| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ixpint | Structured version Visualization version GIF version | ||
| Description: The intersection of a collection of infinite Cartesian products. (Contributed by Mario Carneiro, 3-Feb-2015.) |
| Ref | Expression |
|---|---|
| ixpint | ⊢ (𝐵 ≠ ∅ → X𝑥 ∈ 𝐴 ∩ 𝐵 = ∩ 𝑦 ∈ 𝐵 X𝑥 ∈ 𝐴 𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ixpeq2 8884 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∩ 𝐵 = ∩ 𝑦 ∈ 𝐵 𝑦 → X𝑥 ∈ 𝐴 ∩ 𝐵 = X𝑥 ∈ 𝐴 ∩ 𝑦 ∈ 𝐵 𝑦) | |
| 2 | intiin 5023 | . . . 4 ⊢ ∩ 𝐵 = ∩ 𝑦 ∈ 𝐵 𝑦 | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ∩ 𝐵 = ∩ 𝑦 ∈ 𝐵 𝑦) |
| 4 | 1, 3 | mprg 3050 | . 2 ⊢ X𝑥 ∈ 𝐴 ∩ 𝐵 = X𝑥 ∈ 𝐴 ∩ 𝑦 ∈ 𝐵 𝑦 |
| 5 | ixpiin 8897 | . 2 ⊢ (𝐵 ≠ ∅ → X𝑥 ∈ 𝐴 ∩ 𝑦 ∈ 𝐵 𝑦 = ∩ 𝑦 ∈ 𝐵 X𝑥 ∈ 𝐴 𝑦) | |
| 6 | 4, 5 | eqtrid 2776 | 1 ⊢ (𝐵 ≠ ∅ → X𝑥 ∈ 𝐴 ∩ 𝐵 = ∩ 𝑦 ∈ 𝐵 X𝑥 ∈ 𝐴 𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∅c0 4296 ∩ cint 4910 ∩ ciin 4956 Xcixp 8870 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-12 2178 ax-ext 2701 ax-nul 5261 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iin 4958 df-br 5108 df-opab 5170 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fn 6514 df-fv 6519 df-ixp 8871 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |