MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intpreima Structured version   Visualization version   GIF version

Theorem intpreima 6929
Description: Preimage of an intersection. (Contributed by FL, 28-Apr-2012.)
Assertion
Ref Expression
intpreima ((Fun 𝐹𝐴 ≠ ∅) → (𝐹 𝐴) = 𝑥𝐴 (𝐹𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem intpreima
StepHypRef Expression
1 intiin 4985 . . 3 𝐴 = 𝑥𝐴 𝑥
21imaeq2i 5956 . 2 (𝐹 𝐴) = (𝐹 𝑥𝐴 𝑥)
3 iinpreima 6928 . 2 ((Fun 𝐹𝐴 ≠ ∅) → (𝐹 𝑥𝐴 𝑥) = 𝑥𝐴 (𝐹𝑥))
42, 3eqtrid 2790 1 ((Fun 𝐹𝐴 ≠ ∅) → (𝐹 𝐴) = 𝑥𝐴 (𝐹𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wne 2942  c0 4253   cint 4876   ciin 4922  ccnv 5579  cima 5583  Fun wfun 6412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-int 4877  df-iin 4924  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-fv 6426
This theorem is referenced by:  subbascn  22313
  Copyright terms: Public domain W3C validator