Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iundifdifd Structured version   Visualization version   GIF version

Theorem iundifdifd 30416
Description: The intersection of a set is the complement of the union of the complements. (Contributed by Thierry Arnoux, 19-Dec-2016.)
Assertion
Ref Expression
iundifdifd (𝐴 ⊆ 𝒫 𝑂 → (𝐴 ≠ ∅ → 𝐴 = (𝑂 𝑥𝐴 (𝑂𝑥))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑂

Proof of Theorem iundifdifd
StepHypRef Expression
1 iundif2 4962 . . . . 5 𝑥𝐴 (𝑂𝑥) = (𝑂 𝑥𝐴 𝑥)
2 intiin 4949 . . . . . 6 𝐴 = 𝑥𝐴 𝑥
32difeq2i 4026 . . . . 5 (𝑂 𝐴) = (𝑂 𝑥𝐴 𝑥)
41, 3eqtr4i 2785 . . . 4 𝑥𝐴 (𝑂𝑥) = (𝑂 𝐴)
54difeq2i 4026 . . 3 (𝑂 𝑥𝐴 (𝑂𝑥)) = (𝑂 ∖ (𝑂 𝐴))
6 intssuni2 4864 . . . . 5 ((𝐴 ⊆ 𝒫 𝑂𝐴 ≠ ∅) → 𝐴 𝒫 𝑂)
7 unipw 5312 . . . . 5 𝒫 𝑂 = 𝑂
86, 7sseqtrdi 3943 . . . 4 ((𝐴 ⊆ 𝒫 𝑂𝐴 ≠ ∅) → 𝐴𝑂)
9 dfss4 4164 . . . 4 ( 𝐴𝑂 ↔ (𝑂 ∖ (𝑂 𝐴)) = 𝐴)
108, 9sylib 221 . . 3 ((𝐴 ⊆ 𝒫 𝑂𝐴 ≠ ∅) → (𝑂 ∖ (𝑂 𝐴)) = 𝐴)
115, 10syl5req 2807 . 2 ((𝐴 ⊆ 𝒫 𝑂𝐴 ≠ ∅) → 𝐴 = (𝑂 𝑥𝐴 (𝑂𝑥)))
1211ex 417 1 (𝐴 ⊆ 𝒫 𝑂 → (𝐴 ≠ ∅ → 𝐴 = (𝑂 𝑥𝐴 (𝑂𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 400   = wceq 1539  wne 2952  cdif 3856  wss 3859  c0 4226  𝒫 cpw 4495   cuni 4799   cint 4839   ciun 4884   ciin 4885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-ext 2730  ax-sep 5170  ax-nul 5177  ax-pr 5299
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2071  df-clab 2737  df-cleq 2751  df-clel 2831  df-ne 2953  df-ral 3076  df-rex 3077  df-rab 3080  df-v 3412  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-nul 4227  df-pw 4497  df-sn 4524  df-pr 4526  df-uni 4800  df-int 4840  df-iun 4886  df-iin 4887
This theorem is referenced by:  sigaclci  31612
  Copyright terms: Public domain W3C validator