MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixpint Structured version   Visualization version   GIF version

Theorem ixpint 8965
Description: The intersection of a collection of infinite Cartesian products. (Contributed by Mario Carneiro, 3-Feb-2015.)
Assertion
Ref Expression
ixpint (𝐵 ≠ ∅ → X𝑥𝐴 𝐵 = 𝑦𝐵 X𝑥𝐴 𝑦)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem ixpint
StepHypRef Expression
1 ixpeq2 8951 . . 3 (∀𝑥𝐴 𝐵 = 𝑦𝐵 𝑦X𝑥𝐴 𝐵 = X𝑥𝐴 𝑦𝐵 𝑦)
2 intiin 5059 . . . 4 𝐵 = 𝑦𝐵 𝑦
32a1i 11 . . 3 (𝑥𝐴 𝐵 = 𝑦𝐵 𝑦)
41, 3mprg 3067 . 2 X𝑥𝐴 𝐵 = X𝑥𝐴 𝑦𝐵 𝑦
5 ixpiin 8964 . 2 (𝐵 ≠ ∅ → X𝑥𝐴 𝑦𝐵 𝑦 = 𝑦𝐵 X𝑥𝐴 𝑦)
64, 5eqtrid 2789 1 (𝐵 ≠ ∅ → X𝑥𝐴 𝐵 = 𝑦𝐵 X𝑥𝐴 𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  wne 2940  c0 4333   cint 4946   ciin 4992  Xcixp 8937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-11 2157  ax-12 2177  ax-ext 2708  ax-nul 5306
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iin 4994  df-br 5144  df-opab 5206  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-iota 6514  df-fun 6563  df-fn 6564  df-fv 6569  df-ixp 8938
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator