MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intsng Structured version   Visualization version   GIF version

Theorem intsng 4913
Description: Intersection of a singleton. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
intsng (𝐴𝑉 {𝐴} = 𝐴)

Proof of Theorem intsng
StepHypRef Expression
1 dfsn2 4571 . . 3 {𝐴} = {𝐴, 𝐴}
21inteqi 4880 . 2 {𝐴} = {𝐴, 𝐴}
3 intprg 4909 . . . 4 ((𝐴𝑉𝐴𝑉) → {𝐴, 𝐴} = (𝐴𝐴))
43anidms 566 . . 3 (𝐴𝑉 {𝐴, 𝐴} = (𝐴𝐴))
5 inidm 4149 . . 3 (𝐴𝐴) = 𝐴
64, 5eqtrdi 2795 . 2 (𝐴𝑉 {𝐴, 𝐴} = 𝐴)
72, 6eqtrid 2790 1 (𝐴𝑉 {𝐴} = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  cin 3882  {csn 4558  {cpr 4560   cint 4876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-v 3424  df-un 3888  df-in 3890  df-sn 4559  df-pr 4561  df-int 4877
This theorem is referenced by:  intsn  4914  riinint  5866  bj-snmoore  35211  bj-prmoore  35213  elrfi  40432
  Copyright terms: Public domain W3C validator