MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uffix Structured version   Visualization version   GIF version

Theorem uffix 23869
Description: Lemma for fixufil 23870 and uffixfr 23871. (Contributed by Mario Carneiro, 12-Dec-2013.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
uffix ((𝑋𝑉𝐴𝑋) → ({{𝐴}} ∈ (fBas‘𝑋) ∧ {𝑥 ∈ 𝒫 𝑋𝐴𝑥} = (𝑋filGen{{𝐴}})))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑋   𝑥,𝑉

Proof of Theorem uffix
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 snssi 4813 . . 3 (𝐴𝑋 → {𝐴} ⊆ 𝑋)
2 snnzg 4780 . . 3 (𝐴𝑋 → {𝐴} ≠ ∅)
3 simpl 481 . . 3 ((𝑋𝑉𝐴𝑋) → 𝑋𝑉)
4 snfbas 23814 . . 3 (({𝐴} ⊆ 𝑋 ∧ {𝐴} ≠ ∅ ∧ 𝑋𝑉) → {{𝐴}} ∈ (fBas‘𝑋))
51, 2, 3, 4syl2an23an 1420 . 2 ((𝑋𝑉𝐴𝑋) → {{𝐴}} ∈ (fBas‘𝑋))
6 velpw 4609 . . . . . 6 (𝑦 ∈ 𝒫 𝑋𝑦𝑋)
76a1i 11 . . . . 5 ((𝑋𝑉𝐴𝑋) → (𝑦 ∈ 𝒫 𝑋𝑦𝑋))
8 snex 5433 . . . . . . . 8 {𝐴} ∈ V
98snid 4666 . . . . . . 7 {𝐴} ∈ {{𝐴}}
10 snssi 4813 . . . . . . 7 (𝐴𝑦 → {𝐴} ⊆ 𝑦)
11 sseq1 4002 . . . . . . . 8 (𝑥 = {𝐴} → (𝑥𝑦 ↔ {𝐴} ⊆ 𝑦))
1211rspcev 3606 . . . . . . 7 (({𝐴} ∈ {{𝐴}} ∧ {𝐴} ⊆ 𝑦) → ∃𝑥 ∈ {{𝐴}}𝑥𝑦)
139, 10, 12sylancr 585 . . . . . 6 (𝐴𝑦 → ∃𝑥 ∈ {{𝐴}}𝑥𝑦)
14 intss1 4967 . . . . . . . . 9 (𝑥 ∈ {{𝐴}} → {{𝐴}} ⊆ 𝑥)
15 sstr2 3983 . . . . . . . . 9 ( {{𝐴}} ⊆ 𝑥 → (𝑥𝑦 {{𝐴}} ⊆ 𝑦))
1614, 15syl 17 . . . . . . . 8 (𝑥 ∈ {{𝐴}} → (𝑥𝑦 {{𝐴}} ⊆ 𝑦))
17 snidg 4664 . . . . . . . . . . 11 (𝐴𝑋𝐴 ∈ {𝐴})
1817adantl 480 . . . . . . . . . 10 ((𝑋𝑉𝐴𝑋) → 𝐴 ∈ {𝐴})
198intsn 4990 . . . . . . . . . 10 {{𝐴}} = {𝐴}
2018, 19eleqtrrdi 2836 . . . . . . . . 9 ((𝑋𝑉𝐴𝑋) → 𝐴 {{𝐴}})
21 ssel 3970 . . . . . . . . 9 ( {{𝐴}} ⊆ 𝑦 → (𝐴 {{𝐴}} → 𝐴𝑦))
2220, 21syl5com 31 . . . . . . . 8 ((𝑋𝑉𝐴𝑋) → ( {{𝐴}} ⊆ 𝑦𝐴𝑦))
2316, 22sylan9r 507 . . . . . . 7 (((𝑋𝑉𝐴𝑋) ∧ 𝑥 ∈ {{𝐴}}) → (𝑥𝑦𝐴𝑦))
2423rexlimdva 3144 . . . . . 6 ((𝑋𝑉𝐴𝑋) → (∃𝑥 ∈ {{𝐴}}𝑥𝑦𝐴𝑦))
2513, 24impbid2 225 . . . . 5 ((𝑋𝑉𝐴𝑋) → (𝐴𝑦 ↔ ∃𝑥 ∈ {{𝐴}}𝑥𝑦))
267, 25anbi12d 630 . . . 4 ((𝑋𝑉𝐴𝑋) → ((𝑦 ∈ 𝒫 𝑋𝐴𝑦) ↔ (𝑦𝑋 ∧ ∃𝑥 ∈ {{𝐴}}𝑥𝑦)))
27 eleq2w 2809 . . . . . 6 (𝑥 = 𝑦 → (𝐴𝑥𝐴𝑦))
2827elrab 3679 . . . . 5 (𝑦 ∈ {𝑥 ∈ 𝒫 𝑋𝐴𝑥} ↔ (𝑦 ∈ 𝒫 𝑋𝐴𝑦))
2928a1i 11 . . . 4 ((𝑋𝑉𝐴𝑋) → (𝑦 ∈ {𝑥 ∈ 𝒫 𝑋𝐴𝑥} ↔ (𝑦 ∈ 𝒫 𝑋𝐴𝑦)))
30 elfg 23819 . . . . 5 ({{𝐴}} ∈ (fBas‘𝑋) → (𝑦 ∈ (𝑋filGen{{𝐴}}) ↔ (𝑦𝑋 ∧ ∃𝑥 ∈ {{𝐴}}𝑥𝑦)))
315, 30syl 17 . . . 4 ((𝑋𝑉𝐴𝑋) → (𝑦 ∈ (𝑋filGen{{𝐴}}) ↔ (𝑦𝑋 ∧ ∃𝑥 ∈ {{𝐴}}𝑥𝑦)))
3226, 29, 313bitr4d 310 . . 3 ((𝑋𝑉𝐴𝑋) → (𝑦 ∈ {𝑥 ∈ 𝒫 𝑋𝐴𝑥} ↔ 𝑦 ∈ (𝑋filGen{{𝐴}})))
3332eqrdv 2723 . 2 ((𝑋𝑉𝐴𝑋) → {𝑥 ∈ 𝒫 𝑋𝐴𝑥} = (𝑋filGen{{𝐴}}))
345, 33jca 510 1 ((𝑋𝑉𝐴𝑋) → ({{𝐴}} ∈ (fBas‘𝑋) ∧ {𝑥 ∈ 𝒫 𝑋𝐴𝑥} = (𝑋filGen{{𝐴}})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wne 2929  wrex 3059  {crab 3418  wss 3944  c0 4322  𝒫 cpw 4604  {csn 4630   cint 4950  cfv 6549  (class class class)co 7419  fBascfbas 21284  filGencfg 21285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fv 6557  df-ov 7422  df-oprab 7423  df-mpo 7424  df-fbas 21293  df-fg 21294  df-fil 23794
This theorem is referenced by:  fixufil  23870  uffixfr  23871
  Copyright terms: Public domain W3C validator