![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iundifdifd | Structured version Visualization version GIF version |
Description: The intersection of a set is the complement of the union of the complements. (Contributed by Thierry Arnoux, 19-Dec-2016.) |
Ref | Expression |
---|---|
iundifdifd | ⊢ (𝐴 ⊆ 𝒫 𝑂 → (𝐴 ≠ ∅ → ∩ 𝐴 = (𝑂 ∖ ∪ 𝑥 ∈ 𝐴 (𝑂 ∖ 𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iundif2 5078 | . . . . 5 ⊢ ∪ 𝑥 ∈ 𝐴 (𝑂 ∖ 𝑥) = (𝑂 ∖ ∩ 𝑥 ∈ 𝐴 𝑥) | |
2 | intiin 5063 | . . . . . 6 ⊢ ∩ 𝐴 = ∩ 𝑥 ∈ 𝐴 𝑥 | |
3 | 2 | difeq2i 4132 | . . . . 5 ⊢ (𝑂 ∖ ∩ 𝐴) = (𝑂 ∖ ∩ 𝑥 ∈ 𝐴 𝑥) |
4 | 1, 3 | eqtr4i 2765 | . . . 4 ⊢ ∪ 𝑥 ∈ 𝐴 (𝑂 ∖ 𝑥) = (𝑂 ∖ ∩ 𝐴) |
5 | 4 | difeq2i 4132 | . . 3 ⊢ (𝑂 ∖ ∪ 𝑥 ∈ 𝐴 (𝑂 ∖ 𝑥)) = (𝑂 ∖ (𝑂 ∖ ∩ 𝐴)) |
6 | intssuni2 4977 | . . . . 5 ⊢ ((𝐴 ⊆ 𝒫 𝑂 ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ⊆ ∪ 𝒫 𝑂) | |
7 | unipw 5460 | . . . . 5 ⊢ ∪ 𝒫 𝑂 = 𝑂 | |
8 | 6, 7 | sseqtrdi 4045 | . . . 4 ⊢ ((𝐴 ⊆ 𝒫 𝑂 ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ⊆ 𝑂) |
9 | dfss4 4274 | . . . 4 ⊢ (∩ 𝐴 ⊆ 𝑂 ↔ (𝑂 ∖ (𝑂 ∖ ∩ 𝐴)) = ∩ 𝐴) | |
10 | 8, 9 | sylib 218 | . . 3 ⊢ ((𝐴 ⊆ 𝒫 𝑂 ∧ 𝐴 ≠ ∅) → (𝑂 ∖ (𝑂 ∖ ∩ 𝐴)) = ∩ 𝐴) |
11 | 5, 10 | eqtr2id 2787 | . 2 ⊢ ((𝐴 ⊆ 𝒫 𝑂 ∧ 𝐴 ≠ ∅) → ∩ 𝐴 = (𝑂 ∖ ∪ 𝑥 ∈ 𝐴 (𝑂 ∖ 𝑥))) |
12 | 11 | ex 412 | 1 ⊢ (𝐴 ⊆ 𝒫 𝑂 → (𝐴 ≠ ∅ → ∩ 𝐴 = (𝑂 ∖ ∪ 𝑥 ∈ 𝐴 (𝑂 ∖ 𝑥)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ≠ wne 2937 ∖ cdif 3959 ⊆ wss 3962 ∅c0 4338 𝒫 cpw 4604 ∪ cuni 4911 ∩ cint 4950 ∪ ciun 4995 ∩ ciin 4996 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-pw 4606 df-sn 4631 df-pr 4633 df-uni 4912 df-int 4951 df-iun 4997 df-iin 4998 |
This theorem is referenced by: sigaclci 34112 |
Copyright terms: Public domain | W3C validator |