MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssfii Structured version   Visualization version   GIF version

Theorem ssfii 9414
Description: Any element of a set 𝐴 is the intersection of a finite subset of 𝐴. (Contributed by FL, 27-Apr-2008.) (Proof shortened by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
ssfii (𝐴𝑉𝐴 ⊆ (fi‘𝐴))

Proof of Theorem ssfii
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 3479 . . . . 5 𝑥 ∈ V
21intsn 4991 . . . 4 {𝑥} = 𝑥
3 simpl 484 . . . . 5 ((𝐴𝑉𝑥𝐴) → 𝐴𝑉)
4 simpr 486 . . . . . 6 ((𝐴𝑉𝑥𝐴) → 𝑥𝐴)
54snssd 4813 . . . . 5 ((𝐴𝑉𝑥𝐴) → {𝑥} ⊆ 𝐴)
61snnz 4781 . . . . . 6 {𝑥} ≠ ∅
76a1i 11 . . . . 5 ((𝐴𝑉𝑥𝐴) → {𝑥} ≠ ∅)
8 snfi 9044 . . . . . 6 {𝑥} ∈ Fin
98a1i 11 . . . . 5 ((𝐴𝑉𝑥𝐴) → {𝑥} ∈ Fin)
10 elfir 9410 . . . . 5 ((𝐴𝑉 ∧ ({𝑥} ⊆ 𝐴 ∧ {𝑥} ≠ ∅ ∧ {𝑥} ∈ Fin)) → {𝑥} ∈ (fi‘𝐴))
113, 5, 7, 9, 10syl13anc 1373 . . . 4 ((𝐴𝑉𝑥𝐴) → {𝑥} ∈ (fi‘𝐴))
122, 11eqeltrrid 2839 . . 3 ((𝐴𝑉𝑥𝐴) → 𝑥 ∈ (fi‘𝐴))
1312ex 414 . 2 (𝐴𝑉 → (𝑥𝐴𝑥 ∈ (fi‘𝐴)))
1413ssrdv 3989 1 (𝐴𝑉𝐴 ⊆ (fi‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wcel 2107  wne 2941  wss 3949  c0 4323  {csn 4629   cint 4951  cfv 6544  Fincfn 8939  ficfi 9405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-om 7856  df-1o 8466  df-en 8940  df-fin 8943  df-fi 9406
This theorem is referenced by:  fieq0  9416  dffi2  9418  inficl  9420  fiuni  9423  dffi3  9426  inffien  10058  fictb  10240  ordtbas2  22695  ordtbas  22696  ordtopn1  22698  ordtopn2  22699  leordtval2  22716  subbascn  22758  2ndcsb  22953  ptbasfi  23085  xkoopn  23093  fsubbas  23371  fbunfip  23373  isufil2  23412  ufileu  23423  filufint  23424  fmfnfmlem4  23461  fmfnfm  23462  hausflim  23485  flimclslem  23488  fclsfnflim  23531  flimfnfcls  23532  fclscmp  23534  alexsubb  23550  alexsubALTlem4  23554  ordtconnlem1  32904  topjoin  35250
  Copyright terms: Public domain W3C validator