| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iundifdifd | Structured version Visualization version GIF version | ||
| Description: The intersection of a set is the complement of the union of the complements. (Contributed by Thierry Arnoux, 19-Dec-2016.) |
| Ref | Expression |
|---|---|
| iundifdifd | ⊢ (𝐴 ⊆ 𝒫 𝑂 → (𝐴 ≠ ∅ → ∩ 𝐴 = (𝑂 ∖ ∪ 𝑥 ∈ 𝐴 (𝑂 ∖ 𝑥)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iundif2 5020 | . . . . 5 ⊢ ∪ 𝑥 ∈ 𝐴 (𝑂 ∖ 𝑥) = (𝑂 ∖ ∩ 𝑥 ∈ 𝐴 𝑥) | |
| 2 | intiin 5006 | . . . . . 6 ⊢ ∩ 𝐴 = ∩ 𝑥 ∈ 𝐴 𝑥 | |
| 3 | 2 | difeq2i 4070 | . . . . 5 ⊢ (𝑂 ∖ ∩ 𝐴) = (𝑂 ∖ ∩ 𝑥 ∈ 𝐴 𝑥) |
| 4 | 1, 3 | eqtr4i 2757 | . . . 4 ⊢ ∪ 𝑥 ∈ 𝐴 (𝑂 ∖ 𝑥) = (𝑂 ∖ ∩ 𝐴) |
| 5 | 4 | difeq2i 4070 | . . 3 ⊢ (𝑂 ∖ ∪ 𝑥 ∈ 𝐴 (𝑂 ∖ 𝑥)) = (𝑂 ∖ (𝑂 ∖ ∩ 𝐴)) |
| 6 | intssuni2 4921 | . . . . 5 ⊢ ((𝐴 ⊆ 𝒫 𝑂 ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ⊆ ∪ 𝒫 𝑂) | |
| 7 | unipw 5389 | . . . . 5 ⊢ ∪ 𝒫 𝑂 = 𝑂 | |
| 8 | 6, 7 | sseqtrdi 3970 | . . . 4 ⊢ ((𝐴 ⊆ 𝒫 𝑂 ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ⊆ 𝑂) |
| 9 | dfss4 4216 | . . . 4 ⊢ (∩ 𝐴 ⊆ 𝑂 ↔ (𝑂 ∖ (𝑂 ∖ ∩ 𝐴)) = ∩ 𝐴) | |
| 10 | 8, 9 | sylib 218 | . . 3 ⊢ ((𝐴 ⊆ 𝒫 𝑂 ∧ 𝐴 ≠ ∅) → (𝑂 ∖ (𝑂 ∖ ∩ 𝐴)) = ∩ 𝐴) |
| 11 | 5, 10 | eqtr2id 2779 | . 2 ⊢ ((𝐴 ⊆ 𝒫 𝑂 ∧ 𝐴 ≠ ∅) → ∩ 𝐴 = (𝑂 ∖ ∪ 𝑥 ∈ 𝐴 (𝑂 ∖ 𝑥))) |
| 12 | 11 | ex 412 | 1 ⊢ (𝐴 ⊆ 𝒫 𝑂 → (𝐴 ≠ ∅ → ∩ 𝐴 = (𝑂 ∖ ∪ 𝑥 ∈ 𝐴 (𝑂 ∖ 𝑥)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ≠ wne 2928 ∖ cdif 3894 ⊆ wss 3897 ∅c0 4280 𝒫 cpw 4547 ∪ cuni 4856 ∩ cint 4895 ∪ ciun 4939 ∩ ciin 4940 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-pw 4549 df-sn 4574 df-pr 4576 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 |
| This theorem is referenced by: sigaclci 34145 |
| Copyright terms: Public domain | W3C validator |