MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssfii Structured version   Visualization version   GIF version

Theorem ssfii 8877
Description: Any element of a set 𝐴 is the intersection of a finite subset of 𝐴. (Contributed by FL, 27-Apr-2008.) (Proof shortened by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
ssfii (𝐴𝑉𝐴 ⊆ (fi‘𝐴))

Proof of Theorem ssfii
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 3503 . . . . 5 𝑥 ∈ V
21intsn 4910 . . . 4 {𝑥} = 𝑥
3 simpl 483 . . . . 5 ((𝐴𝑉𝑥𝐴) → 𝐴𝑉)
4 simpr 485 . . . . . 6 ((𝐴𝑉𝑥𝐴) → 𝑥𝐴)
54snssd 4741 . . . . 5 ((𝐴𝑉𝑥𝐴) → {𝑥} ⊆ 𝐴)
61snnz 4710 . . . . . 6 {𝑥} ≠ ∅
76a1i 11 . . . . 5 ((𝐴𝑉𝑥𝐴) → {𝑥} ≠ ∅)
8 snfi 8588 . . . . . 6 {𝑥} ∈ Fin
98a1i 11 . . . . 5 ((𝐴𝑉𝑥𝐴) → {𝑥} ∈ Fin)
10 elfir 8873 . . . . 5 ((𝐴𝑉 ∧ ({𝑥} ⊆ 𝐴 ∧ {𝑥} ≠ ∅ ∧ {𝑥} ∈ Fin)) → {𝑥} ∈ (fi‘𝐴))
113, 5, 7, 9, 10syl13anc 1366 . . . 4 ((𝐴𝑉𝑥𝐴) → {𝑥} ∈ (fi‘𝐴))
122, 11eqeltrrid 2923 . . 3 ((𝐴𝑉𝑥𝐴) → 𝑥 ∈ (fi‘𝐴))
1312ex 413 . 2 (𝐴𝑉 → (𝑥𝐴𝑥 ∈ (fi‘𝐴)))
1413ssrdv 3977 1 (𝐴𝑉𝐴 ⊆ (fi‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2107  wne 3021  wss 3940  c0 4295  {csn 4564   cint 4874  cfv 6354  Fincfn 8503  ficfi 8868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-ral 3148  df-rex 3149  df-rab 3152  df-v 3502  df-sbc 3777  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-om 7574  df-1o 8098  df-en 8504  df-fin 8507  df-fi 8869
This theorem is referenced by:  fieq0  8879  dffi2  8881  inficl  8883  fiuni  8886  dffi3  8889  inffien  9483  fictb  9661  ordtbas2  21734  ordtbas  21735  ordtopn1  21737  ordtopn2  21738  leordtval2  21755  subbascn  21797  2ndcsb  21992  ptbasfi  22124  xkoopn  22132  fsubbas  22410  fbunfip  22412  isufil2  22451  ufileu  22462  filufint  22463  fmfnfmlem4  22500  fmfnfm  22501  hausflim  22524  flimclslem  22527  fclsfnflim  22570  flimfnfcls  22571  fclscmp  22573  alexsubb  22589  alexsubALTlem4  22593  ordtconnlem1  31072  topjoin  33616
  Copyright terms: Public domain W3C validator