MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intsng Structured version   Visualization version   GIF version

Theorem intsng 4916
Description: Intersection of a singleton. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
intsng (𝐴𝑉 {𝐴} = 𝐴)

Proof of Theorem intsng
StepHypRef Expression
1 dfsn2 4574 . . 3 {𝐴} = {𝐴, 𝐴}
21inteqi 4883 . 2 {𝐴} = {𝐴, 𝐴}
3 intprg 4912 . . . 4 ((𝐴𝑉𝐴𝑉) → {𝐴, 𝐴} = (𝐴𝐴))
43anidms 567 . . 3 (𝐴𝑉 {𝐴, 𝐴} = (𝐴𝐴))
5 inidm 4152 . . 3 (𝐴𝐴) = 𝐴
64, 5eqtrdi 2794 . 2 (𝐴𝑉 {𝐴, 𝐴} = 𝐴)
72, 6eqtrid 2790 1 (𝐴𝑉 {𝐴} = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  cin 3886  {csn 4561  {cpr 4563   cint 4879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-v 3434  df-un 3892  df-in 3894  df-sn 4562  df-pr 4564  df-int 4880
This theorem is referenced by:  intsn  4917  riinint  5877  bj-snmoore  35284  bj-prmoore  35286  elrfi  40516
  Copyright terms: Public domain W3C validator