MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intpreima Structured version   Visualization version   GIF version

Theorem intpreima 6600
Description: Preimage of an intersection. (Contributed by FL, 28-Apr-2012.)
Assertion
Ref Expression
intpreima ((Fun 𝐹𝐴 ≠ ∅) → (𝐹 𝐴) = 𝑥𝐴 (𝐹𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem intpreima
StepHypRef Expression
1 intiin 4796 . . 3 𝐴 = 𝑥𝐴 𝑥
21imaeq2i 5709 . 2 (𝐹 𝐴) = (𝐹 𝑥𝐴 𝑥)
3 iinpreima 6599 . 2 ((Fun 𝐹𝐴 ≠ ∅) → (𝐹 𝑥𝐴 𝑥) = 𝑥𝐴 (𝐹𝑥))
42, 3syl5eq 2873 1 ((Fun 𝐹𝐴 ≠ ∅) → (𝐹 𝐴) = 𝑥𝐴 (𝐹𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1656  wne 2999  c0 4146   cint 4699   ciin 4743  ccnv 5345  cima 5349  Fun wfun 6121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pr 5129
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-sn 4400  df-pr 4402  df-op 4406  df-uni 4661  df-int 4700  df-iin 4745  df-br 4876  df-opab 4938  df-id 5252  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-iota 6090  df-fun 6129  df-fn 6130  df-fv 6135
This theorem is referenced by:  subbascn  21436
  Copyright terms: Public domain W3C validator