Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssfii | Structured version Visualization version GIF version |
Description: Any element of a set 𝐴 is the intersection of a finite subset of 𝐴. (Contributed by FL, 27-Apr-2008.) (Proof shortened by Mario Carneiro, 21-Mar-2015.) |
Ref | Expression |
---|---|
ssfii | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ⊆ (fi‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3426 | . . . . 5 ⊢ 𝑥 ∈ V | |
2 | 1 | intsn 4914 | . . . 4 ⊢ ∩ {𝑥} = 𝑥 |
3 | simpl 482 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝐴) → 𝐴 ∈ 𝑉) | |
4 | simpr 484 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
5 | 4 | snssd 4739 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝐴) → {𝑥} ⊆ 𝐴) |
6 | 1 | snnz 4709 | . . . . . 6 ⊢ {𝑥} ≠ ∅ |
7 | 6 | a1i 11 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝐴) → {𝑥} ≠ ∅) |
8 | snfi 8788 | . . . . . 6 ⊢ {𝑥} ∈ Fin | |
9 | 8 | a1i 11 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝐴) → {𝑥} ∈ Fin) |
10 | elfir 9104 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ ({𝑥} ⊆ 𝐴 ∧ {𝑥} ≠ ∅ ∧ {𝑥} ∈ Fin)) → ∩ {𝑥} ∈ (fi‘𝐴)) | |
11 | 3, 5, 7, 9, 10 | syl13anc 1370 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝐴) → ∩ {𝑥} ∈ (fi‘𝐴)) |
12 | 2, 11 | eqeltrrid 2844 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ (fi‘𝐴)) |
13 | 12 | ex 412 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ 𝐴 → 𝑥 ∈ (fi‘𝐴))) |
14 | 13 | ssrdv 3923 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ⊆ (fi‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ≠ wne 2942 ⊆ wss 3883 ∅c0 4253 {csn 4558 ∩ cint 4876 ‘cfv 6418 Fincfn 8691 ficfi 9099 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-om 7688 df-1o 8267 df-en 8692 df-fin 8695 df-fi 9100 |
This theorem is referenced by: fieq0 9110 dffi2 9112 inficl 9114 fiuni 9117 dffi3 9120 inffien 9750 fictb 9932 ordtbas2 22250 ordtbas 22251 ordtopn1 22253 ordtopn2 22254 leordtval2 22271 subbascn 22313 2ndcsb 22508 ptbasfi 22640 xkoopn 22648 fsubbas 22926 fbunfip 22928 isufil2 22967 ufileu 22978 filufint 22979 fmfnfmlem4 23016 fmfnfm 23017 hausflim 23040 flimclslem 23043 fclsfnflim 23086 flimfnfcls 23087 fclscmp 23089 alexsubb 23105 alexsubALTlem4 23109 ordtconnlem1 31776 topjoin 34481 |
Copyright terms: Public domain | W3C validator |