| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > intcld | Structured version Visualization version GIF version | ||
| Description: The intersection of a set of closed sets is closed. (Contributed by NM, 5-Oct-2006.) |
| Ref | Expression |
|---|---|
| intcld | ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ⊆ (Clsd‘𝐽)) → ∩ 𝐴 ∈ (Clsd‘𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intiin 5023 | . 2 ⊢ ∩ 𝐴 = ∩ 𝑥 ∈ 𝐴 𝑥 | |
| 2 | dfss3 3935 | . . 3 ⊢ (𝐴 ⊆ (Clsd‘𝐽) ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ (Clsd‘𝐽)) | |
| 3 | iincld 22926 | . . 3 ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝑥 ∈ (Clsd‘𝐽)) → ∩ 𝑥 ∈ 𝐴 𝑥 ∈ (Clsd‘𝐽)) | |
| 4 | 2, 3 | sylan2b 594 | . 2 ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ⊆ (Clsd‘𝐽)) → ∩ 𝑥 ∈ 𝐴 𝑥 ∈ (Clsd‘𝐽)) |
| 5 | 1, 4 | eqeltrid 2832 | 1 ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ⊆ (Clsd‘𝐽)) → ∩ 𝐴 ∈ (Clsd‘𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ⊆ wss 3914 ∅c0 4296 ∩ cint 4910 ∩ ciin 4956 ‘cfv 6511 Clsdccld 22903 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fn 6514 df-fv 6519 df-top 22781 df-cld 22906 |
| This theorem is referenced by: incld 22930 clscld 22934 cldmre 22965 |
| Copyright terms: Public domain | W3C validator |