| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssfii | Structured version Visualization version GIF version | ||
| Description: Any element of a set 𝐴 is the intersection of a finite subset of 𝐴. (Contributed by FL, 27-Apr-2008.) (Proof shortened by Mario Carneiro, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| ssfii | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ⊆ (fi‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3441 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 2 | 1 | intsn 4934 | . . . 4 ⊢ ∩ {𝑥} = 𝑥 |
| 3 | simpl 482 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝐴) → 𝐴 ∈ 𝑉) | |
| 4 | simpr 484 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
| 5 | 4 | snssd 4760 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝐴) → {𝑥} ⊆ 𝐴) |
| 6 | 1 | snnz 4728 | . . . . . 6 ⊢ {𝑥} ≠ ∅ |
| 7 | 6 | a1i 11 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝐴) → {𝑥} ≠ ∅) |
| 8 | snfi 8972 | . . . . . 6 ⊢ {𝑥} ∈ Fin | |
| 9 | 8 | a1i 11 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝐴) → {𝑥} ∈ Fin) |
| 10 | elfir 9306 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ ({𝑥} ⊆ 𝐴 ∧ {𝑥} ≠ ∅ ∧ {𝑥} ∈ Fin)) → ∩ {𝑥} ∈ (fi‘𝐴)) | |
| 11 | 3, 5, 7, 9, 10 | syl13anc 1374 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝐴) → ∩ {𝑥} ∈ (fi‘𝐴)) |
| 12 | 2, 11 | eqeltrrid 2838 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ (fi‘𝐴)) |
| 13 | 12 | ex 412 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ 𝐴 → 𝑥 ∈ (fi‘𝐴))) |
| 14 | 13 | ssrdv 3936 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ⊆ (fi‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2113 ≠ wne 2929 ⊆ wss 3898 ∅c0 4282 {csn 4575 ∩ cint 4897 ‘cfv 6486 Fincfn 8875 ficfi 9301 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-om 7803 df-1o 8391 df-en 8876 df-fin 8879 df-fi 9302 |
| This theorem is referenced by: fieq0 9312 dffi2 9314 inficl 9316 fiuni 9319 dffi3 9322 inffien 9961 fictb 10142 ordtbas2 23107 ordtbas 23108 ordtopn1 23110 ordtopn2 23111 leordtval2 23128 subbascn 23170 2ndcsb 23365 ptbasfi 23497 xkoopn 23505 fsubbas 23783 fbunfip 23785 isufil2 23824 ufileu 23835 filufint 23836 fmfnfmlem4 23873 fmfnfm 23874 hausflim 23897 flimclslem 23900 fclsfnflim 23943 flimfnfcls 23944 fclscmp 23946 alexsubb 23962 alexsubALTlem4 23966 ordtconnlem1 33958 topjoin 36430 |
| Copyright terms: Public domain | W3C validator |