Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  measunl Structured version   Visualization version   GIF version

Theorem measunl 31896
Description: A measure is sub-additive with respect to union. (Contributed by Thierry Arnoux, 20-Oct-2017.)
Hypotheses
Ref Expression
measunl.1 (𝜑𝑀 ∈ (measures‘𝑆))
measunl.2 (𝜑𝐴𝑆)
measunl.3 (𝜑𝐵𝑆)
Assertion
Ref Expression
measunl (𝜑 → (𝑀‘(𝐴𝐵)) ≤ ((𝑀𝐴) +𝑒 (𝑀𝐵)))

Proof of Theorem measunl
StepHypRef Expression
1 undif1 4390 . . . 4 ((𝐴𝐵) ∪ 𝐵) = (𝐴𝐵)
21fveq2i 6720 . . 3 (𝑀‘((𝐴𝐵) ∪ 𝐵)) = (𝑀‘(𝐴𝐵))
3 measunl.1 . . . 4 (𝜑𝑀 ∈ (measures‘𝑆))
4 measbase 31877 . . . . . 6 (𝑀 ∈ (measures‘𝑆) → 𝑆 ran sigAlgebra)
53, 4syl 17 . . . . 5 (𝜑𝑆 ran sigAlgebra)
6 measunl.2 . . . . 5 (𝜑𝐴𝑆)
7 measunl.3 . . . . 5 (𝜑𝐵𝑆)
8 difelsiga 31813 . . . . 5 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → (𝐴𝐵) ∈ 𝑆)
95, 6, 7, 8syl3anc 1373 . . . 4 (𝜑 → (𝐴𝐵) ∈ 𝑆)
10 disjdifr 4387 . . . . 5 ((𝐴𝐵) ∩ 𝐵) = ∅
1110a1i 11 . . . 4 (𝜑 → ((𝐴𝐵) ∩ 𝐵) = ∅)
12 measun 31891 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ((𝐴𝐵) ∈ 𝑆𝐵𝑆) ∧ ((𝐴𝐵) ∩ 𝐵) = ∅) → (𝑀‘((𝐴𝐵) ∪ 𝐵)) = ((𝑀‘(𝐴𝐵)) +𝑒 (𝑀𝐵)))
133, 9, 7, 11, 12syl121anc 1377 . . 3 (𝜑 → (𝑀‘((𝐴𝐵) ∪ 𝐵)) = ((𝑀‘(𝐴𝐵)) +𝑒 (𝑀𝐵)))
142, 13eqtr3id 2792 . 2 (𝜑 → (𝑀‘(𝐴𝐵)) = ((𝑀‘(𝐴𝐵)) +𝑒 (𝑀𝐵)))
15 iccssxr 13018 . . . 4 (0[,]+∞) ⊆ ℝ*
16 measvxrge0 31885 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝐵) ∈ 𝑆) → (𝑀‘(𝐴𝐵)) ∈ (0[,]+∞))
173, 9, 16syl2anc 587 . . . 4 (𝜑 → (𝑀‘(𝐴𝐵)) ∈ (0[,]+∞))
1815, 17sseldi 3899 . . 3 (𝜑 → (𝑀‘(𝐴𝐵)) ∈ ℝ*)
19 measvxrge0 31885 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) → (𝑀𝐴) ∈ (0[,]+∞))
203, 6, 19syl2anc 587 . . . 4 (𝜑 → (𝑀𝐴) ∈ (0[,]+∞))
2115, 20sseldi 3899 . . 3 (𝜑 → (𝑀𝐴) ∈ ℝ*)
22 measvxrge0 31885 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐵𝑆) → (𝑀𝐵) ∈ (0[,]+∞))
233, 7, 22syl2anc 587 . . . 4 (𝜑 → (𝑀𝐵) ∈ (0[,]+∞))
2415, 23sseldi 3899 . . 3 (𝜑 → (𝑀𝐵) ∈ ℝ*)
25 inelsiga 31815 . . . . . . . . 9 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → (𝐴𝐵) ∈ 𝑆)
265, 6, 7, 25syl3anc 1373 . . . . . . . 8 (𝜑 → (𝐴𝐵) ∈ 𝑆)
27 measvxrge0 31885 . . . . . . . 8 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝐵) ∈ 𝑆) → (𝑀‘(𝐴𝐵)) ∈ (0[,]+∞))
283, 26, 27syl2anc 587 . . . . . . 7 (𝜑 → (𝑀‘(𝐴𝐵)) ∈ (0[,]+∞))
29 elxrge0 13045 . . . . . . 7 ((𝑀‘(𝐴𝐵)) ∈ (0[,]+∞) ↔ ((𝑀‘(𝐴𝐵)) ∈ ℝ* ∧ 0 ≤ (𝑀‘(𝐴𝐵))))
3028, 29sylib 221 . . . . . 6 (𝜑 → ((𝑀‘(𝐴𝐵)) ∈ ℝ* ∧ 0 ≤ (𝑀‘(𝐴𝐵))))
3130simprd 499 . . . . 5 (𝜑 → 0 ≤ (𝑀‘(𝐴𝐵)))
3215, 28sseldi 3899 . . . . . 6 (𝜑 → (𝑀‘(𝐴𝐵)) ∈ ℝ*)
33 xraddge02 30799 . . . . . 6 (((𝑀‘(𝐴𝐵)) ∈ ℝ* ∧ (𝑀‘(𝐴𝐵)) ∈ ℝ*) → (0 ≤ (𝑀‘(𝐴𝐵)) → (𝑀‘(𝐴𝐵)) ≤ ((𝑀‘(𝐴𝐵)) +𝑒 (𝑀‘(𝐴𝐵)))))
3418, 32, 33syl2anc 587 . . . . 5 (𝜑 → (0 ≤ (𝑀‘(𝐴𝐵)) → (𝑀‘(𝐴𝐵)) ≤ ((𝑀‘(𝐴𝐵)) +𝑒 (𝑀‘(𝐴𝐵)))))
3531, 34mpd 15 . . . 4 (𝜑 → (𝑀‘(𝐴𝐵)) ≤ ((𝑀‘(𝐴𝐵)) +𝑒 (𝑀‘(𝐴𝐵))))
36 uncom 4067 . . . . . . 7 ((𝐴𝐵) ∪ (𝐴𝐵)) = ((𝐴𝐵) ∪ (𝐴𝐵))
37 inundif 4393 . . . . . . 7 ((𝐴𝐵) ∪ (𝐴𝐵)) = 𝐴
3836, 37eqtr3i 2767 . . . . . 6 ((𝐴𝐵) ∪ (𝐴𝐵)) = 𝐴
3938fveq2i 6720 . . . . 5 (𝑀‘((𝐴𝐵) ∪ (𝐴𝐵))) = (𝑀𝐴)
40 incom 4115 . . . . . . . 8 ((𝐴𝐵) ∩ (𝐴𝐵)) = ((𝐴𝐵) ∩ (𝐴𝐵))
41 inindif 30582 . . . . . . . 8 ((𝐴𝐵) ∩ (𝐴𝐵)) = ∅
4240, 41eqtr3i 2767 . . . . . . 7 ((𝐴𝐵) ∩ (𝐴𝐵)) = ∅
4342a1i 11 . . . . . 6 (𝜑 → ((𝐴𝐵) ∩ (𝐴𝐵)) = ∅)
44 measun 31891 . . . . . 6 ((𝑀 ∈ (measures‘𝑆) ∧ ((𝐴𝐵) ∈ 𝑆 ∧ (𝐴𝐵) ∈ 𝑆) ∧ ((𝐴𝐵) ∩ (𝐴𝐵)) = ∅) → (𝑀‘((𝐴𝐵) ∪ (𝐴𝐵))) = ((𝑀‘(𝐴𝐵)) +𝑒 (𝑀‘(𝐴𝐵))))
453, 9, 26, 43, 44syl121anc 1377 . . . . 5 (𝜑 → (𝑀‘((𝐴𝐵) ∪ (𝐴𝐵))) = ((𝑀‘(𝐴𝐵)) +𝑒 (𝑀‘(𝐴𝐵))))
4639, 45eqtr3id 2792 . . . 4 (𝜑 → (𝑀𝐴) = ((𝑀‘(𝐴𝐵)) +𝑒 (𝑀‘(𝐴𝐵))))
4735, 46breqtrrd 5081 . . 3 (𝜑 → (𝑀‘(𝐴𝐵)) ≤ (𝑀𝐴))
48 xleadd1a 12843 . . 3 ((((𝑀‘(𝐴𝐵)) ∈ ℝ* ∧ (𝑀𝐴) ∈ ℝ* ∧ (𝑀𝐵) ∈ ℝ*) ∧ (𝑀‘(𝐴𝐵)) ≤ (𝑀𝐴)) → ((𝑀‘(𝐴𝐵)) +𝑒 (𝑀𝐵)) ≤ ((𝑀𝐴) +𝑒 (𝑀𝐵)))
4918, 21, 24, 47, 48syl31anc 1375 . 2 (𝜑 → ((𝑀‘(𝐴𝐵)) +𝑒 (𝑀𝐵)) ≤ ((𝑀𝐴) +𝑒 (𝑀𝐵)))
5014, 49eqbrtrd 5075 1 (𝜑 → (𝑀‘(𝐴𝐵)) ≤ ((𝑀𝐴) +𝑒 (𝑀𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  cdif 3863  cun 3864  cin 3865  c0 4237   cuni 4819   class class class wbr 5053  ran crn 5552  cfv 6380  (class class class)co 7213  0cc0 10729  +∞cpnf 10864  *cxr 10866  cle 10868   +𝑒 cxad 12702  [,]cicc 12938  sigAlgebracsiga 31788  measurescmeas 31875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256  ax-ac2 10077  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807  ax-addf 10808  ax-mulf 10809
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-disj 5019  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-of 7469  df-om 7645  df-1st 7761  df-2nd 7762  df-supp 7904  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-2o 8203  df-er 8391  df-map 8510  df-pm 8511  df-ixp 8579  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fsupp 8986  df-fi 9027  df-sup 9058  df-inf 9059  df-oi 9126  df-dju 9517  df-card 9555  df-acn 9558  df-ac 9730  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-z 12177  df-dec 12294  df-uz 12439  df-q 12545  df-rp 12587  df-xneg 12704  df-xadd 12705  df-xmul 12706  df-ioo 12939  df-ioc 12940  df-ico 12941  df-icc 12942  df-fz 13096  df-fzo 13239  df-fl 13367  df-mod 13443  df-seq 13575  df-exp 13636  df-fac 13840  df-bc 13869  df-hash 13897  df-shft 14630  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-limsup 15032  df-clim 15049  df-rlim 15050  df-sum 15250  df-ef 15629  df-sin 15631  df-cos 15632  df-pi 15634  df-struct 16700  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-mulr 16816  df-starv 16817  df-sca 16818  df-vsca 16819  df-ip 16820  df-tset 16821  df-ple 16822  df-ds 16824  df-unif 16825  df-hom 16826  df-cco 16827  df-rest 16927  df-topn 16928  df-0g 16946  df-gsum 16947  df-topgen 16948  df-pt 16949  df-prds 16952  df-ordt 17006  df-xrs 17007  df-qtop 17012  df-imas 17013  df-xps 17015  df-mre 17089  df-mrc 17090  df-acs 17092  df-ps 18072  df-tsr 18073  df-plusf 18113  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-mhm 18218  df-submnd 18219  df-grp 18368  df-minusg 18369  df-sbg 18370  df-mulg 18489  df-subg 18540  df-cntz 18711  df-cmn 19172  df-abl 19173  df-mgp 19505  df-ur 19517  df-ring 19564  df-cring 19565  df-subrg 19798  df-abv 19853  df-lmod 19901  df-scaf 19902  df-sra 20209  df-rgmod 20210  df-psmet 20355  df-xmet 20356  df-met 20357  df-bl 20358  df-mopn 20359  df-fbas 20360  df-fg 20361  df-cnfld 20364  df-top 21791  df-topon 21808  df-topsp 21830  df-bases 21843  df-cld 21916  df-ntr 21917  df-cls 21918  df-nei 21995  df-lp 22033  df-perf 22034  df-cn 22124  df-cnp 22125  df-haus 22212  df-tx 22459  df-hmeo 22652  df-fil 22743  df-fm 22835  df-flim 22836  df-flf 22837  df-tmd 22969  df-tgp 22970  df-tsms 23024  df-trg 23057  df-xms 23218  df-ms 23219  df-tms 23220  df-nm 23480  df-ngp 23481  df-nrg 23483  df-nlm 23484  df-ii 23774  df-cncf 23775  df-limc 24763  df-dv 24764  df-log 25445  df-esum 31708  df-siga 31789  df-meas 31876
This theorem is referenced by:  aean  31924
  Copyright terms: Public domain W3C validator