MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixpint Structured version   Visualization version   GIF version

Theorem ixpint 8944
Description: The intersection of a collection of infinite Cartesian products. (Contributed by Mario Carneiro, 3-Feb-2015.)
Assertion
Ref Expression
ixpint (𝐵 ≠ ∅ → X𝑥𝐴 𝐵 = 𝑦𝐵 X𝑥𝐴 𝑦)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem ixpint
StepHypRef Expression
1 ixpeq2 8930 . . 3 (∀𝑥𝐴 𝐵 = 𝑦𝐵 𝑦X𝑥𝐴 𝐵 = X𝑥𝐴 𝑦𝐵 𝑦)
2 intiin 5040 . . . 4 𝐵 = 𝑦𝐵 𝑦
32a1i 11 . . 3 (𝑥𝐴 𝐵 = 𝑦𝐵 𝑦)
41, 3mprg 3058 . 2 X𝑥𝐴 𝐵 = X𝑥𝐴 𝑦𝐵 𝑦
5 ixpiin 8943 . 2 (𝐵 ≠ ∅ → X𝑥𝐴 𝑦𝐵 𝑦 = 𝑦𝐵 X𝑥𝐴 𝑦)
64, 5eqtrid 2783 1 (𝐵 ≠ ∅ → X𝑥𝐴 𝐵 = 𝑦𝐵 X𝑥𝐴 𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wne 2933  c0 4313   cint 4927   ciin 4973  Xcixp 8916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-12 2178  ax-ext 2708  ax-nul 5281
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-ral 3053  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iin 4975  df-br 5125  df-opab 5187  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-iota 6489  df-fun 6538  df-fn 6539  df-fv 6544  df-ixp 8917
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator