Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iundifdif Structured version   Visualization version   GIF version

Theorem iundifdif 30439
 Description: The intersection of a set is the complement of the union of the complements. TODO: shorten using iundifdifd 30438. (Contributed by Thierry Arnoux, 4-Sep-2016.)
Hypotheses
Ref Expression
iundifdif.o 𝑂 ∈ V
iundifdif.2 𝐴 ⊆ 𝒫 𝑂
Assertion
Ref Expression
iundifdif (𝐴 ≠ ∅ → 𝐴 = (𝑂 𝑥𝐴 (𝑂𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑂

Proof of Theorem iundifdif
StepHypRef Expression
1 iundif2 4966 . . . 4 𝑥𝐴 (𝑂𝑥) = (𝑂 𝑥𝐴 𝑥)
2 intiin 4952 . . . . 5 𝐴 = 𝑥𝐴 𝑥
32difeq2i 4028 . . . 4 (𝑂 𝐴) = (𝑂 𝑥𝐴 𝑥)
41, 3eqtr4i 2785 . . 3 𝑥𝐴 (𝑂𝑥) = (𝑂 𝐴)
54difeq2i 4028 . 2 (𝑂 𝑥𝐴 (𝑂𝑥)) = (𝑂 ∖ (𝑂 𝐴))
6 iundifdif.2 . . . . 5 𝐴 ⊆ 𝒫 𝑂
76jctl 527 . . . 4 (𝐴 ≠ ∅ → (𝐴 ⊆ 𝒫 𝑂𝐴 ≠ ∅))
8 intssuni2 4867 . . . 4 ((𝐴 ⊆ 𝒫 𝑂𝐴 ≠ ∅) → 𝐴 𝒫 𝑂)
9 unipw 5316 . . . . . 6 𝒫 𝑂 = 𝑂
109sseq2i 3924 . . . . 5 ( 𝐴 𝒫 𝑂 𝐴𝑂)
1110biimpi 219 . . . 4 ( 𝐴 𝒫 𝑂 𝐴𝑂)
127, 8, 113syl 18 . . 3 (𝐴 ≠ ∅ → 𝐴𝑂)
13 dfss4 4166 . . 3 ( 𝐴𝑂 ↔ (𝑂 ∖ (𝑂 𝐴)) = 𝐴)
1412, 13sylib 221 . 2 (𝐴 ≠ ∅ → (𝑂 ∖ (𝑂 𝐴)) = 𝐴)
155, 14syl5req 2807 1 (𝐴 ≠ ∅ → 𝐴 = (𝑂 𝑥𝐴 (𝑂𝑥)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1539   ∈ wcel 2112   ≠ wne 2952  Vcvv 3410   ∖ cdif 3858   ⊆ wss 3861  ∅c0 4228  𝒫 cpw 4498  ∪ cuni 4802  ∩ cint 4842  ∪ ciun 4887  ∩ ciin 4888 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-ext 2730  ax-sep 5174  ax-nul 5181  ax-pr 5303 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2071  df-clab 2737  df-cleq 2751  df-clel 2831  df-ne 2953  df-ral 3076  df-rex 3077  df-rab 3080  df-v 3412  df-dif 3864  df-un 3866  df-in 3868  df-ss 3878  df-nul 4229  df-pw 4500  df-sn 4527  df-pr 4529  df-uni 4803  df-int 4843  df-iun 4889  df-iin 4890 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator