Step | Hyp | Ref
| Expression |
1 | | efgval.w |
. . . . 5
β’ π = ( I βWord (πΌ Γ
2o)) |
2 | 1 | efglem 19627 |
. . . 4
β’
βπ(π Er π β§ βπ₯ β π βπ β (0...(β―βπ₯))βπ¦ β πΌ βπ§ β 2o π₯π(π₯ splice β¨π, π, β¨ββ¨π¦, π§β©β¨π¦, (1o β π§)β©ββ©β©)) |
3 | | abn0 4381 |
. . . 4
β’ ({π β£ (π Er π β§ βπ₯ β π βπ β (0...(β―βπ₯))βπ¦ β πΌ βπ§ β 2o π₯π(π₯ splice β¨π, π, β¨ββ¨π¦, π§β©β¨π¦, (1o β π§)β©ββ©β©))} β β
β βπ(π Er π β§ βπ₯ β π βπ β (0...(β―βπ₯))βπ¦ β πΌ βπ§ β 2o π₯π(π₯ splice β¨π, π, β¨ββ¨π¦, π§β©β¨π¦, (1o β π§)β©ββ©β©))) |
4 | 2, 3 | mpbir 230 |
. . 3
β’ {π β£ (π Er π β§ βπ₯ β π βπ β (0...(β―βπ₯))βπ¦ β πΌ βπ§ β 2o π₯π(π₯ splice β¨π, π, β¨ββ¨π¦, π§β©β¨π¦, (1o β π§)β©ββ©β©))} β
β
|
5 | | ereq1 8714 |
. . . . 5
β’ (π€ = π β (π€ Er π β π Er π)) |
6 | 5 | ralab2 3694 |
. . . 4
β’
(βπ€ β
{π β£ (π Er π β§ βπ₯ β π βπ β (0...(β―βπ₯))βπ¦ β πΌ βπ§ β 2o π₯π(π₯ splice β¨π, π, β¨ββ¨π¦, π§β©β¨π¦, (1o β π§)β©ββ©β©))}π€ Er π β βπ((π Er π β§ βπ₯ β π βπ β (0...(β―βπ₯))βπ¦ β πΌ βπ§ β 2o π₯π(π₯ splice β¨π, π, β¨ββ¨π¦, π§β©β¨π¦, (1o β π§)β©ββ©β©)) β π Er π)) |
7 | | simpl 481 |
. . . 4
β’ ((π Er π β§ βπ₯ β π βπ β (0...(β―βπ₯))βπ¦ β πΌ βπ§ β 2o π₯π(π₯ splice β¨π, π, β¨ββ¨π¦, π§β©β¨π¦, (1o β π§)β©ββ©β©)) β π Er π) |
8 | 6, 7 | mpgbir 1799 |
. . 3
β’
βπ€ β
{π β£ (π Er π β§ βπ₯ β π βπ β (0...(β―βπ₯))βπ¦ β πΌ βπ§ β 2o π₯π(π₯ splice β¨π, π, β¨ββ¨π¦, π§β©β¨π¦, (1o β π§)β©ββ©β©))}π€ Er π |
9 | | iiner 8787 |
. . 3
β’ (({π β£ (π Er π β§ βπ₯ β π βπ β (0...(β―βπ₯))βπ¦ β πΌ βπ§ β 2o π₯π(π₯ splice β¨π, π, β¨ββ¨π¦, π§β©β¨π¦, (1o β π§)β©ββ©β©))} β β
β§ βπ€ β
{π β£ (π Er π β§ βπ₯ β π βπ β (0...(β―βπ₯))βπ¦ β πΌ βπ§ β 2o π₯π(π₯ splice β¨π, π, β¨ββ¨π¦, π§β©β¨π¦, (1o β π§)β©ββ©β©))}π€ Er π) β β©
π€ β {π β£ (π Er π β§ βπ₯ β π βπ β (0...(β―βπ₯))βπ¦ β πΌ βπ§ β 2o π₯π(π₯ splice β¨π, π, β¨ββ¨π¦, π§β©β¨π¦, (1o β π§)β©ββ©β©))}π€ Er π) |
10 | 4, 8, 9 | mp2an 688 |
. 2
β’ β© π€ β {π β£ (π Er π β§ βπ₯ β π βπ β (0...(β―βπ₯))βπ¦ β πΌ βπ§ β 2o π₯π(π₯ splice β¨π, π, β¨ββ¨π¦, π§β©β¨π¦, (1o β π§)β©ββ©β©))}π€ Er π |
11 | | efgval.r |
. . . . 5
β’ βΌ = (
~FG βπΌ) |
12 | 1, 11 | efgval 19628 |
. . . 4
β’ βΌ =
β© {π β£ (π Er π β§ βπ₯ β π βπ β (0...(β―βπ₯))βπ¦ β πΌ βπ§ β 2o π₯π(π₯ splice β¨π, π, β¨ββ¨π¦, π§β©β¨π¦, (1o β π§)β©ββ©β©))} |
13 | | intiin 5063 |
. . . 4
β’ β© {π
β£ (π Er π β§ βπ₯ β π βπ β (0...(β―βπ₯))βπ¦ β πΌ βπ§ β 2o π₯π(π₯ splice β¨π, π, β¨ββ¨π¦, π§β©β¨π¦, (1o β π§)β©ββ©β©))} = β© π€ β {π β£ (π Er π β§ βπ₯ β π βπ β (0...(β―βπ₯))βπ¦ β πΌ βπ§ β 2o π₯π(π₯ splice β¨π, π, β¨ββ¨π¦, π§β©β¨π¦, (1o β π§)β©ββ©β©))}π€ |
14 | 12, 13 | eqtri 2758 |
. . 3
β’ βΌ =
β© π€ β {π β£ (π Er π β§ βπ₯ β π βπ β (0...(β―βπ₯))βπ¦ β πΌ βπ§ β 2o π₯π(π₯ splice β¨π, π, β¨ββ¨π¦, π§β©β¨π¦, (1o β π§)β©ββ©β©))}π€ |
15 | | ereq1 8714 |
. . 3
β’ ( βΌ =
β© π€ β {π β£ (π Er π β§ βπ₯ β π βπ β (0...(β―βπ₯))βπ¦ β πΌ βπ§ β 2o π₯π(π₯ splice β¨π, π, β¨ββ¨π¦, π§β©β¨π¦, (1o β π§)β©ββ©β©))}π€ β ( βΌ Er π β β© π€ β {π β£ (π Er π β§ βπ₯ β π βπ β (0...(β―βπ₯))βπ¦ β πΌ βπ§ β 2o π₯π(π₯ splice β¨π, π, β¨ββ¨π¦, π§β©β¨π¦, (1o β π§)β©ββ©β©))}π€ Er π)) |
16 | 14, 15 | ax-mp 5 |
. 2
β’ ( βΌ Er
π β β© π€ β {π β£ (π Er π β§ βπ₯ β π βπ β (0...(β―βπ₯))βπ¦ β πΌ βπ§ β 2o π₯π(π₯ splice β¨π, π, β¨ββ¨π¦, π§β©β¨π¦, (1o β π§)β©ββ©β©))}π€ Er π) |
17 | 10, 16 | mpbir 230 |
1
β’ βΌ Er
π |