![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssfii | Structured version Visualization version GIF version |
Description: Any element of a set 𝐴 is the intersection of a finite subset of 𝐴. (Contributed by FL, 27-Apr-2008.) (Proof shortened by Mario Carneiro, 21-Mar-2015.) |
Ref | Expression |
---|---|
ssfii | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ⊆ (fi‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3388 | . . . . 5 ⊢ 𝑥 ∈ V | |
2 | 1 | intsn 4703 | . . . 4 ⊢ ∩ {𝑥} = 𝑥 |
3 | simpl 475 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝐴) → 𝐴 ∈ 𝑉) | |
4 | simpr 478 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
5 | 4 | snssd 4528 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝐴) → {𝑥} ⊆ 𝐴) |
6 | 1 | snnz 4497 | . . . . . 6 ⊢ {𝑥} ≠ ∅ |
7 | 6 | a1i 11 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝐴) → {𝑥} ≠ ∅) |
8 | snfi 8280 | . . . . . 6 ⊢ {𝑥} ∈ Fin | |
9 | 8 | a1i 11 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝐴) → {𝑥} ∈ Fin) |
10 | elfir 8563 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ ({𝑥} ⊆ 𝐴 ∧ {𝑥} ≠ ∅ ∧ {𝑥} ∈ Fin)) → ∩ {𝑥} ∈ (fi‘𝐴)) | |
11 | 3, 5, 7, 9, 10 | syl13anc 1492 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝐴) → ∩ {𝑥} ∈ (fi‘𝐴)) |
12 | 2, 11 | syl5eqelr 2883 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ (fi‘𝐴)) |
13 | 12 | ex 402 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ 𝐴 → 𝑥 ∈ (fi‘𝐴))) |
14 | 13 | ssrdv 3804 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ⊆ (fi‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∈ wcel 2157 ≠ wne 2971 ⊆ wss 3769 ∅c0 4115 {csn 4368 ∩ cint 4667 ‘cfv 6101 Fincfn 8195 ficfi 8558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-int 4668 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-om 7300 df-1o 7799 df-en 8196 df-fin 8199 df-fi 8559 |
This theorem is referenced by: fieq0 8569 dffi2 8571 inficl 8573 fiuni 8576 dffi3 8579 inffien 9172 fictb 9355 ordtbas2 21324 ordtbas 21325 ordtopn1 21327 ordtopn2 21328 leordtval2 21345 subbascn 21387 2ndcsb 21581 ptbasfi 21713 xkoopn 21721 fsubbas 21999 fbunfip 22001 isufil2 22040 ufileu 22051 filufint 22052 fmfnfmlem4 22089 fmfnfm 22090 hausflim 22113 flimclslem 22116 fclsfnflim 22159 flimfnfcls 22160 fclscmp 22162 alexsubb 22178 alexsubALTlem4 22182 ordtconnlem1 30486 topjoin 32872 |
Copyright terms: Public domain | W3C validator |