MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intsng Structured version   Visualization version   GIF version

Theorem intsng 4950
Description: Intersection of a singleton. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
intsng (𝐴𝑉 {𝐴} = 𝐴)

Proof of Theorem intsng
StepHypRef Expression
1 dfsn2 4605 . . 3 {𝐴} = {𝐴, 𝐴}
21inteqi 4917 . 2 {𝐴} = {𝐴, 𝐴}
3 intprg 4948 . . . 4 ((𝐴𝑉𝐴𝑉) → {𝐴, 𝐴} = (𝐴𝐴))
43anidms 566 . . 3 (𝐴𝑉 {𝐴, 𝐴} = (𝐴𝐴))
5 inidm 4193 . . 3 (𝐴𝐴) = 𝐴
64, 5eqtrdi 2781 . 2 (𝐴𝑉 {𝐴, 𝐴} = 𝐴)
72, 6eqtrid 2777 1 (𝐴𝑉 {𝐴} = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cin 3916  {csn 4592  {cpr 4594   cint 4913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-v 3452  df-un 3922  df-in 3924  df-sn 4593  df-pr 4595  df-int 4914
This theorem is referenced by:  intsn  4951  riinint  5938  bj-snmoore  37108  bj-prmoore  37110  elrfi  42689
  Copyright terms: Public domain W3C validator