![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > intcld | Structured version Visualization version GIF version |
Description: The intersection of a set of closed sets is closed. (Contributed by NM, 5-Oct-2006.) |
Ref | Expression |
---|---|
intcld | ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ⊆ (Clsd‘𝐽)) → ∩ 𝐴 ∈ (Clsd‘𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intiin 5064 | . 2 ⊢ ∩ 𝐴 = ∩ 𝑥 ∈ 𝐴 𝑥 | |
2 | dfss3 3984 | . . 3 ⊢ (𝐴 ⊆ (Clsd‘𝐽) ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ (Clsd‘𝐽)) | |
3 | iincld 23063 | . . 3 ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝑥 ∈ (Clsd‘𝐽)) → ∩ 𝑥 ∈ 𝐴 𝑥 ∈ (Clsd‘𝐽)) | |
4 | 2, 3 | sylan2b 594 | . 2 ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ⊆ (Clsd‘𝐽)) → ∩ 𝑥 ∈ 𝐴 𝑥 ∈ (Clsd‘𝐽)) |
5 | 1, 4 | eqeltrid 2843 | 1 ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ⊆ (Clsd‘𝐽)) → ∩ 𝐴 ∈ (Clsd‘𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2106 ≠ wne 2938 ∀wral 3059 ⊆ wss 3963 ∅c0 4339 ∩ cint 4951 ∩ ciin 4997 ‘cfv 6563 Clsdccld 23040 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fn 6566 df-fv 6571 df-top 22916 df-cld 23043 |
This theorem is referenced by: incld 23067 clscld 23071 cldmre 23102 |
Copyright terms: Public domain | W3C validator |