MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uffix Structured version   Visualization version   GIF version

Theorem uffix 22980
Description: Lemma for fixufil 22981 and uffixfr 22982. (Contributed by Mario Carneiro, 12-Dec-2013.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
uffix ((𝑋𝑉𝐴𝑋) → ({{𝐴}} ∈ (fBas‘𝑋) ∧ {𝑥 ∈ 𝒫 𝑋𝐴𝑥} = (𝑋filGen{{𝐴}})))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑋   𝑥,𝑉

Proof of Theorem uffix
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 snssi 4738 . . 3 (𝐴𝑋 → {𝐴} ⊆ 𝑋)
2 snnzg 4707 . . 3 (𝐴𝑋 → {𝐴} ≠ ∅)
3 simpl 482 . . 3 ((𝑋𝑉𝐴𝑋) → 𝑋𝑉)
4 snfbas 22925 . . 3 (({𝐴} ⊆ 𝑋 ∧ {𝐴} ≠ ∅ ∧ 𝑋𝑉) → {{𝐴}} ∈ (fBas‘𝑋))
51, 2, 3, 4syl2an23an 1421 . 2 ((𝑋𝑉𝐴𝑋) → {{𝐴}} ∈ (fBas‘𝑋))
6 velpw 4535 . . . . . 6 (𝑦 ∈ 𝒫 𝑋𝑦𝑋)
76a1i 11 . . . . 5 ((𝑋𝑉𝐴𝑋) → (𝑦 ∈ 𝒫 𝑋𝑦𝑋))
8 snex 5349 . . . . . . . 8 {𝐴} ∈ V
98snid 4594 . . . . . . 7 {𝐴} ∈ {{𝐴}}
10 snssi 4738 . . . . . . 7 (𝐴𝑦 → {𝐴} ⊆ 𝑦)
11 sseq1 3942 . . . . . . . 8 (𝑥 = {𝐴} → (𝑥𝑦 ↔ {𝐴} ⊆ 𝑦))
1211rspcev 3552 . . . . . . 7 (({𝐴} ∈ {{𝐴}} ∧ {𝐴} ⊆ 𝑦) → ∃𝑥 ∈ {{𝐴}}𝑥𝑦)
139, 10, 12sylancr 586 . . . . . 6 (𝐴𝑦 → ∃𝑥 ∈ {{𝐴}}𝑥𝑦)
14 intss1 4891 . . . . . . . . 9 (𝑥 ∈ {{𝐴}} → {{𝐴}} ⊆ 𝑥)
15 sstr2 3924 . . . . . . . . 9 ( {{𝐴}} ⊆ 𝑥 → (𝑥𝑦 {{𝐴}} ⊆ 𝑦))
1614, 15syl 17 . . . . . . . 8 (𝑥 ∈ {{𝐴}} → (𝑥𝑦 {{𝐴}} ⊆ 𝑦))
17 snidg 4592 . . . . . . . . . . 11 (𝐴𝑋𝐴 ∈ {𝐴})
1817adantl 481 . . . . . . . . . 10 ((𝑋𝑉𝐴𝑋) → 𝐴 ∈ {𝐴})
198intsn 4914 . . . . . . . . . 10 {{𝐴}} = {𝐴}
2018, 19eleqtrrdi 2850 . . . . . . . . 9 ((𝑋𝑉𝐴𝑋) → 𝐴 {{𝐴}})
21 ssel 3910 . . . . . . . . 9 ( {{𝐴}} ⊆ 𝑦 → (𝐴 {{𝐴}} → 𝐴𝑦))
2220, 21syl5com 31 . . . . . . . 8 ((𝑋𝑉𝐴𝑋) → ( {{𝐴}} ⊆ 𝑦𝐴𝑦))
2316, 22sylan9r 508 . . . . . . 7 (((𝑋𝑉𝐴𝑋) ∧ 𝑥 ∈ {{𝐴}}) → (𝑥𝑦𝐴𝑦))
2423rexlimdva 3212 . . . . . 6 ((𝑋𝑉𝐴𝑋) → (∃𝑥 ∈ {{𝐴}}𝑥𝑦𝐴𝑦))
2513, 24impbid2 225 . . . . 5 ((𝑋𝑉𝐴𝑋) → (𝐴𝑦 ↔ ∃𝑥 ∈ {{𝐴}}𝑥𝑦))
267, 25anbi12d 630 . . . 4 ((𝑋𝑉𝐴𝑋) → ((𝑦 ∈ 𝒫 𝑋𝐴𝑦) ↔ (𝑦𝑋 ∧ ∃𝑥 ∈ {{𝐴}}𝑥𝑦)))
27 eleq2w 2822 . . . . . 6 (𝑥 = 𝑦 → (𝐴𝑥𝐴𝑦))
2827elrab 3617 . . . . 5 (𝑦 ∈ {𝑥 ∈ 𝒫 𝑋𝐴𝑥} ↔ (𝑦 ∈ 𝒫 𝑋𝐴𝑦))
2928a1i 11 . . . 4 ((𝑋𝑉𝐴𝑋) → (𝑦 ∈ {𝑥 ∈ 𝒫 𝑋𝐴𝑥} ↔ (𝑦 ∈ 𝒫 𝑋𝐴𝑦)))
30 elfg 22930 . . . . 5 ({{𝐴}} ∈ (fBas‘𝑋) → (𝑦 ∈ (𝑋filGen{{𝐴}}) ↔ (𝑦𝑋 ∧ ∃𝑥 ∈ {{𝐴}}𝑥𝑦)))
315, 30syl 17 . . . 4 ((𝑋𝑉𝐴𝑋) → (𝑦 ∈ (𝑋filGen{{𝐴}}) ↔ (𝑦𝑋 ∧ ∃𝑥 ∈ {{𝐴}}𝑥𝑦)))
3226, 29, 313bitr4d 310 . . 3 ((𝑋𝑉𝐴𝑋) → (𝑦 ∈ {𝑥 ∈ 𝒫 𝑋𝐴𝑥} ↔ 𝑦 ∈ (𝑋filGen{{𝐴}})))
3332eqrdv 2736 . 2 ((𝑋𝑉𝐴𝑋) → {𝑥 ∈ 𝒫 𝑋𝐴𝑥} = (𝑋filGen{{𝐴}}))
345, 33jca 511 1 ((𝑋𝑉𝐴𝑋) → ({{𝐴}} ∈ (fBas‘𝑋) ∧ {𝑥 ∈ 𝒫 𝑋𝐴𝑥} = (𝑋filGen{{𝐴}})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wrex 3064  {crab 3067  wss 3883  c0 4253  𝒫 cpw 4530  {csn 4558   cint 4876  cfv 6418  (class class class)co 7255  fBascfbas 20498  filGencfg 20499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-int 4877  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-fbas 20507  df-fg 20508  df-fil 22905
This theorem is referenced by:  fixufil  22981  uffixfr  22982
  Copyright terms: Public domain W3C validator