Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > intpreima | Structured version Visualization version GIF version |
Description: Preimage of an intersection. (Contributed by FL, 28-Apr-2012.) |
Ref | Expression |
---|---|
intpreima | ⊢ ((Fun 𝐹 ∧ 𝐴 ≠ ∅) → (◡𝐹 “ ∩ 𝐴) = ∩ 𝑥 ∈ 𝐴 (◡𝐹 “ 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intiin 4949 | . . 3 ⊢ ∩ 𝐴 = ∩ 𝑥 ∈ 𝐴 𝑥 | |
2 | 1 | imaeq2i 5900 | . 2 ⊢ (◡𝐹 “ ∩ 𝐴) = (◡𝐹 “ ∩ 𝑥 ∈ 𝐴 𝑥) |
3 | iinpreima 6829 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ≠ ∅) → (◡𝐹 “ ∩ 𝑥 ∈ 𝐴 𝑥) = ∩ 𝑥 ∈ 𝐴 (◡𝐹 “ 𝑥)) | |
4 | 2, 3 | syl5eq 2806 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ≠ ∅) → (◡𝐹 “ ∩ 𝐴) = ∩ 𝑥 ∈ 𝐴 (◡𝐹 “ 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 = wceq 1539 ≠ wne 2952 ∅c0 4226 ∩ cint 4839 ∩ ciin 4885 ◡ccnv 5524 “ cima 5528 Fun wfun 6330 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pr 5299 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-rab 3080 df-v 3412 df-sbc 3698 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4422 df-sn 4524 df-pr 4526 df-op 4530 df-uni 4800 df-int 4840 df-iin 4887 df-br 5034 df-opab 5096 df-id 5431 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6295 df-fun 6338 df-fn 6339 df-fv 6344 |
This theorem is referenced by: subbascn 21955 |
Copyright terms: Public domain | W3C validator |