MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uffix Structured version   Visualization version   GIF version

Theorem uffix 23945
Description: Lemma for fixufil 23946 and uffixfr 23947. (Contributed by Mario Carneiro, 12-Dec-2013.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
uffix ((𝑋𝑉𝐴𝑋) → ({{𝐴}} ∈ (fBas‘𝑋) ∧ {𝑥 ∈ 𝒫 𝑋𝐴𝑥} = (𝑋filGen{{𝐴}})))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑋   𝑥,𝑉

Proof of Theorem uffix
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 snssi 4813 . . 3 (𝐴𝑋 → {𝐴} ⊆ 𝑋)
2 snnzg 4779 . . 3 (𝐴𝑋 → {𝐴} ≠ ∅)
3 simpl 482 . . 3 ((𝑋𝑉𝐴𝑋) → 𝑋𝑉)
4 snfbas 23890 . . 3 (({𝐴} ⊆ 𝑋 ∧ {𝐴} ≠ ∅ ∧ 𝑋𝑉) → {{𝐴}} ∈ (fBas‘𝑋))
51, 2, 3, 4syl2an23an 1422 . 2 ((𝑋𝑉𝐴𝑋) → {{𝐴}} ∈ (fBas‘𝑋))
6 velpw 4610 . . . . . 6 (𝑦 ∈ 𝒫 𝑋𝑦𝑋)
76a1i 11 . . . . 5 ((𝑋𝑉𝐴𝑋) → (𝑦 ∈ 𝒫 𝑋𝑦𝑋))
8 snex 5442 . . . . . . . 8 {𝐴} ∈ V
98snid 4667 . . . . . . 7 {𝐴} ∈ {{𝐴}}
10 snssi 4813 . . . . . . 7 (𝐴𝑦 → {𝐴} ⊆ 𝑦)
11 sseq1 4021 . . . . . . . 8 (𝑥 = {𝐴} → (𝑥𝑦 ↔ {𝐴} ⊆ 𝑦))
1211rspcev 3622 . . . . . . 7 (({𝐴} ∈ {{𝐴}} ∧ {𝐴} ⊆ 𝑦) → ∃𝑥 ∈ {{𝐴}}𝑥𝑦)
139, 10, 12sylancr 587 . . . . . 6 (𝐴𝑦 → ∃𝑥 ∈ {{𝐴}}𝑥𝑦)
14 intss1 4968 . . . . . . . . 9 (𝑥 ∈ {{𝐴}} → {{𝐴}} ⊆ 𝑥)
15 sstr2 4002 . . . . . . . . 9 ( {{𝐴}} ⊆ 𝑥 → (𝑥𝑦 {{𝐴}} ⊆ 𝑦))
1614, 15syl 17 . . . . . . . 8 (𝑥 ∈ {{𝐴}} → (𝑥𝑦 {{𝐴}} ⊆ 𝑦))
17 snidg 4665 . . . . . . . . . . 11 (𝐴𝑋𝐴 ∈ {𝐴})
1817adantl 481 . . . . . . . . . 10 ((𝑋𝑉𝐴𝑋) → 𝐴 ∈ {𝐴})
198intsn 4989 . . . . . . . . . 10 {{𝐴}} = {𝐴}
2018, 19eleqtrrdi 2850 . . . . . . . . 9 ((𝑋𝑉𝐴𝑋) → 𝐴 {{𝐴}})
21 ssel 3989 . . . . . . . . 9 ( {{𝐴}} ⊆ 𝑦 → (𝐴 {{𝐴}} → 𝐴𝑦))
2220, 21syl5com 31 . . . . . . . 8 ((𝑋𝑉𝐴𝑋) → ( {{𝐴}} ⊆ 𝑦𝐴𝑦))
2316, 22sylan9r 508 . . . . . . 7 (((𝑋𝑉𝐴𝑋) ∧ 𝑥 ∈ {{𝐴}}) → (𝑥𝑦𝐴𝑦))
2423rexlimdva 3153 . . . . . 6 ((𝑋𝑉𝐴𝑋) → (∃𝑥 ∈ {{𝐴}}𝑥𝑦𝐴𝑦))
2513, 24impbid2 226 . . . . 5 ((𝑋𝑉𝐴𝑋) → (𝐴𝑦 ↔ ∃𝑥 ∈ {{𝐴}}𝑥𝑦))
267, 25anbi12d 632 . . . 4 ((𝑋𝑉𝐴𝑋) → ((𝑦 ∈ 𝒫 𝑋𝐴𝑦) ↔ (𝑦𝑋 ∧ ∃𝑥 ∈ {{𝐴}}𝑥𝑦)))
27 eleq2w 2823 . . . . . 6 (𝑥 = 𝑦 → (𝐴𝑥𝐴𝑦))
2827elrab 3695 . . . . 5 (𝑦 ∈ {𝑥 ∈ 𝒫 𝑋𝐴𝑥} ↔ (𝑦 ∈ 𝒫 𝑋𝐴𝑦))
2928a1i 11 . . . 4 ((𝑋𝑉𝐴𝑋) → (𝑦 ∈ {𝑥 ∈ 𝒫 𝑋𝐴𝑥} ↔ (𝑦 ∈ 𝒫 𝑋𝐴𝑦)))
30 elfg 23895 . . . . 5 ({{𝐴}} ∈ (fBas‘𝑋) → (𝑦 ∈ (𝑋filGen{{𝐴}}) ↔ (𝑦𝑋 ∧ ∃𝑥 ∈ {{𝐴}}𝑥𝑦)))
315, 30syl 17 . . . 4 ((𝑋𝑉𝐴𝑋) → (𝑦 ∈ (𝑋filGen{{𝐴}}) ↔ (𝑦𝑋 ∧ ∃𝑥 ∈ {{𝐴}}𝑥𝑦)))
3226, 29, 313bitr4d 311 . . 3 ((𝑋𝑉𝐴𝑋) → (𝑦 ∈ {𝑥 ∈ 𝒫 𝑋𝐴𝑥} ↔ 𝑦 ∈ (𝑋filGen{{𝐴}})))
3332eqrdv 2733 . 2 ((𝑋𝑉𝐴𝑋) → {𝑥 ∈ 𝒫 𝑋𝐴𝑥} = (𝑋filGen{{𝐴}}))
345, 33jca 511 1 ((𝑋𝑉𝐴𝑋) → ({{𝐴}} ∈ (fBas‘𝑋) ∧ {𝑥 ∈ 𝒫 𝑋𝐴𝑥} = (𝑋filGen{{𝐴}})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wne 2938  wrex 3068  {crab 3433  wss 3963  c0 4339  𝒫 cpw 4605  {csn 4631   cint 4951  cfv 6563  (class class class)co 7431  fBascfbas 21370  filGencfg 21371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-fbas 21379  df-fg 21380  df-fil 23870
This theorem is referenced by:  fixufil  23946  uffixfr  23947
  Copyright terms: Public domain W3C validator