| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gsummptres | Structured version Visualization version GIF version | ||
| Description: Extend a finite group sum by padding outside with zeroes. Proof generated using OpenAI's proof assistant. (Contributed by Thierry Arnoux, 11-Jul-2020.) |
| Ref | Expression |
|---|---|
| gsummptres.0 | ⊢ 𝐵 = (Base‘𝐺) |
| gsummptres.1 | ⊢ 0 = (0g‘𝐺) |
| gsummptres.2 | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| gsummptres.3 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| gsummptres.4 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐵) |
| gsummptres.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ 𝐷)) → 𝐶 = 0 ) |
| Ref | Expression |
|---|---|
| gsummptres | ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ 𝐴 ↦ 𝐶)) = (𝐺 Σg (𝑥 ∈ (𝐴 ∩ 𝐷) ↦ 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummptres.0 | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | gsummptres.1 | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 3 | eqid 2731 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 4 | gsummptres.2 | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
| 5 | gsummptres.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 6 | gsummptres.4 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐵) | |
| 7 | eqid 2731 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐴 ↦ 𝐶) | |
| 8 | 2 | fvexi 6831 | . . . . 5 ⊢ 0 ∈ V |
| 9 | 8 | a1i 11 | . . . 4 ⊢ (𝜑 → 0 ∈ V) |
| 10 | 7, 5, 6, 9 | fsuppmptdm 9255 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) finSupp 0 ) |
| 11 | inindif 4320 | . . . 4 ⊢ ((𝐴 ∩ 𝐷) ∩ (𝐴 ∖ 𝐷)) = ∅ | |
| 12 | 11 | a1i 11 | . . 3 ⊢ (𝜑 → ((𝐴 ∩ 𝐷) ∩ (𝐴 ∖ 𝐷)) = ∅) |
| 13 | inundif 4424 | . . . . 5 ⊢ ((𝐴 ∩ 𝐷) ∪ (𝐴 ∖ 𝐷)) = 𝐴 | |
| 14 | 13 | eqcomi 2740 | . . . 4 ⊢ 𝐴 = ((𝐴 ∩ 𝐷) ∪ (𝐴 ∖ 𝐷)) |
| 15 | 14 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐴 = ((𝐴 ∩ 𝐷) ∪ (𝐴 ∖ 𝐷))) |
| 16 | 1, 2, 3, 4, 5, 6, 10, 12, 15 | gsumsplit2 19836 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ 𝐴 ↦ 𝐶)) = ((𝐺 Σg (𝑥 ∈ (𝐴 ∩ 𝐷) ↦ 𝐶))(+g‘𝐺)(𝐺 Σg (𝑥 ∈ (𝐴 ∖ 𝐷) ↦ 𝐶)))) |
| 17 | gsummptres.5 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ 𝐷)) → 𝐶 = 0 ) | |
| 18 | 17 | mpteq2dva 5179 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ (𝐴 ∖ 𝐷) ↦ 𝐶) = (𝑥 ∈ (𝐴 ∖ 𝐷) ↦ 0 )) |
| 19 | 18 | oveq2d 7357 | . . . . 5 ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ (𝐴 ∖ 𝐷) ↦ 𝐶)) = (𝐺 Σg (𝑥 ∈ (𝐴 ∖ 𝐷) ↦ 0 ))) |
| 20 | cmnmnd 19704 | . . . . . . 7 ⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) | |
| 21 | 4, 20 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| 22 | diffi 9079 | . . . . . . 7 ⊢ (𝐴 ∈ Fin → (𝐴 ∖ 𝐷) ∈ Fin) | |
| 23 | 5, 22 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝐴 ∖ 𝐷) ∈ Fin) |
| 24 | 2 | gsumz 18739 | . . . . . 6 ⊢ ((𝐺 ∈ Mnd ∧ (𝐴 ∖ 𝐷) ∈ Fin) → (𝐺 Σg (𝑥 ∈ (𝐴 ∖ 𝐷) ↦ 0 )) = 0 ) |
| 25 | 21, 23, 24 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ (𝐴 ∖ 𝐷) ↦ 0 )) = 0 ) |
| 26 | 19, 25 | eqtrd 2766 | . . . 4 ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ (𝐴 ∖ 𝐷) ↦ 𝐶)) = 0 ) |
| 27 | 26 | oveq2d 7357 | . . 3 ⊢ (𝜑 → ((𝐺 Σg (𝑥 ∈ (𝐴 ∩ 𝐷) ↦ 𝐶))(+g‘𝐺)(𝐺 Σg (𝑥 ∈ (𝐴 ∖ 𝐷) ↦ 𝐶))) = ((𝐺 Σg (𝑥 ∈ (𝐴 ∩ 𝐷) ↦ 𝐶))(+g‘𝐺) 0 )) |
| 28 | infi 9149 | . . . . . 6 ⊢ (𝐴 ∈ Fin → (𝐴 ∩ 𝐷) ∈ Fin) | |
| 29 | 5, 28 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐴 ∩ 𝐷) ∈ Fin) |
| 30 | inss1 4182 | . . . . . . . 8 ⊢ (𝐴 ∩ 𝐷) ⊆ 𝐴 | |
| 31 | 30 | sseli 3925 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐷) → 𝑥 ∈ 𝐴) |
| 32 | 31, 6 | sylan2 593 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐷)) → 𝐶 ∈ 𝐵) |
| 33 | 32 | ralrimiva 3124 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ (𝐴 ∩ 𝐷)𝐶 ∈ 𝐵) |
| 34 | 1, 4, 29, 33 | gsummptcl 19874 | . . . 4 ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ (𝐴 ∩ 𝐷) ↦ 𝐶)) ∈ 𝐵) |
| 35 | 1, 3, 2 | mndrid 18658 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ (𝐺 Σg (𝑥 ∈ (𝐴 ∩ 𝐷) ↦ 𝐶)) ∈ 𝐵) → ((𝐺 Σg (𝑥 ∈ (𝐴 ∩ 𝐷) ↦ 𝐶))(+g‘𝐺) 0 ) = (𝐺 Σg (𝑥 ∈ (𝐴 ∩ 𝐷) ↦ 𝐶))) |
| 36 | 21, 34, 35 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((𝐺 Σg (𝑥 ∈ (𝐴 ∩ 𝐷) ↦ 𝐶))(+g‘𝐺) 0 ) = (𝐺 Σg (𝑥 ∈ (𝐴 ∩ 𝐷) ↦ 𝐶))) |
| 37 | 27, 36 | eqtrd 2766 | . 2 ⊢ (𝜑 → ((𝐺 Σg (𝑥 ∈ (𝐴 ∩ 𝐷) ↦ 𝐶))(+g‘𝐺)(𝐺 Σg (𝑥 ∈ (𝐴 ∖ 𝐷) ↦ 𝐶))) = (𝐺 Σg (𝑥 ∈ (𝐴 ∩ 𝐷) ↦ 𝐶))) |
| 38 | 16, 37 | eqtrd 2766 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ 𝐴 ↦ 𝐶)) = (𝐺 Σg (𝑥 ∈ (𝐴 ∩ 𝐷) ↦ 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∖ cdif 3894 ∪ cun 3895 ∩ cin 3896 ∅c0 4278 ↦ cmpt 5167 ‘cfv 6476 (class class class)co 7341 Fincfn 8864 Basecbs 17115 +gcplusg 17156 0gc0g 17338 Σg cgsu 17339 Mndcmnd 18637 CMndccmn 19687 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-iin 4939 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-oi 9391 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-n0 12377 df-z 12464 df-uz 12728 df-fz 13403 df-fzo 13550 df-seq 13904 df-hash 14233 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-0g 17340 df-gsum 17341 df-mre 17483 df-mrc 17484 df-acs 17486 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-submnd 18687 df-cntz 19224 df-cmn 19689 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |