Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iundifdifd Structured version   Visualization version   GIF version

Theorem iundifdifd 32488
Description: The intersection of a set is the complement of the union of the complements. (Contributed by Thierry Arnoux, 19-Dec-2016.)
Assertion
Ref Expression
iundifdifd (𝐴 ⊆ 𝒫 𝑂 → (𝐴 ≠ ∅ → 𝐴 = (𝑂 𝑥𝐴 (𝑂𝑥))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑂

Proof of Theorem iundifdifd
StepHypRef Expression
1 iundif2 5050 . . . . 5 𝑥𝐴 (𝑂𝑥) = (𝑂 𝑥𝐴 𝑥)
2 intiin 5035 . . . . . 6 𝐴 = 𝑥𝐴 𝑥
32difeq2i 4098 . . . . 5 (𝑂 𝐴) = (𝑂 𝑥𝐴 𝑥)
41, 3eqtr4i 2761 . . . 4 𝑥𝐴 (𝑂𝑥) = (𝑂 𝐴)
54difeq2i 4098 . . 3 (𝑂 𝑥𝐴 (𝑂𝑥)) = (𝑂 ∖ (𝑂 𝐴))
6 intssuni2 4949 . . . . 5 ((𝐴 ⊆ 𝒫 𝑂𝐴 ≠ ∅) → 𝐴 𝒫 𝑂)
7 unipw 5425 . . . . 5 𝒫 𝑂 = 𝑂
86, 7sseqtrdi 3999 . . . 4 ((𝐴 ⊆ 𝒫 𝑂𝐴 ≠ ∅) → 𝐴𝑂)
9 dfss4 4244 . . . 4 ( 𝐴𝑂 ↔ (𝑂 ∖ (𝑂 𝐴)) = 𝐴)
108, 9sylib 218 . . 3 ((𝐴 ⊆ 𝒫 𝑂𝐴 ≠ ∅) → (𝑂 ∖ (𝑂 𝐴)) = 𝐴)
115, 10eqtr2id 2783 . 2 ((𝐴 ⊆ 𝒫 𝑂𝐴 ≠ ∅) → 𝐴 = (𝑂 𝑥𝐴 (𝑂𝑥)))
1211ex 412 1 (𝐴 ⊆ 𝒫 𝑂 → (𝐴 ≠ ∅ → 𝐴 = (𝑂 𝑥𝐴 (𝑂𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wne 2932  cdif 3923  wss 3926  c0 4308  𝒫 cpw 4575   cuni 4883   cint 4922   ciun 4967   ciin 4968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-pw 4577  df-sn 4602  df-pr 4604  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970
This theorem is referenced by:  sigaclci  34109
  Copyright terms: Public domain W3C validator