Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  measunl Structured version   Visualization version   GIF version

Theorem measunl 31361
Description: A measure is sub-additive with respect to union. (Contributed by Thierry Arnoux, 20-Oct-2017.)
Hypotheses
Ref Expression
measunl.1 (𝜑𝑀 ∈ (measures‘𝑆))
measunl.2 (𝜑𝐴𝑆)
measunl.3 (𝜑𝐵𝑆)
Assertion
Ref Expression
measunl (𝜑 → (𝑀‘(𝐴𝐵)) ≤ ((𝑀𝐴) +𝑒 (𝑀𝐵)))

Proof of Theorem measunl
StepHypRef Expression
1 undif1 4426 . . . 4 ((𝐴𝐵) ∪ 𝐵) = (𝐴𝐵)
21fveq2i 6669 . . 3 (𝑀‘((𝐴𝐵) ∪ 𝐵)) = (𝑀‘(𝐴𝐵))
3 measunl.1 . . . 4 (𝜑𝑀 ∈ (measures‘𝑆))
4 measbase 31342 . . . . . 6 (𝑀 ∈ (measures‘𝑆) → 𝑆 ran sigAlgebra)
53, 4syl 17 . . . . 5 (𝜑𝑆 ran sigAlgebra)
6 measunl.2 . . . . 5 (𝜑𝐴𝑆)
7 measunl.3 . . . . 5 (𝜑𝐵𝑆)
8 difelsiga 31278 . . . . 5 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → (𝐴𝐵) ∈ 𝑆)
95, 6, 7, 8syl3anc 1365 . . . 4 (𝜑 → (𝐴𝐵) ∈ 𝑆)
10 incom 4181 . . . . . 6 (𝐵 ∩ (𝐴𝐵)) = ((𝐴𝐵) ∩ 𝐵)
11 disjdif 4423 . . . . . 6 (𝐵 ∩ (𝐴𝐵)) = ∅
1210, 11eqtr3i 2850 . . . . 5 ((𝐴𝐵) ∩ 𝐵) = ∅
1312a1i 11 . . . 4 (𝜑 → ((𝐴𝐵) ∩ 𝐵) = ∅)
14 measun 31356 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ((𝐴𝐵) ∈ 𝑆𝐵𝑆) ∧ ((𝐴𝐵) ∩ 𝐵) = ∅) → (𝑀‘((𝐴𝐵) ∪ 𝐵)) = ((𝑀‘(𝐴𝐵)) +𝑒 (𝑀𝐵)))
153, 9, 7, 13, 14syl121anc 1369 . . 3 (𝜑 → (𝑀‘((𝐴𝐵) ∪ 𝐵)) = ((𝑀‘(𝐴𝐵)) +𝑒 (𝑀𝐵)))
162, 15syl5eqr 2874 . 2 (𝜑 → (𝑀‘(𝐴𝐵)) = ((𝑀‘(𝐴𝐵)) +𝑒 (𝑀𝐵)))
17 iccssxr 12812 . . . 4 (0[,]+∞) ⊆ ℝ*
18 measvxrge0 31350 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝐵) ∈ 𝑆) → (𝑀‘(𝐴𝐵)) ∈ (0[,]+∞))
193, 9, 18syl2anc 584 . . . 4 (𝜑 → (𝑀‘(𝐴𝐵)) ∈ (0[,]+∞))
2017, 19sseldi 3968 . . 3 (𝜑 → (𝑀‘(𝐴𝐵)) ∈ ℝ*)
21 measvxrge0 31350 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) → (𝑀𝐴) ∈ (0[,]+∞))
223, 6, 21syl2anc 584 . . . 4 (𝜑 → (𝑀𝐴) ∈ (0[,]+∞))
2317, 22sseldi 3968 . . 3 (𝜑 → (𝑀𝐴) ∈ ℝ*)
24 measvxrge0 31350 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐵𝑆) → (𝑀𝐵) ∈ (0[,]+∞))
253, 7, 24syl2anc 584 . . . 4 (𝜑 → (𝑀𝐵) ∈ (0[,]+∞))
2617, 25sseldi 3968 . . 3 (𝜑 → (𝑀𝐵) ∈ ℝ*)
27 inelsiga 31280 . . . . . . . . 9 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → (𝐴𝐵) ∈ 𝑆)
285, 6, 7, 27syl3anc 1365 . . . . . . . 8 (𝜑 → (𝐴𝐵) ∈ 𝑆)
29 measvxrge0 31350 . . . . . . . 8 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝐵) ∈ 𝑆) → (𝑀‘(𝐴𝐵)) ∈ (0[,]+∞))
303, 28, 29syl2anc 584 . . . . . . 7 (𝜑 → (𝑀‘(𝐴𝐵)) ∈ (0[,]+∞))
31 elxrge0 12838 . . . . . . 7 ((𝑀‘(𝐴𝐵)) ∈ (0[,]+∞) ↔ ((𝑀‘(𝐴𝐵)) ∈ ℝ* ∧ 0 ≤ (𝑀‘(𝐴𝐵))))
3230, 31sylib 219 . . . . . 6 (𝜑 → ((𝑀‘(𝐴𝐵)) ∈ ℝ* ∧ 0 ≤ (𝑀‘(𝐴𝐵))))
3332simprd 496 . . . . 5 (𝜑 → 0 ≤ (𝑀‘(𝐴𝐵)))
3417, 30sseldi 3968 . . . . . 6 (𝜑 → (𝑀‘(𝐴𝐵)) ∈ ℝ*)
35 xraddge02 30393 . . . . . 6 (((𝑀‘(𝐴𝐵)) ∈ ℝ* ∧ (𝑀‘(𝐴𝐵)) ∈ ℝ*) → (0 ≤ (𝑀‘(𝐴𝐵)) → (𝑀‘(𝐴𝐵)) ≤ ((𝑀‘(𝐴𝐵)) +𝑒 (𝑀‘(𝐴𝐵)))))
3620, 34, 35syl2anc 584 . . . . 5 (𝜑 → (0 ≤ (𝑀‘(𝐴𝐵)) → (𝑀‘(𝐴𝐵)) ≤ ((𝑀‘(𝐴𝐵)) +𝑒 (𝑀‘(𝐴𝐵)))))
3733, 36mpd 15 . . . 4 (𝜑 → (𝑀‘(𝐴𝐵)) ≤ ((𝑀‘(𝐴𝐵)) +𝑒 (𝑀‘(𝐴𝐵))))
38 uncom 4132 . . . . . . 7 ((𝐴𝐵) ∪ (𝐴𝐵)) = ((𝐴𝐵) ∪ (𝐴𝐵))
39 inundif 4429 . . . . . . 7 ((𝐴𝐵) ∪ (𝐴𝐵)) = 𝐴
4038, 39eqtr3i 2850 . . . . . 6 ((𝐴𝐵) ∪ (𝐴𝐵)) = 𝐴
4140fveq2i 6669 . . . . 5 (𝑀‘((𝐴𝐵) ∪ (𝐴𝐵))) = (𝑀𝐴)
42 incom 4181 . . . . . . . 8 ((𝐴𝐵) ∩ (𝐴𝐵)) = ((𝐴𝐵) ∩ (𝐴𝐵))
43 inindif 30192 . . . . . . . 8 ((𝐴𝐵) ∩ (𝐴𝐵)) = ∅
4442, 43eqtr3i 2850 . . . . . . 7 ((𝐴𝐵) ∩ (𝐴𝐵)) = ∅
4544a1i 11 . . . . . 6 (𝜑 → ((𝐴𝐵) ∩ (𝐴𝐵)) = ∅)
46 measun 31356 . . . . . 6 ((𝑀 ∈ (measures‘𝑆) ∧ ((𝐴𝐵) ∈ 𝑆 ∧ (𝐴𝐵) ∈ 𝑆) ∧ ((𝐴𝐵) ∩ (𝐴𝐵)) = ∅) → (𝑀‘((𝐴𝐵) ∪ (𝐴𝐵))) = ((𝑀‘(𝐴𝐵)) +𝑒 (𝑀‘(𝐴𝐵))))
473, 9, 28, 45, 46syl121anc 1369 . . . . 5 (𝜑 → (𝑀‘((𝐴𝐵) ∪ (𝐴𝐵))) = ((𝑀‘(𝐴𝐵)) +𝑒 (𝑀‘(𝐴𝐵))))
4841, 47syl5eqr 2874 . . . 4 (𝜑 → (𝑀𝐴) = ((𝑀‘(𝐴𝐵)) +𝑒 (𝑀‘(𝐴𝐵))))
4937, 48breqtrrd 5090 . . 3 (𝜑 → (𝑀‘(𝐴𝐵)) ≤ (𝑀𝐴))
50 xleadd1a 12639 . . 3 ((((𝑀‘(𝐴𝐵)) ∈ ℝ* ∧ (𝑀𝐴) ∈ ℝ* ∧ (𝑀𝐵) ∈ ℝ*) ∧ (𝑀‘(𝐴𝐵)) ≤ (𝑀𝐴)) → ((𝑀‘(𝐴𝐵)) +𝑒 (𝑀𝐵)) ≤ ((𝑀𝐴) +𝑒 (𝑀𝐵)))
5120, 23, 26, 49, 50syl31anc 1367 . 2 (𝜑 → ((𝑀‘(𝐴𝐵)) +𝑒 (𝑀𝐵)) ≤ ((𝑀𝐴) +𝑒 (𝑀𝐵)))
5216, 51eqbrtrd 5084 1 (𝜑 → (𝑀‘(𝐴𝐵)) ≤ ((𝑀𝐴) +𝑒 (𝑀𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1530  wcel 2107  cdif 3936  cun 3937  cin 3938  c0 4294   cuni 4836   class class class wbr 5062  ran crn 5554  cfv 6351  (class class class)co 7151  0cc0 10529  +∞cpnf 10664  *cxr 10666  cle 10668   +𝑒 cxad 12498  [,]cicc 12734  sigAlgebracsiga 31253  measurescmeas 31340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2385  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-inf2 9096  ax-ac2 9877  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-addf 10608  ax-mulf 10609
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-iin 4919  df-disj 5028  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-se 5513  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-isom 6360  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7402  df-om 7572  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8282  df-map 8401  df-pm 8402  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8826  df-fi 8867  df-sup 8898  df-inf 8899  df-oi 8966  df-dju 9322  df-card 9360  df-acn 9363  df-ac 9534  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12383  df-xneg 12500  df-xadd 12501  df-xmul 12502  df-ioo 12735  df-ioc 12736  df-ico 12737  df-icc 12738  df-fz 12886  df-fzo 13027  df-fl 13155  df-mod 13231  df-seq 13363  df-exp 13423  df-fac 13627  df-bc 13656  df-hash 13684  df-shft 14419  df-cj 14451  df-re 14452  df-im 14453  df-sqrt 14587  df-abs 14588  df-limsup 14821  df-clim 14838  df-rlim 14839  df-sum 15036  df-ef 15413  df-sin 15415  df-cos 15416  df-pi 15418  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-ordt 16766  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-ps 17802  df-tsr 17803  df-plusf 17843  df-mgm 17844  df-sgrp 17892  df-mnd 17903  df-mhm 17946  df-submnd 17947  df-grp 18038  df-minusg 18039  df-sbg 18040  df-mulg 18157  df-subg 18208  df-cntz 18379  df-cmn 18830  df-abl 18831  df-mgp 19162  df-ur 19174  df-ring 19221  df-cring 19222  df-subrg 19455  df-abv 19510  df-lmod 19558  df-scaf 19559  df-sra 19866  df-rgmod 19867  df-psmet 20453  df-xmet 20454  df-met 20455  df-bl 20456  df-mopn 20457  df-fbas 20458  df-fg 20459  df-cnfld 20462  df-top 21418  df-topon 21435  df-topsp 21457  df-bases 21470  df-cld 21543  df-ntr 21544  df-cls 21545  df-nei 21622  df-lp 21660  df-perf 21661  df-cn 21751  df-cnp 21752  df-haus 21839  df-tx 22086  df-hmeo 22279  df-fil 22370  df-fm 22462  df-flim 22463  df-flf 22464  df-tmd 22596  df-tgp 22597  df-tsms 22650  df-trg 22683  df-xms 22845  df-ms 22846  df-tms 22847  df-nm 23107  df-ngp 23108  df-nrg 23110  df-nlm 23111  df-ii 23400  df-cncf 23401  df-limc 24379  df-dv 24380  df-log 25053  df-esum 31173  df-siga 31254  df-meas 31341
This theorem is referenced by:  aean  31389
  Copyright terms: Public domain W3C validator