Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > intsng | Structured version Visualization version GIF version |
Description: Intersection of a singleton. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
Ref | Expression |
---|---|
intsng | ⊢ (𝐴 ∈ 𝑉 → ∩ {𝐴} = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsn2 4586 | . . 3 ⊢ {𝐴} = {𝐴, 𝐴} | |
2 | 1 | inteqi 4898 | . 2 ⊢ ∩ {𝐴} = ∩ {𝐴, 𝐴} |
3 | intprg 4929 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → ∩ {𝐴, 𝐴} = (𝐴 ∩ 𝐴)) | |
4 | 3 | anidms 567 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∩ {𝐴, 𝐴} = (𝐴 ∩ 𝐴)) |
5 | inidm 4165 | . . 3 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
6 | 4, 5 | eqtrdi 2792 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∩ {𝐴, 𝐴} = 𝐴) |
7 | 2, 6 | eqtrid 2788 | 1 ⊢ (𝐴 ∈ 𝑉 → ∩ {𝐴} = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ∩ cin 3897 {csn 4573 {cpr 4575 ∩ cint 4894 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-v 3443 df-un 3903 df-in 3905 df-sn 4574 df-pr 4576 df-int 4895 |
This theorem is referenced by: intsn 4934 riinint 5909 bj-snmoore 35397 bj-prmoore 35399 elrfi 40786 |
Copyright terms: Public domain | W3C validator |