| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssfii | Structured version Visualization version GIF version | ||
| Description: Any element of a set 𝐴 is the intersection of a finite subset of 𝐴. (Contributed by FL, 27-Apr-2008.) (Proof shortened by Mario Carneiro, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| ssfii | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ⊆ (fi‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3442 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 2 | 1 | intsn 4937 | . . . 4 ⊢ ∩ {𝑥} = 𝑥 |
| 3 | simpl 482 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝐴) → 𝐴 ∈ 𝑉) | |
| 4 | simpr 484 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
| 5 | 4 | snssd 4763 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝐴) → {𝑥} ⊆ 𝐴) |
| 6 | 1 | snnz 4730 | . . . . . 6 ⊢ {𝑥} ≠ ∅ |
| 7 | 6 | a1i 11 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝐴) → {𝑥} ≠ ∅) |
| 8 | snfi 8975 | . . . . . 6 ⊢ {𝑥} ∈ Fin | |
| 9 | 8 | a1i 11 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝐴) → {𝑥} ∈ Fin) |
| 10 | elfir 9324 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ ({𝑥} ⊆ 𝐴 ∧ {𝑥} ≠ ∅ ∧ {𝑥} ∈ Fin)) → ∩ {𝑥} ∈ (fi‘𝐴)) | |
| 11 | 3, 5, 7, 9, 10 | syl13anc 1374 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝐴) → ∩ {𝑥} ∈ (fi‘𝐴)) |
| 12 | 2, 11 | eqeltrrid 2833 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ (fi‘𝐴)) |
| 13 | 12 | ex 412 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ 𝐴 → 𝑥 ∈ (fi‘𝐴))) |
| 14 | 13 | ssrdv 3943 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ⊆ (fi‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ≠ wne 2925 ⊆ wss 3905 ∅c0 4286 {csn 4579 ∩ cint 4899 ‘cfv 6486 Fincfn 8879 ficfi 9319 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-om 7807 df-1o 8395 df-en 8880 df-fin 8883 df-fi 9320 |
| This theorem is referenced by: fieq0 9330 dffi2 9332 inficl 9334 fiuni 9337 dffi3 9340 inffien 9976 fictb 10157 ordtbas2 23094 ordtbas 23095 ordtopn1 23097 ordtopn2 23098 leordtval2 23115 subbascn 23157 2ndcsb 23352 ptbasfi 23484 xkoopn 23492 fsubbas 23770 fbunfip 23772 isufil2 23811 ufileu 23822 filufint 23823 fmfnfmlem4 23860 fmfnfm 23861 hausflim 23884 flimclslem 23887 fclsfnflim 23930 flimfnfcls 23931 fclscmp 23933 alexsubb 23949 alexsubALTlem4 23953 ordtconnlem1 33890 topjoin 36338 |
| Copyright terms: Public domain | W3C validator |