Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gsummptres Structured version   Visualization version   GIF version

Theorem gsummptres 33063
Description: Extend a finite group sum by padding outside with zeroes. Proof generated using OpenAI's proof assistant. (Contributed by Thierry Arnoux, 11-Jul-2020.)
Hypotheses
Ref Expression
gsummptres.0 𝐵 = (Base‘𝐺)
gsummptres.1 0 = (0g𝐺)
gsummptres.2 (𝜑𝐺 ∈ CMnd)
gsummptres.3 (𝜑𝐴 ∈ Fin)
gsummptres.4 ((𝜑𝑥𝐴) → 𝐶𝐵)
gsummptres.5 ((𝜑𝑥 ∈ (𝐴𝐷)) → 𝐶 = 0 )
Assertion
Ref Expression
gsummptres (𝜑 → (𝐺 Σg (𝑥𝐴𝐶)) = (𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 𝐶)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝐺   𝜑,𝑥
Allowed substitution hints:   𝐶(𝑥)   0 (𝑥)

Proof of Theorem gsummptres
StepHypRef Expression
1 gsummptres.0 . . 3 𝐵 = (Base‘𝐺)
2 gsummptres.1 . . 3 0 = (0g𝐺)
3 eqid 2733 . . 3 (+g𝐺) = (+g𝐺)
4 gsummptres.2 . . 3 (𝜑𝐺 ∈ CMnd)
5 gsummptres.3 . . 3 (𝜑𝐴 ∈ Fin)
6 gsummptres.4 . . 3 ((𝜑𝑥𝐴) → 𝐶𝐵)
7 eqid 2733 . . . 4 (𝑥𝐴𝐶) = (𝑥𝐴𝐶)
82fvexi 6845 . . . . 5 0 ∈ V
98a1i 11 . . . 4 (𝜑0 ∈ V)
107, 5, 6, 9fsuppmptdm 9271 . . 3 (𝜑 → (𝑥𝐴𝐶) finSupp 0 )
11 inindif 4324 . . . 4 ((𝐴𝐷) ∩ (𝐴𝐷)) = ∅
1211a1i 11 . . 3 (𝜑 → ((𝐴𝐷) ∩ (𝐴𝐷)) = ∅)
13 inundif 4428 . . . . 5 ((𝐴𝐷) ∪ (𝐴𝐷)) = 𝐴
1413eqcomi 2742 . . . 4 𝐴 = ((𝐴𝐷) ∪ (𝐴𝐷))
1514a1i 11 . . 3 (𝜑𝐴 = ((𝐴𝐷) ∪ (𝐴𝐷)))
161, 2, 3, 4, 5, 6, 10, 12, 15gsumsplit2 19849 . 2 (𝜑 → (𝐺 Σg (𝑥𝐴𝐶)) = ((𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 𝐶))(+g𝐺)(𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 𝐶))))
17 gsummptres.5 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴𝐷)) → 𝐶 = 0 )
1817mpteq2dva 5188 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐴𝐷) ↦ 𝐶) = (𝑥 ∈ (𝐴𝐷) ↦ 0 ))
1918oveq2d 7371 . . . . 5 (𝜑 → (𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 𝐶)) = (𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 0 )))
20 cmnmnd 19717 . . . . . . 7 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
214, 20syl 17 . . . . . 6 (𝜑𝐺 ∈ Mnd)
22 diffi 9095 . . . . . . 7 (𝐴 ∈ Fin → (𝐴𝐷) ∈ Fin)
235, 22syl 17 . . . . . 6 (𝜑 → (𝐴𝐷) ∈ Fin)
242gsumz 18752 . . . . . 6 ((𝐺 ∈ Mnd ∧ (𝐴𝐷) ∈ Fin) → (𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 0 )) = 0 )
2521, 23, 24syl2anc 584 . . . . 5 (𝜑 → (𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 0 )) = 0 )
2619, 25eqtrd 2768 . . . 4 (𝜑 → (𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 𝐶)) = 0 )
2726oveq2d 7371 . . 3 (𝜑 → ((𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 𝐶))(+g𝐺)(𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 𝐶))) = ((𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 𝐶))(+g𝐺) 0 ))
28 infi 9165 . . . . . 6 (𝐴 ∈ Fin → (𝐴𝐷) ∈ Fin)
295, 28syl 17 . . . . 5 (𝜑 → (𝐴𝐷) ∈ Fin)
30 inss1 4186 . . . . . . . 8 (𝐴𝐷) ⊆ 𝐴
3130sseli 3926 . . . . . . 7 (𝑥 ∈ (𝐴𝐷) → 𝑥𝐴)
3231, 6sylan2 593 . . . . . 6 ((𝜑𝑥 ∈ (𝐴𝐷)) → 𝐶𝐵)
3332ralrimiva 3125 . . . . 5 (𝜑 → ∀𝑥 ∈ (𝐴𝐷)𝐶𝐵)
341, 4, 29, 33gsummptcl 19887 . . . 4 (𝜑 → (𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 𝐶)) ∈ 𝐵)
351, 3, 2mndrid 18671 . . . 4 ((𝐺 ∈ Mnd ∧ (𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 𝐶)) ∈ 𝐵) → ((𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 𝐶))(+g𝐺) 0 ) = (𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 𝐶)))
3621, 34, 35syl2anc 584 . . 3 (𝜑 → ((𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 𝐶))(+g𝐺) 0 ) = (𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 𝐶)))
3727, 36eqtrd 2768 . 2 (𝜑 → ((𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 𝐶))(+g𝐺)(𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 𝐶))) = (𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 𝐶)))
3816, 37eqtrd 2768 1 (𝜑 → (𝐺 Σg (𝑥𝐴𝐶)) = (𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  Vcvv 3437  cdif 3895  cun 3896  cin 3897  c0 4282  cmpt 5176  cfv 6489  (class class class)co 7355  Fincfn 8879  Basecbs 17127  +gcplusg 17168  0gc0g 17350   Σg cgsu 17351  Mndcmnd 18650  CMndccmn 19700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-om 7806  df-1st 7930  df-2nd 7931  df-supp 8100  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9257  df-oi 9407  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-2 12199  df-n0 12393  df-z 12480  df-uz 12743  df-fz 13415  df-fzo 13562  df-seq 13916  df-hash 14245  df-sets 17082  df-slot 17100  df-ndx 17112  df-base 17128  df-ress 17149  df-plusg 17181  df-0g 17352  df-gsum 17353  df-mre 17496  df-mrc 17497  df-acs 17499  df-mgm 18556  df-sgrp 18635  df-mnd 18651  df-submnd 18700  df-cntz 19237  df-cmn 19702
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator