MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uffix Structured version   Visualization version   GIF version

Theorem uffix 22213
Description: Lemma for fixufil 22214 and uffixfr 22215. (Contributed by Mario Carneiro, 12-Dec-2013.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
uffix ((𝑋𝑉𝐴𝑋) → ({{𝐴}} ∈ (fBas‘𝑋) ∧ {𝑥 ∈ 𝒫 𝑋𝐴𝑥} = (𝑋filGen{{𝐴}})))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑋   𝑥,𝑉

Proof of Theorem uffix
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 snssi 4648 . . 3 (𝐴𝑋 → {𝐴} ⊆ 𝑋)
2 snnzg 4617 . . 3 (𝐴𝑋 → {𝐴} ≠ ∅)
3 simpl 483 . . 3 ((𝑋𝑉𝐴𝑋) → 𝑋𝑉)
4 snfbas 22158 . . 3 (({𝐴} ⊆ 𝑋 ∧ {𝐴} ≠ ∅ ∧ 𝑋𝑉) → {{𝐴}} ∈ (fBas‘𝑋))
51, 2, 3, 4syl2an23an 1416 . 2 ((𝑋𝑉𝐴𝑋) → {{𝐴}} ∈ (fBas‘𝑋))
6 selpw 4460 . . . . . 6 (𝑦 ∈ 𝒫 𝑋𝑦𝑋)
76a1i 11 . . . . 5 ((𝑋𝑉𝐴𝑋) → (𝑦 ∈ 𝒫 𝑋𝑦𝑋))
8 snex 5223 . . . . . . . 8 {𝐴} ∈ V
98snid 4506 . . . . . . 7 {𝐴} ∈ {{𝐴}}
10 snssi 4648 . . . . . . 7 (𝐴𝑦 → {𝐴} ⊆ 𝑦)
11 sseq1 3913 . . . . . . . 8 (𝑥 = {𝐴} → (𝑥𝑦 ↔ {𝐴} ⊆ 𝑦))
1211rspcev 3559 . . . . . . 7 (({𝐴} ∈ {{𝐴}} ∧ {𝐴} ⊆ 𝑦) → ∃𝑥 ∈ {{𝐴}}𝑥𝑦)
139, 10, 12sylancr 587 . . . . . 6 (𝐴𝑦 → ∃𝑥 ∈ {{𝐴}}𝑥𝑦)
14 intss1 4797 . . . . . . . . 9 (𝑥 ∈ {{𝐴}} → {{𝐴}} ⊆ 𝑥)
15 sstr2 3896 . . . . . . . . 9 ( {{𝐴}} ⊆ 𝑥 → (𝑥𝑦 {{𝐴}} ⊆ 𝑦))
1614, 15syl 17 . . . . . . . 8 (𝑥 ∈ {{𝐴}} → (𝑥𝑦 {{𝐴}} ⊆ 𝑦))
17 snidg 4504 . . . . . . . . . . 11 (𝐴𝑋𝐴 ∈ {𝐴})
1817adantl 482 . . . . . . . . . 10 ((𝑋𝑉𝐴𝑋) → 𝐴 ∈ {𝐴})
198intsn 4818 . . . . . . . . . 10 {{𝐴}} = {𝐴}
2018, 19syl6eleqr 2894 . . . . . . . . 9 ((𝑋𝑉𝐴𝑋) → 𝐴 {{𝐴}})
21 ssel 3883 . . . . . . . . 9 ( {{𝐴}} ⊆ 𝑦 → (𝐴 {{𝐴}} → 𝐴𝑦))
2220, 21syl5com 31 . . . . . . . 8 ((𝑋𝑉𝐴𝑋) → ( {{𝐴}} ⊆ 𝑦𝐴𝑦))
2316, 22sylan9r 509 . . . . . . 7 (((𝑋𝑉𝐴𝑋) ∧ 𝑥 ∈ {{𝐴}}) → (𝑥𝑦𝐴𝑦))
2423rexlimdva 3247 . . . . . 6 ((𝑋𝑉𝐴𝑋) → (∃𝑥 ∈ {{𝐴}}𝑥𝑦𝐴𝑦))
2513, 24impbid2 227 . . . . 5 ((𝑋𝑉𝐴𝑋) → (𝐴𝑦 ↔ ∃𝑥 ∈ {{𝐴}}𝑥𝑦))
267, 25anbi12d 630 . . . 4 ((𝑋𝑉𝐴𝑋) → ((𝑦 ∈ 𝒫 𝑋𝐴𝑦) ↔ (𝑦𝑋 ∧ ∃𝑥 ∈ {{𝐴}}𝑥𝑦)))
27 eleq2w 2866 . . . . . 6 (𝑥 = 𝑦 → (𝐴𝑥𝐴𝑦))
2827elrab 3618 . . . . 5 (𝑦 ∈ {𝑥 ∈ 𝒫 𝑋𝐴𝑥} ↔ (𝑦 ∈ 𝒫 𝑋𝐴𝑦))
2928a1i 11 . . . 4 ((𝑋𝑉𝐴𝑋) → (𝑦 ∈ {𝑥 ∈ 𝒫 𝑋𝐴𝑥} ↔ (𝑦 ∈ 𝒫 𝑋𝐴𝑦)))
30 elfg 22163 . . . . 5 ({{𝐴}} ∈ (fBas‘𝑋) → (𝑦 ∈ (𝑋filGen{{𝐴}}) ↔ (𝑦𝑋 ∧ ∃𝑥 ∈ {{𝐴}}𝑥𝑦)))
315, 30syl 17 . . . 4 ((𝑋𝑉𝐴𝑋) → (𝑦 ∈ (𝑋filGen{{𝐴}}) ↔ (𝑦𝑋 ∧ ∃𝑥 ∈ {{𝐴}}𝑥𝑦)))
3226, 29, 313bitr4d 312 . . 3 ((𝑋𝑉𝐴𝑋) → (𝑦 ∈ {𝑥 ∈ 𝒫 𝑋𝐴𝑥} ↔ 𝑦 ∈ (𝑋filGen{{𝐴}})))
3332eqrdv 2793 . 2 ((𝑋𝑉𝐴𝑋) → {𝑥 ∈ 𝒫 𝑋𝐴𝑥} = (𝑋filGen{{𝐴}}))
345, 33jca 512 1 ((𝑋𝑉𝐴𝑋) → ({{𝐴}} ∈ (fBas‘𝑋) ∧ {𝑥 ∈ 𝒫 𝑋𝐴𝑥} = (𝑋filGen{{𝐴}})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1522  wcel 2081  wne 2984  wrex 3106  {crab 3109  wss 3859  c0 4211  𝒫 cpw 4453  {csn 4472   cint 4782  cfv 6225  (class class class)co 7016  fBascfbas 20215  filGencfg 20216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-op 4479  df-uni 4746  df-int 4783  df-br 4963  df-opab 5025  df-mpt 5042  df-id 5348  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-iota 6189  df-fun 6227  df-fv 6233  df-ov 7019  df-oprab 7020  df-mpo 7021  df-fbas 20224  df-fg 20225  df-fil 22138
This theorem is referenced by:  fixufil  22214  uffixfr  22215
  Copyright terms: Public domain W3C validator