![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > intsng | Structured version Visualization version GIF version |
Description: Intersection of a singleton. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
Ref | Expression |
---|---|
intsng | ⊢ (𝐴 ∈ 𝑉 → ∩ {𝐴} = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsn2 4643 | . . 3 ⊢ {𝐴} = {𝐴, 𝐴} | |
2 | 1 | inteqi 4954 | . 2 ⊢ ∩ {𝐴} = ∩ {𝐴, 𝐴} |
3 | intprg 4985 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → ∩ {𝐴, 𝐴} = (𝐴 ∩ 𝐴)) | |
4 | 3 | anidms 566 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∩ {𝐴, 𝐴} = (𝐴 ∩ 𝐴)) |
5 | inidm 4234 | . . 3 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
6 | 4, 5 | eqtrdi 2790 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∩ {𝐴, 𝐴} = 𝐴) |
7 | 2, 6 | eqtrid 2786 | 1 ⊢ (𝐴 ∈ 𝑉 → ∩ {𝐴} = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 ∈ wcel 2105 ∩ cin 3961 {csn 4630 {cpr 4632 ∩ cint 4950 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3059 df-rex 3068 df-v 3479 df-un 3967 df-in 3969 df-sn 4631 df-pr 4633 df-int 4951 |
This theorem is referenced by: intsn 4988 riinint 5984 bj-snmoore 37095 bj-prmoore 37097 elrfi 42681 |
Copyright terms: Public domain | W3C validator |