MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssfii Structured version   Visualization version   GIF version

Theorem ssfii 9370
Description: Any element of a set 𝐴 is the intersection of a finite subset of 𝐴. (Contributed by FL, 27-Apr-2008.) (Proof shortened by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
ssfii (𝐴𝑉𝐴 ⊆ (fi‘𝐴))

Proof of Theorem ssfii
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 3451 . . . . 5 𝑥 ∈ V
21intsn 4948 . . . 4 {𝑥} = 𝑥
3 simpl 482 . . . . 5 ((𝐴𝑉𝑥𝐴) → 𝐴𝑉)
4 simpr 484 . . . . . 6 ((𝐴𝑉𝑥𝐴) → 𝑥𝐴)
54snssd 4773 . . . . 5 ((𝐴𝑉𝑥𝐴) → {𝑥} ⊆ 𝐴)
61snnz 4740 . . . . . 6 {𝑥} ≠ ∅
76a1i 11 . . . . 5 ((𝐴𝑉𝑥𝐴) → {𝑥} ≠ ∅)
8 snfi 9014 . . . . . 6 {𝑥} ∈ Fin
98a1i 11 . . . . 5 ((𝐴𝑉𝑥𝐴) → {𝑥} ∈ Fin)
10 elfir 9366 . . . . 5 ((𝐴𝑉 ∧ ({𝑥} ⊆ 𝐴 ∧ {𝑥} ≠ ∅ ∧ {𝑥} ∈ Fin)) → {𝑥} ∈ (fi‘𝐴))
113, 5, 7, 9, 10syl13anc 1374 . . . 4 ((𝐴𝑉𝑥𝐴) → {𝑥} ∈ (fi‘𝐴))
122, 11eqeltrrid 2833 . . 3 ((𝐴𝑉𝑥𝐴) → 𝑥 ∈ (fi‘𝐴))
1312ex 412 . 2 (𝐴𝑉 → (𝑥𝐴𝑥 ∈ (fi‘𝐴)))
1413ssrdv 3952 1 (𝐴𝑉𝐴 ⊆ (fi‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wne 2925  wss 3914  c0 4296  {csn 4589   cint 4910  cfv 6511  Fincfn 8918  ficfi 9361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-om 7843  df-1o 8434  df-en 8919  df-fin 8922  df-fi 9362
This theorem is referenced by:  fieq0  9372  dffi2  9374  inficl  9376  fiuni  9379  dffi3  9382  inffien  10016  fictb  10197  ordtbas2  23078  ordtbas  23079  ordtopn1  23081  ordtopn2  23082  leordtval2  23099  subbascn  23141  2ndcsb  23336  ptbasfi  23468  xkoopn  23476  fsubbas  23754  fbunfip  23756  isufil2  23795  ufileu  23806  filufint  23807  fmfnfmlem4  23844  fmfnfm  23845  hausflim  23868  flimclslem  23871  fclsfnflim  23914  flimfnfcls  23915  fclscmp  23917  alexsubb  23933  alexsubALTlem4  23937  ordtconnlem1  33914  topjoin  36353
  Copyright terms: Public domain W3C validator