MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssfii Structured version   Visualization version   GIF version

Theorem ssfii 9488
Description: Any element of a set 𝐴 is the intersection of a finite subset of 𝐴. (Contributed by FL, 27-Apr-2008.) (Proof shortened by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
ssfii (𝐴𝑉𝐴 ⊆ (fi‘𝐴))

Proof of Theorem ssfii
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 3492 . . . . 5 𝑥 ∈ V
21intsn 5008 . . . 4 {𝑥} = 𝑥
3 simpl 482 . . . . 5 ((𝐴𝑉𝑥𝐴) → 𝐴𝑉)
4 simpr 484 . . . . . 6 ((𝐴𝑉𝑥𝐴) → 𝑥𝐴)
54snssd 4834 . . . . 5 ((𝐴𝑉𝑥𝐴) → {𝑥} ⊆ 𝐴)
61snnz 4801 . . . . . 6 {𝑥} ≠ ∅
76a1i 11 . . . . 5 ((𝐴𝑉𝑥𝐴) → {𝑥} ≠ ∅)
8 snfi 9109 . . . . . 6 {𝑥} ∈ Fin
98a1i 11 . . . . 5 ((𝐴𝑉𝑥𝐴) → {𝑥} ∈ Fin)
10 elfir 9484 . . . . 5 ((𝐴𝑉 ∧ ({𝑥} ⊆ 𝐴 ∧ {𝑥} ≠ ∅ ∧ {𝑥} ∈ Fin)) → {𝑥} ∈ (fi‘𝐴))
113, 5, 7, 9, 10syl13anc 1372 . . . 4 ((𝐴𝑉𝑥𝐴) → {𝑥} ∈ (fi‘𝐴))
122, 11eqeltrrid 2849 . . 3 ((𝐴𝑉𝑥𝐴) → 𝑥 ∈ (fi‘𝐴))
1312ex 412 . 2 (𝐴𝑉 → (𝑥𝐴𝑥 ∈ (fi‘𝐴)))
1413ssrdv 4014 1 (𝐴𝑉𝐴 ⊆ (fi‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wne 2946  wss 3976  c0 4352  {csn 4648   cint 4970  cfv 6573  Fincfn 9003  ficfi 9479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-om 7904  df-1o 8522  df-en 9004  df-fin 9007  df-fi 9480
This theorem is referenced by:  fieq0  9490  dffi2  9492  inficl  9494  fiuni  9497  dffi3  9500  inffien  10132  fictb  10313  ordtbas2  23220  ordtbas  23221  ordtopn1  23223  ordtopn2  23224  leordtval2  23241  subbascn  23283  2ndcsb  23478  ptbasfi  23610  xkoopn  23618  fsubbas  23896  fbunfip  23898  isufil2  23937  ufileu  23948  filufint  23949  fmfnfmlem4  23986  fmfnfm  23987  hausflim  24010  flimclslem  24013  fclsfnflim  24056  flimfnfcls  24057  fclscmp  24059  alexsubb  24075  alexsubALTlem4  24079  ordtconnlem1  33870  topjoin  36331
  Copyright terms: Public domain W3C validator