| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > intpreima | Structured version Visualization version GIF version | ||
| Description: Preimage of an intersection. (Contributed by FL, 28-Apr-2012.) |
| Ref | Expression |
|---|---|
| intpreima | ⊢ ((Fun 𝐹 ∧ 𝐴 ≠ ∅) → (◡𝐹 “ ∩ 𝐴) = ∩ 𝑥 ∈ 𝐴 (◡𝐹 “ 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intiin 5040 | . . 3 ⊢ ∩ 𝐴 = ∩ 𝑥 ∈ 𝐴 𝑥 | |
| 2 | 1 | imaeq2i 6050 | . 2 ⊢ (◡𝐹 “ ∩ 𝐴) = (◡𝐹 “ ∩ 𝑥 ∈ 𝐴 𝑥) |
| 3 | iinpreima 7064 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ≠ ∅) → (◡𝐹 “ ∩ 𝑥 ∈ 𝐴 𝑥) = ∩ 𝑥 ∈ 𝐴 (◡𝐹 “ 𝑥)) | |
| 4 | 2, 3 | eqtrid 2783 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ≠ ∅) → (◡𝐹 “ ∩ 𝐴) = ∩ 𝑥 ∈ 𝐴 (◡𝐹 “ 𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ≠ wne 2933 ∅c0 4313 ∩ cint 4927 ∩ ciin 4973 ◡ccnv 5658 “ cima 5662 Fun wfun 6530 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iin 4975 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-fv 6544 |
| This theorem is referenced by: subbascn 23197 |
| Copyright terms: Public domain | W3C validator |