| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iundifdif | Structured version Visualization version GIF version | ||
| Description: The intersection of a set is the complement of the union of the complements. TODO: shorten using iundifdifd 32497. (Contributed by Thierry Arnoux, 4-Sep-2016.) |
| Ref | Expression |
|---|---|
| iundifdif.o | ⊢ 𝑂 ∈ V |
| iundifdif.2 | ⊢ 𝐴 ⊆ 𝒫 𝑂 |
| Ref | Expression |
|---|---|
| iundifdif | ⊢ (𝐴 ≠ ∅ → ∩ 𝐴 = (𝑂 ∖ ∪ 𝑥 ∈ 𝐴 (𝑂 ∖ 𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iundif2 5041 | . . . 4 ⊢ ∪ 𝑥 ∈ 𝐴 (𝑂 ∖ 𝑥) = (𝑂 ∖ ∩ 𝑥 ∈ 𝐴 𝑥) | |
| 2 | intiin 5026 | . . . . 5 ⊢ ∩ 𝐴 = ∩ 𝑥 ∈ 𝐴 𝑥 | |
| 3 | 2 | difeq2i 4089 | . . . 4 ⊢ (𝑂 ∖ ∩ 𝐴) = (𝑂 ∖ ∩ 𝑥 ∈ 𝐴 𝑥) |
| 4 | 1, 3 | eqtr4i 2756 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 (𝑂 ∖ 𝑥) = (𝑂 ∖ ∩ 𝐴) |
| 5 | 4 | difeq2i 4089 | . 2 ⊢ (𝑂 ∖ ∪ 𝑥 ∈ 𝐴 (𝑂 ∖ 𝑥)) = (𝑂 ∖ (𝑂 ∖ ∩ 𝐴)) |
| 6 | iundifdif.2 | . . . . 5 ⊢ 𝐴 ⊆ 𝒫 𝑂 | |
| 7 | 6 | jctl 523 | . . . 4 ⊢ (𝐴 ≠ ∅ → (𝐴 ⊆ 𝒫 𝑂 ∧ 𝐴 ≠ ∅)) |
| 8 | intssuni2 4940 | . . . 4 ⊢ ((𝐴 ⊆ 𝒫 𝑂 ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ⊆ ∪ 𝒫 𝑂) | |
| 9 | unipw 5413 | . . . . . 6 ⊢ ∪ 𝒫 𝑂 = 𝑂 | |
| 10 | 9 | sseq2i 3979 | . . . . 5 ⊢ (∩ 𝐴 ⊆ ∪ 𝒫 𝑂 ↔ ∩ 𝐴 ⊆ 𝑂) |
| 11 | 10 | biimpi 216 | . . . 4 ⊢ (∩ 𝐴 ⊆ ∪ 𝒫 𝑂 → ∩ 𝐴 ⊆ 𝑂) |
| 12 | 7, 8, 11 | 3syl 18 | . . 3 ⊢ (𝐴 ≠ ∅ → ∩ 𝐴 ⊆ 𝑂) |
| 13 | dfss4 4235 | . . 3 ⊢ (∩ 𝐴 ⊆ 𝑂 ↔ (𝑂 ∖ (𝑂 ∖ ∩ 𝐴)) = ∩ 𝐴) | |
| 14 | 12, 13 | sylib 218 | . 2 ⊢ (𝐴 ≠ ∅ → (𝑂 ∖ (𝑂 ∖ ∩ 𝐴)) = ∩ 𝐴) |
| 15 | 5, 14 | eqtr2id 2778 | 1 ⊢ (𝐴 ≠ ∅ → ∩ 𝐴 = (𝑂 ∖ ∪ 𝑥 ∈ 𝐴 (𝑂 ∖ 𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 Vcvv 3450 ∖ cdif 3914 ⊆ wss 3917 ∅c0 4299 𝒫 cpw 4566 ∪ cuni 4874 ∩ cint 4913 ∪ ciun 4958 ∩ ciin 4959 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-pw 4568 df-sn 4593 df-pr 4595 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |