MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intsng Structured version   Visualization version   GIF version

Theorem intsng 4933
Description: Intersection of a singleton. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
intsng (𝐴𝑉 {𝐴} = 𝐴)

Proof of Theorem intsng
StepHypRef Expression
1 dfsn2 4586 . . 3 {𝐴} = {𝐴, 𝐴}
21inteqi 4898 . 2 {𝐴} = {𝐴, 𝐴}
3 intprg 4929 . . . 4 ((𝐴𝑉𝐴𝑉) → {𝐴, 𝐴} = (𝐴𝐴))
43anidms 567 . . 3 (𝐴𝑉 {𝐴, 𝐴} = (𝐴𝐴))
5 inidm 4165 . . 3 (𝐴𝐴) = 𝐴
64, 5eqtrdi 2792 . 2 (𝐴𝑉 {𝐴, 𝐴} = 𝐴)
72, 6eqtrid 2788 1 (𝐴𝑉 {𝐴} = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  cin 3897  {csn 4573  {cpr 4575   cint 4894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3062  df-v 3443  df-un 3903  df-in 3905  df-sn 4574  df-pr 4576  df-int 4895
This theorem is referenced by:  intsn  4934  riinint  5909  bj-snmoore  35397  bj-prmoore  35399  elrfi  40786
  Copyright terms: Public domain W3C validator