| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > intcld | Structured version Visualization version GIF version | ||
| Description: The intersection of a set of closed sets is closed. (Contributed by NM, 5-Oct-2006.) |
| Ref | Expression |
|---|---|
| intcld | ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ⊆ (Clsd‘𝐽)) → ∩ 𝐴 ∈ (Clsd‘𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intiin 5059 | . 2 ⊢ ∩ 𝐴 = ∩ 𝑥 ∈ 𝐴 𝑥 | |
| 2 | dfss3 3972 | . . 3 ⊢ (𝐴 ⊆ (Clsd‘𝐽) ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ (Clsd‘𝐽)) | |
| 3 | iincld 23047 | . . 3 ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝑥 ∈ (Clsd‘𝐽)) → ∩ 𝑥 ∈ 𝐴 𝑥 ∈ (Clsd‘𝐽)) | |
| 4 | 2, 3 | sylan2b 594 | . 2 ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ⊆ (Clsd‘𝐽)) → ∩ 𝑥 ∈ 𝐴 𝑥 ∈ (Clsd‘𝐽)) |
| 5 | 1, 4 | eqeltrid 2845 | 1 ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ⊆ (Clsd‘𝐽)) → ∩ 𝐴 ∈ (Clsd‘𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ≠ wne 2940 ∀wral 3061 ⊆ wss 3951 ∅c0 4333 ∩ cint 4946 ∩ ciin 4992 ‘cfv 6561 Clsdccld 23024 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-iota 6514 df-fun 6563 df-fn 6564 df-fv 6569 df-top 22900 df-cld 23027 |
| This theorem is referenced by: incld 23051 clscld 23055 cldmre 23086 |
| Copyright terms: Public domain | W3C validator |