| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gsummptres | Structured version Visualization version GIF version | ||
| Description: Extend a finite group sum by padding outside with zeroes. Proof generated using OpenAI's proof assistant. (Contributed by Thierry Arnoux, 11-Jul-2020.) |
| Ref | Expression |
|---|---|
| gsummptres.0 | ⊢ 𝐵 = (Base‘𝐺) |
| gsummptres.1 | ⊢ 0 = (0g‘𝐺) |
| gsummptres.2 | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| gsummptres.3 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| gsummptres.4 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐵) |
| gsummptres.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ 𝐷)) → 𝐶 = 0 ) |
| Ref | Expression |
|---|---|
| gsummptres | ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ 𝐴 ↦ 𝐶)) = (𝐺 Σg (𝑥 ∈ (𝐴 ∩ 𝐷) ↦ 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummptres.0 | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | gsummptres.1 | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 3 | eqid 2733 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 4 | gsummptres.2 | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
| 5 | gsummptres.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 6 | gsummptres.4 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐵) | |
| 7 | eqid 2733 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐴 ↦ 𝐶) | |
| 8 | 2 | fvexi 6845 | . . . . 5 ⊢ 0 ∈ V |
| 9 | 8 | a1i 11 | . . . 4 ⊢ (𝜑 → 0 ∈ V) |
| 10 | 7, 5, 6, 9 | fsuppmptdm 9271 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) finSupp 0 ) |
| 11 | inindif 4324 | . . . 4 ⊢ ((𝐴 ∩ 𝐷) ∩ (𝐴 ∖ 𝐷)) = ∅ | |
| 12 | 11 | a1i 11 | . . 3 ⊢ (𝜑 → ((𝐴 ∩ 𝐷) ∩ (𝐴 ∖ 𝐷)) = ∅) |
| 13 | inundif 4428 | . . . . 5 ⊢ ((𝐴 ∩ 𝐷) ∪ (𝐴 ∖ 𝐷)) = 𝐴 | |
| 14 | 13 | eqcomi 2742 | . . . 4 ⊢ 𝐴 = ((𝐴 ∩ 𝐷) ∪ (𝐴 ∖ 𝐷)) |
| 15 | 14 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐴 = ((𝐴 ∩ 𝐷) ∪ (𝐴 ∖ 𝐷))) |
| 16 | 1, 2, 3, 4, 5, 6, 10, 12, 15 | gsumsplit2 19849 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ 𝐴 ↦ 𝐶)) = ((𝐺 Σg (𝑥 ∈ (𝐴 ∩ 𝐷) ↦ 𝐶))(+g‘𝐺)(𝐺 Σg (𝑥 ∈ (𝐴 ∖ 𝐷) ↦ 𝐶)))) |
| 17 | gsummptres.5 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ 𝐷)) → 𝐶 = 0 ) | |
| 18 | 17 | mpteq2dva 5188 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ (𝐴 ∖ 𝐷) ↦ 𝐶) = (𝑥 ∈ (𝐴 ∖ 𝐷) ↦ 0 )) |
| 19 | 18 | oveq2d 7371 | . . . . 5 ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ (𝐴 ∖ 𝐷) ↦ 𝐶)) = (𝐺 Σg (𝑥 ∈ (𝐴 ∖ 𝐷) ↦ 0 ))) |
| 20 | cmnmnd 19717 | . . . . . . 7 ⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) | |
| 21 | 4, 20 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| 22 | diffi 9095 | . . . . . . 7 ⊢ (𝐴 ∈ Fin → (𝐴 ∖ 𝐷) ∈ Fin) | |
| 23 | 5, 22 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝐴 ∖ 𝐷) ∈ Fin) |
| 24 | 2 | gsumz 18752 | . . . . . 6 ⊢ ((𝐺 ∈ Mnd ∧ (𝐴 ∖ 𝐷) ∈ Fin) → (𝐺 Σg (𝑥 ∈ (𝐴 ∖ 𝐷) ↦ 0 )) = 0 ) |
| 25 | 21, 23, 24 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ (𝐴 ∖ 𝐷) ↦ 0 )) = 0 ) |
| 26 | 19, 25 | eqtrd 2768 | . . . 4 ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ (𝐴 ∖ 𝐷) ↦ 𝐶)) = 0 ) |
| 27 | 26 | oveq2d 7371 | . . 3 ⊢ (𝜑 → ((𝐺 Σg (𝑥 ∈ (𝐴 ∩ 𝐷) ↦ 𝐶))(+g‘𝐺)(𝐺 Σg (𝑥 ∈ (𝐴 ∖ 𝐷) ↦ 𝐶))) = ((𝐺 Σg (𝑥 ∈ (𝐴 ∩ 𝐷) ↦ 𝐶))(+g‘𝐺) 0 )) |
| 28 | infi 9165 | . . . . . 6 ⊢ (𝐴 ∈ Fin → (𝐴 ∩ 𝐷) ∈ Fin) | |
| 29 | 5, 28 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐴 ∩ 𝐷) ∈ Fin) |
| 30 | inss1 4186 | . . . . . . . 8 ⊢ (𝐴 ∩ 𝐷) ⊆ 𝐴 | |
| 31 | 30 | sseli 3926 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐷) → 𝑥 ∈ 𝐴) |
| 32 | 31, 6 | sylan2 593 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐷)) → 𝐶 ∈ 𝐵) |
| 33 | 32 | ralrimiva 3125 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ (𝐴 ∩ 𝐷)𝐶 ∈ 𝐵) |
| 34 | 1, 4, 29, 33 | gsummptcl 19887 | . . . 4 ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ (𝐴 ∩ 𝐷) ↦ 𝐶)) ∈ 𝐵) |
| 35 | 1, 3, 2 | mndrid 18671 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ (𝐺 Σg (𝑥 ∈ (𝐴 ∩ 𝐷) ↦ 𝐶)) ∈ 𝐵) → ((𝐺 Σg (𝑥 ∈ (𝐴 ∩ 𝐷) ↦ 𝐶))(+g‘𝐺) 0 ) = (𝐺 Σg (𝑥 ∈ (𝐴 ∩ 𝐷) ↦ 𝐶))) |
| 36 | 21, 34, 35 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((𝐺 Σg (𝑥 ∈ (𝐴 ∩ 𝐷) ↦ 𝐶))(+g‘𝐺) 0 ) = (𝐺 Σg (𝑥 ∈ (𝐴 ∩ 𝐷) ↦ 𝐶))) |
| 37 | 27, 36 | eqtrd 2768 | . 2 ⊢ (𝜑 → ((𝐺 Σg (𝑥 ∈ (𝐴 ∩ 𝐷) ↦ 𝐶))(+g‘𝐺)(𝐺 Σg (𝑥 ∈ (𝐴 ∖ 𝐷) ↦ 𝐶))) = (𝐺 Σg (𝑥 ∈ (𝐴 ∩ 𝐷) ↦ 𝐶))) |
| 38 | 16, 37 | eqtrd 2768 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ 𝐴 ↦ 𝐶)) = (𝐺 Σg (𝑥 ∈ (𝐴 ∩ 𝐷) ↦ 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ∖ cdif 3895 ∪ cun 3896 ∩ cin 3897 ∅c0 4282 ↦ cmpt 5176 ‘cfv 6489 (class class class)co 7355 Fincfn 8879 Basecbs 17127 +gcplusg 17168 0gc0g 17350 Σg cgsu 17351 Mndcmnd 18650 CMndccmn 19700 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-of 7619 df-om 7806 df-1st 7930 df-2nd 7931 df-supp 8100 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9257 df-oi 9407 df-card 9843 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-n0 12393 df-z 12480 df-uz 12743 df-fz 13415 df-fzo 13562 df-seq 13916 df-hash 14245 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-ress 17149 df-plusg 17181 df-0g 17352 df-gsum 17353 df-mre 17496 df-mrc 17497 df-acs 17499 df-mgm 18556 df-sgrp 18635 df-mnd 18651 df-submnd 18700 df-cntz 19237 df-cmn 19702 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |