undif1 4426 . . . 4 ((𝐴𝐵) ∪ 𝐵) = (𝐴𝐵)
21fveq2i 6675 . . 3 (𝑀‘((𝐴𝐵) ∪ 𝐵)) = (𝑀‘(𝐴𝐵))
3 measunl.1 . . . 4 (𝜑𝑀 ∈ (measures‘𝑆))
4 measbase 31458 . . . . . 6 (𝑀 ∈ (measures‘𝑆) → 𝑆 ran sigAlgebra)
53, 4syl 17 . . . . 5 (𝜑𝑆 ran sigAlgebra)
6 measunl.2 . . . . 5 (𝜑𝐴𝑆)
7 measunl.3 . . . . 5 (𝜑𝐵𝑆)
8 difelsiga 31394 . . . . 5 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → (𝐴𝐵) ∈ 𝑆)
95, 6, 7, 8syl3anc 1367 . . . 4 (𝜑 → (𝐴𝐵) ∈ 𝑆)
10 incom 4180 . . . . . 6 (𝐵 ∩ (𝐴𝐵)) = ((𝐴𝐵) ∩ 𝐵)
11 disjdif 4423 . . . . . 6 (𝐵 ∩ (𝐴𝐵)) = ∅
1210, 11eqtr3i 2848 . . . . 5 ((𝐴𝐵) ∩ 𝐵) = ∅
1312a1i 11 . . . 4 (𝜑 → ((𝐴𝐵) ∩ 𝐵) = ∅)
14 measun 31472 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ((𝐴𝐵) ∈ 𝑆𝐵𝑆) ∧ ((𝐴𝐵) ∩ 𝐵) = ∅) → (𝑀‘((𝐴𝐵) ∪ 𝐵)) = ((𝑀‘(𝐴𝐵)) +𝑒 (𝑀𝐵)))
153, 9, 7, 13, 14syl121anc 1371 . . 3 (𝜑 → (𝑀‘((𝐴𝐵) ∪ 𝐵)) = ((𝑀‘(𝐴𝐵)) +𝑒 (𝑀𝐵)))
162, 15syl5eqr 2872 . 2 (𝜑 → (𝑀‘(𝐴𝐵)) = ((𝑀‘(𝐴𝐵)) +𝑒 (𝑀𝐵)))
17 iccssxr 12822 . . . 4 (0[,]+∞) ⊆ ℝ*
18 measvxrge0 31466 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝐵) ∈ 𝑆) → (𝑀‘(𝐴𝐵)) ∈ (0[,]+∞))
193, 9, 18syl2anc 586 . . . 4 (𝜑 → (𝑀‘(𝐴𝐵)) ∈ (0[,]+∞))
2017, 19sseldi 3967 . . 3 (𝜑 → (𝑀‘(𝐴𝐵)) ∈ ℝ*)
21 measvxrge0 31466 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) → (𝑀𝐴) ∈ (0[,]+∞))
223, 6, 21syl2anc 586 . . . 4 (𝜑 → (𝑀𝐴) ∈ (0[,]+∞))
2317, 22sseldi 3967 . . 3 (𝜑 → (𝑀𝐴) ∈ ℝ*)
24 measvxrge0 31466 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐵𝑆) → (𝑀𝐵) ∈ (0[,]+∞))
253, 7, 24syl2anc 586 . . . 4 (𝜑 → (𝑀𝐵) ∈ (0[,]+∞))
2617, 25sseldi 3967 . . 3 (𝜑 → (𝑀𝐵) ∈ ℝ*)
27 inelsiga 31396 . . . . . . . . 9 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → (𝐴𝐵) ∈ 𝑆)
285, 6, 7, 27syl3anc 1367 . . . . . . . 8 (𝜑 → (𝐴𝐵) ∈ 𝑆)
29 measvxrge0 31466 . . . . . . . 8 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝐵) ∈ 𝑆) → (𝑀‘(𝐴𝐵)) ∈ (0[,]+∞))
303, 28, 29syl2anc 586 . . . . . . 7 (𝜑 → (𝑀‘(𝐴𝐵)) ∈ (0[,]+∞))
31 elxrge0 12848 . . . . . . 7 ((𝑀‘(𝐴𝐵)) ∈ (0[,]+∞) ↔ ((𝑀‘(𝐴𝐵)) ∈ ℝ* ∧ 0 ≤ (𝑀‘(𝐴𝐵))))
3230, 31sylib 220 . . . . . 6 (𝜑 → ((𝑀‘(𝐴𝐵)) ∈ ℝ* ∧ 0 ≤ (𝑀‘(𝐴𝐵))))
3332simprd 498 . . . . 5 (𝜑 → 0 ≤ (𝑀‘(𝐴𝐵)))
3417, 30sseldi 3967 . . . . . 6 (𝜑 → (𝑀‘(𝐴𝐵)) ∈ ℝ*)
35 xraddge02 30482 . . . . . 6 (((𝑀‘(𝐴𝐵)) ∈ ℝ* ∧ (𝑀‘(𝐴𝐵)) ∈ ℝ*) → (0 ≤ (𝑀‘(𝐴𝐵)) → (𝑀‘(𝐴𝐵)) ≤ ((𝑀‘(𝐴𝐵)) +𝑒 (𝑀‘(𝐴𝐵)))))
3620, 34, 35syl2anc 586 . . . . 5 (𝜑 → (0 ≤ (𝑀‘(𝐴𝐵)) → (𝑀‘(𝐴𝐵)) ≤ ((𝑀‘(𝐴𝐵)) +𝑒 (𝑀‘(𝐴𝐵)))))
3733, 36mpd 15 . . . 4 (𝜑 → (𝑀‘(𝐴𝐵)) ≤ ((𝑀‘(𝐴𝐵)) +𝑒 (𝑀‘(𝐴𝐵))))
38 uncom 4131 . . . . . . 7 ((𝐴𝐵) ∪ (𝐴𝐵)) = ((𝐴𝐵) ∪ (𝐴𝐵))
39 inundif 4429 . . . . . . 7 ((𝐴𝐵) ∪ (𝐴𝐵)) = 𝐴
4038, 39eqtr3i 2848 . . . . . 6 ((𝐴𝐵) ∪ (𝐴𝐵)) = 𝐴
4140fveq2i 6675 . . . . 5 (𝑀‘((𝐴𝐵) ∪ (𝐴𝐵))) = (𝑀𝐴)
42 incom 4180 . . . . . . . 8 ((𝐴𝐵) ∩ (𝐴𝐵)) = ((𝐴𝐵) ∩ (𝐴𝐵))
43 inindif 30280 . . . . . . . 8 ((𝐴𝐵) ∩ (𝐴𝐵)) = ∅
4442, 43eqtr3i 2848 . . . . . . 7 ((𝐴𝐵) ∩ (𝐴𝐵)) = ∅
4544a1i 11 . . . . . 6 (𝜑 → ((𝐴𝐵) ∩ (𝐴𝐵)) = ∅)
46 measun 31472 . . . . . 6 ((𝑀 ∈ (measures‘𝑆) ∧ ((𝐴𝐵) ∈ 𝑆 ∧ (𝐴𝐵) ∈ 𝑆) ∧ ((𝐴𝐵) ∩ (𝐴𝐵)) = ∅) → (𝑀‘((𝐴𝐵) ∪ (𝐴𝐵))) = ((𝑀‘(𝐴𝐵)) +𝑒 (𝑀‘(𝐴𝐵))))
473, 9, 28, 45, 46syl121anc 1371 . . . . 5 (𝜑 → (𝑀‘((𝐴𝐵) ∪ (𝐴𝐵))) = ((𝑀‘(𝐴𝐵)) +𝑒 (𝑀‘(𝐴𝐵))))
4841, 47syl5eqr 2872 . . . 4 (𝜑 → (𝑀𝐴) = ((𝑀‘(𝐴𝐵)) +𝑒 (𝑀‘(𝐴𝐵))))
4937, 48breqtrrd 5096 . . 3 (𝜑 → (𝑀‘(𝐴𝐵)) ≤ (𝑀𝐴))
50 xleadd1a 12649 . . 3 ((((𝑀‘(𝐴𝐵)) ∈ ℝ* ∧ (𝑀𝐴) ∈ ℝ* ∧ (𝑀𝐵) ∈ ℝ*) ∧ (𝑀‘(𝐴𝐵)) ≤ (𝑀𝐴)) → ((𝑀‘(𝐴𝐵)) +𝑒 (𝑀𝐵)) ≤ ((𝑀𝐴) +𝑒 (𝑀𝐵)))
5120, 23, 26, 49, 50syl31anc 1369 . 2 (𝜑 → ((𝑀‘(𝐴𝐵)) +𝑒 (𝑀𝐵)) ≤ ((𝑀𝐴) +𝑒 (𝑀𝐵)))
5216, 51eqbrtrd 5090 1 (𝜑 → (𝑀‘(𝐴𝐵)) ≤ ((𝑀𝐴) +𝑒 (𝑀𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  cdif 3935  cun 3936  cin 3937  c0 4293   cuni 4840   class class class wbr 5068  ran crn 5558  cfv 6357  (class class class)co 7158  0cc0 10539  +∞cpnf 10674  *cxr 10676  cle 10678   +𝑒 cxad 12508  [,]cicc 12744  sigAlgebracsiga 31369  measurescmeas 31456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-ac2 9887  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-disj 5034  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-dju 9332  df-card 9370  df-acn 9373  df-ac 9544  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ioc 12746  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-fac 13637  df-bc 13666  df-hash 13694  df-shft 14428  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-limsup 14830  df-clim 14847  df-rlim 14848  df-sum 15045  df-ef 15423  df-sin 15425  df-cos 15426  df-pi 15428  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-hom 16591  df-cco 16592  df-rest 16698  df-topn 16699  df-0g 16717  df-gsum 16718  df-topgen 16719  df-pt 16720  df-prds 16723  df-ordt 16776  df-xrs 16777  df-qtop 16782  df-imas 16783  df-xps 16785  df-mre 16859  df-mrc 16860  df-acs 16862  df-ps 17812  df-tsr 17813  df-plusf 17853  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-mhm 17958  df-submnd 17959  df-grp 18108  df-minusg 18109  df-sbg 18110  df-mulg 18227  df-subg 18278  df-cntz 18449  df-cmn 18910  df-abl 18911  df-mgp 19242  df-ur 19254  df-ring 19301  df-cring 19302  df-subrg 19535  df-abv 19590  df-lmod 19638  df-scaf 19639  df-sra 19946  df-rgmod 19947  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-fbas 20544  df-fg 20545  df-cnfld 20548  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-cld 21629  df-ntr 21630  df-cls 21631  df-nei 21708  df-lp 21746  df-perf 21747  df-cn 21837  df-cnp 21838  df-haus 21925  df-tx 22172  df-hmeo 22365  df-fil 22456  df-fm 22548  df-flim 22549  df-flf 22550  df-tmd 22682  df-tgp 22683  df-tsms 22737  df-trg 22770  df-xms 22932  df-ms 22933  df-tms 22934  df-nm 23194  df-ngp 23195  df-nrg 23197  df-nlm 23198  df-ii 23487  df-cncf 23488  df-limc 24466  df-dv 24467  df-log 25142  df-esum 31289  df-siga 31370  df-meas 31457
This theorem is referenced by:  aean  31505
  Copyright terms: Public domain W3C validator