MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intpreima Structured version   Visualization version   GIF version

Theorem intpreima 6830
Description: Preimage of an intersection. (Contributed by FL, 28-Apr-2012.)
Assertion
Ref Expression
intpreima ((Fun 𝐹𝐴 ≠ ∅) → (𝐹 𝐴) = 𝑥𝐴 (𝐹𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem intpreima
StepHypRef Expression
1 intiin 4949 . . 3 𝐴 = 𝑥𝐴 𝑥
21imaeq2i 5900 . 2 (𝐹 𝐴) = (𝐹 𝑥𝐴 𝑥)
3 iinpreima 6829 . 2 ((Fun 𝐹𝐴 ≠ ∅) → (𝐹 𝑥𝐴 𝑥) = 𝑥𝐴 (𝐹𝑥))
42, 3syl5eq 2806 1 ((Fun 𝐹𝐴 ≠ ∅) → (𝐹 𝐴) = 𝑥𝐴 (𝐹𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 400   = wceq 1539  wne 2952  c0 4226   cint 4839   ciin 4885  ccnv 5524  cima 5528  Fun wfun 6330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5170  ax-nul 5177  ax-pr 5299
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-ral 3076  df-rex 3077  df-rab 3080  df-v 3412  df-sbc 3698  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-nul 4227  df-if 4422  df-sn 4524  df-pr 4526  df-op 4530  df-uni 4800  df-int 4840  df-iin 4887  df-br 5034  df-opab 5096  df-id 5431  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-iota 6295  df-fun 6338  df-fn 6339  df-fv 6344
This theorem is referenced by:  subbascn  21955
  Copyright terms: Public domain W3C validator