![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > intsng | Structured version Visualization version GIF version |
Description: Intersection of a singleton. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
Ref | Expression |
---|---|
intsng | ⊢ (𝐴 ∈ 𝑉 → ∩ {𝐴} = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsn2 4641 | . . 3 ⊢ {𝐴} = {𝐴, 𝐴} | |
2 | 1 | inteqi 4954 | . 2 ⊢ ∩ {𝐴} = ∩ {𝐴, 𝐴} |
3 | intprg 4985 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → ∩ {𝐴, 𝐴} = (𝐴 ∩ 𝐴)) | |
4 | 3 | anidms 566 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∩ {𝐴, 𝐴} = (𝐴 ∩ 𝐴)) |
5 | inidm 4218 | . . 3 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
6 | 4, 5 | eqtrdi 2787 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∩ {𝐴, 𝐴} = 𝐴) |
7 | 2, 6 | eqtrid 2783 | 1 ⊢ (𝐴 ∈ 𝑉 → ∩ {𝐴} = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ∩ cin 3947 {csn 4628 {cpr 4630 ∩ cint 4950 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-rex 3070 df-v 3475 df-un 3953 df-in 3955 df-sn 4629 df-pr 4631 df-int 4951 |
This theorem is referenced by: intsn 4990 riinint 5967 bj-snmoore 36460 bj-prmoore 36462 elrfi 41897 |
Copyright terms: Public domain | W3C validator |