Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gsummptres Structured version   Visualization version   GIF version

Theorem gsummptres 32920
Description: Extend a finite group sum by padding outside with zeroes. Proof generated using OpenAI's proof assistant. (Contributed by Thierry Arnoux, 11-Jul-2020.)
Hypotheses
Ref Expression
gsummptres.0 𝐵 = (Base‘𝐺)
gsummptres.1 0 = (0g𝐺)
gsummptres.2 (𝜑𝐺 ∈ CMnd)
gsummptres.3 (𝜑𝐴 ∈ Fin)
gsummptres.4 ((𝜑𝑥𝐴) → 𝐶𝐵)
gsummptres.5 ((𝜑𝑥 ∈ (𝐴𝐷)) → 𝐶 = 0 )
Assertion
Ref Expression
gsummptres (𝜑 → (𝐺 Σg (𝑥𝐴𝐶)) = (𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 𝐶)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝐺   𝜑,𝑥
Allowed substitution hints:   𝐶(𝑥)   0 (𝑥)

Proof of Theorem gsummptres
StepHypRef Expression
1 gsummptres.0 . . 3 𝐵 = (Base‘𝐺)
2 gsummptres.1 . . 3 0 = (0g𝐺)
3 eqid 2726 . . 3 (+g𝐺) = (+g𝐺)
4 gsummptres.2 . . 3 (𝜑𝐺 ∈ CMnd)
5 gsummptres.3 . . 3 (𝜑𝐴 ∈ Fin)
6 gsummptres.4 . . 3 ((𝜑𝑥𝐴) → 𝐶𝐵)
7 eqid 2726 . . . 4 (𝑥𝐴𝐶) = (𝑥𝐴𝐶)
82fvexi 6915 . . . . 5 0 ∈ V
98a1i 11 . . . 4 (𝜑0 ∈ V)
107, 5, 6, 9fsuppmptdm 9419 . . 3 (𝜑 → (𝑥𝐴𝐶) finSupp 0 )
11 inindif 32443 . . . 4 ((𝐴𝐷) ∩ (𝐴𝐷)) = ∅
1211a1i 11 . . 3 (𝜑 → ((𝐴𝐷) ∩ (𝐴𝐷)) = ∅)
13 inundif 4483 . . . . 5 ((𝐴𝐷) ∪ (𝐴𝐷)) = 𝐴
1413eqcomi 2735 . . . 4 𝐴 = ((𝐴𝐷) ∪ (𝐴𝐷))
1514a1i 11 . . 3 (𝜑𝐴 = ((𝐴𝐷) ∪ (𝐴𝐷)))
161, 2, 3, 4, 5, 6, 10, 12, 15gsumsplit2 19927 . 2 (𝜑 → (𝐺 Σg (𝑥𝐴𝐶)) = ((𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 𝐶))(+g𝐺)(𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 𝐶))))
17 gsummptres.5 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴𝐷)) → 𝐶 = 0 )
1817mpteq2dva 5253 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐴𝐷) ↦ 𝐶) = (𝑥 ∈ (𝐴𝐷) ↦ 0 ))
1918oveq2d 7440 . . . . 5 (𝜑 → (𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 𝐶)) = (𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 0 )))
20 cmnmnd 19795 . . . . . . 7 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
214, 20syl 17 . . . . . 6 (𝜑𝐺 ∈ Mnd)
22 diffi 9213 . . . . . . 7 (𝐴 ∈ Fin → (𝐴𝐷) ∈ Fin)
235, 22syl 17 . . . . . 6 (𝜑 → (𝐴𝐷) ∈ Fin)
242gsumz 18826 . . . . . 6 ((𝐺 ∈ Mnd ∧ (𝐴𝐷) ∈ Fin) → (𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 0 )) = 0 )
2521, 23, 24syl2anc 582 . . . . 5 (𝜑 → (𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 0 )) = 0 )
2619, 25eqtrd 2766 . . . 4 (𝜑 → (𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 𝐶)) = 0 )
2726oveq2d 7440 . . 3 (𝜑 → ((𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 𝐶))(+g𝐺)(𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 𝐶))) = ((𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 𝐶))(+g𝐺) 0 ))
28 infi 9302 . . . . . 6 (𝐴 ∈ Fin → (𝐴𝐷) ∈ Fin)
295, 28syl 17 . . . . 5 (𝜑 → (𝐴𝐷) ∈ Fin)
30 inss1 4230 . . . . . . . 8 (𝐴𝐷) ⊆ 𝐴
3130sseli 3975 . . . . . . 7 (𝑥 ∈ (𝐴𝐷) → 𝑥𝐴)
3231, 6sylan2 591 . . . . . 6 ((𝜑𝑥 ∈ (𝐴𝐷)) → 𝐶𝐵)
3332ralrimiva 3136 . . . . 5 (𝜑 → ∀𝑥 ∈ (𝐴𝐷)𝐶𝐵)
341, 4, 29, 33gsummptcl 19965 . . . 4 (𝜑 → (𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 𝐶)) ∈ 𝐵)
351, 3, 2mndrid 18748 . . . 4 ((𝐺 ∈ Mnd ∧ (𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 𝐶)) ∈ 𝐵) → ((𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 𝐶))(+g𝐺) 0 ) = (𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 𝐶)))
3621, 34, 35syl2anc 582 . . 3 (𝜑 → ((𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 𝐶))(+g𝐺) 0 ) = (𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 𝐶)))
3727, 36eqtrd 2766 . 2 (𝜑 → ((𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 𝐶))(+g𝐺)(𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 𝐶))) = (𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 𝐶)))
3816, 37eqtrd 2766 1 (𝜑 → (𝐺 Σg (𝑥𝐴𝐶)) = (𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  Vcvv 3462  cdif 3944  cun 3945  cin 3946  c0 4325  cmpt 5236  cfv 6554  (class class class)co 7424  Fincfn 8974  Basecbs 17213  +gcplusg 17266  0gc0g 17454   Σg cgsu 17455  Mndcmnd 18727  CMndccmn 19778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-iin 5004  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-isom 6563  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-of 7690  df-om 7877  df-1st 8003  df-2nd 8004  df-supp 8175  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-2o 8497  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-fsupp 9406  df-oi 9553  df-card 9982  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-nn 12265  df-2 12327  df-n0 12525  df-z 12611  df-uz 12875  df-fz 13539  df-fzo 13682  df-seq 14022  df-hash 14348  df-sets 17166  df-slot 17184  df-ndx 17196  df-base 17214  df-ress 17243  df-plusg 17279  df-0g 17456  df-gsum 17457  df-mre 17599  df-mrc 17600  df-acs 17602  df-mgm 18633  df-sgrp 18712  df-mnd 18728  df-submnd 18774  df-cntz 19311  df-cmn 19780
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator