Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iundifdif Structured version   Visualization version   GIF version

Theorem iundifdif 30803
Description: The intersection of a set is the complement of the union of the complements. TODO: shorten using iundifdifd 30802. (Contributed by Thierry Arnoux, 4-Sep-2016.)
Hypotheses
Ref Expression
iundifdif.o 𝑂 ∈ V
iundifdif.2 𝐴 ⊆ 𝒫 𝑂
Assertion
Ref Expression
iundifdif (𝐴 ≠ ∅ → 𝐴 = (𝑂 𝑥𝐴 (𝑂𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑂

Proof of Theorem iundifdif
StepHypRef Expression
1 iundif2 4999 . . . 4 𝑥𝐴 (𝑂𝑥) = (𝑂 𝑥𝐴 𝑥)
2 intiin 4985 . . . . 5 𝐴 = 𝑥𝐴 𝑥
32difeq2i 4050 . . . 4 (𝑂 𝐴) = (𝑂 𝑥𝐴 𝑥)
41, 3eqtr4i 2769 . . 3 𝑥𝐴 (𝑂𝑥) = (𝑂 𝐴)
54difeq2i 4050 . 2 (𝑂 𝑥𝐴 (𝑂𝑥)) = (𝑂 ∖ (𝑂 𝐴))
6 iundifdif.2 . . . . 5 𝐴 ⊆ 𝒫 𝑂
76jctl 523 . . . 4 (𝐴 ≠ ∅ → (𝐴 ⊆ 𝒫 𝑂𝐴 ≠ ∅))
8 intssuni2 4901 . . . 4 ((𝐴 ⊆ 𝒫 𝑂𝐴 ≠ ∅) → 𝐴 𝒫 𝑂)
9 unipw 5360 . . . . . 6 𝒫 𝑂 = 𝑂
109sseq2i 3946 . . . . 5 ( 𝐴 𝒫 𝑂 𝐴𝑂)
1110biimpi 215 . . . 4 ( 𝐴 𝒫 𝑂 𝐴𝑂)
127, 8, 113syl 18 . . 3 (𝐴 ≠ ∅ → 𝐴𝑂)
13 dfss4 4189 . . 3 ( 𝐴𝑂 ↔ (𝑂 ∖ (𝑂 𝐴)) = 𝐴)
1412, 13sylib 217 . 2 (𝐴 ≠ ∅ → (𝑂 ∖ (𝑂 𝐴)) = 𝐴)
155, 14eqtr2id 2792 1 (𝐴 ≠ ∅ → 𝐴 = (𝑂 𝑥𝐴 (𝑂𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  Vcvv 3422  cdif 3880  wss 3883  c0 4253  𝒫 cpw 4530   cuni 4836   cint 4876   ciun 4921   ciin 4922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-pw 4532  df-sn 4559  df-pr 4561  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator