Step | Hyp | Ref
| Expression |
1 | | snssi 4741 |
. . 3
⊢ (𝐴 ∈ 𝑋 → {𝐴} ⊆ 𝑋) |
2 | | snnzg 4710 |
. . 3
⊢ (𝐴 ∈ 𝑋 → {𝐴} ≠ ∅) |
3 | | simpl 483 |
. . 3
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋) → 𝑋 ∈ 𝑉) |
4 | | snfbas 23017 |
. . 3
⊢ (({𝐴} ⊆ 𝑋 ∧ {𝐴} ≠ ∅ ∧ 𝑋 ∈ 𝑉) → {{𝐴}} ∈ (fBas‘𝑋)) |
5 | 1, 2, 3, 4 | syl2an23an 1422 |
. 2
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋) → {{𝐴}} ∈ (fBas‘𝑋)) |
6 | | velpw 4538 |
. . . . . 6
⊢ (𝑦 ∈ 𝒫 𝑋 ↔ 𝑦 ⊆ 𝑋) |
7 | 6 | a1i 11 |
. . . . 5
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋) → (𝑦 ∈ 𝒫 𝑋 ↔ 𝑦 ⊆ 𝑋)) |
8 | | snex 5354 |
. . . . . . . 8
⊢ {𝐴} ∈ V |
9 | 8 | snid 4597 |
. . . . . . 7
⊢ {𝐴} ∈ {{𝐴}} |
10 | | snssi 4741 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑦 → {𝐴} ⊆ 𝑦) |
11 | | sseq1 3946 |
. . . . . . . 8
⊢ (𝑥 = {𝐴} → (𝑥 ⊆ 𝑦 ↔ {𝐴} ⊆ 𝑦)) |
12 | 11 | rspcev 3561 |
. . . . . . 7
⊢ (({𝐴} ∈ {{𝐴}} ∧ {𝐴} ⊆ 𝑦) → ∃𝑥 ∈ {{𝐴}}𝑥 ⊆ 𝑦) |
13 | 9, 10, 12 | sylancr 587 |
. . . . . 6
⊢ (𝐴 ∈ 𝑦 → ∃𝑥 ∈ {{𝐴}}𝑥 ⊆ 𝑦) |
14 | | intss1 4894 |
. . . . . . . . 9
⊢ (𝑥 ∈ {{𝐴}} → ∩
{{𝐴}} ⊆ 𝑥) |
15 | | sstr2 3928 |
. . . . . . . . 9
⊢ (∩ {{𝐴}} ⊆ 𝑥 → (𝑥 ⊆ 𝑦 → ∩ {{𝐴}} ⊆ 𝑦)) |
16 | 14, 15 | syl 17 |
. . . . . . . 8
⊢ (𝑥 ∈ {{𝐴}} → (𝑥 ⊆ 𝑦 → ∩ {{𝐴}} ⊆ 𝑦)) |
17 | | snidg 4595 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ 𝑋 → 𝐴 ∈ {𝐴}) |
18 | 17 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ {𝐴}) |
19 | 8 | intsn 4917 |
. . . . . . . . . 10
⊢ ∩ {{𝐴}} = {𝐴} |
20 | 18, 19 | eleqtrrdi 2850 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ ∩ {{𝐴}}) |
21 | | ssel 3914 |
. . . . . . . . 9
⊢ (∩ {{𝐴}} ⊆ 𝑦 → (𝐴 ∈ ∩ {{𝐴}} → 𝐴 ∈ 𝑦)) |
22 | 20, 21 | syl5com 31 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋) → (∩
{{𝐴}} ⊆ 𝑦 → 𝐴 ∈ 𝑦)) |
23 | 16, 22 | sylan9r 509 |
. . . . . . 7
⊢ (((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋) ∧ 𝑥 ∈ {{𝐴}}) → (𝑥 ⊆ 𝑦 → 𝐴 ∈ 𝑦)) |
24 | 23 | rexlimdva 3213 |
. . . . . 6
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋) → (∃𝑥 ∈ {{𝐴}}𝑥 ⊆ 𝑦 → 𝐴 ∈ 𝑦)) |
25 | 13, 24 | impbid2 225 |
. . . . 5
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋) → (𝐴 ∈ 𝑦 ↔ ∃𝑥 ∈ {{𝐴}}𝑥 ⊆ 𝑦)) |
26 | 7, 25 | anbi12d 631 |
. . . 4
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋) → ((𝑦 ∈ 𝒫 𝑋 ∧ 𝐴 ∈ 𝑦) ↔ (𝑦 ⊆ 𝑋 ∧ ∃𝑥 ∈ {{𝐴}}𝑥 ⊆ 𝑦))) |
27 | | eleq2w 2822 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦)) |
28 | 27 | elrab 3624 |
. . . . 5
⊢ (𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥} ↔ (𝑦 ∈ 𝒫 𝑋 ∧ 𝐴 ∈ 𝑦)) |
29 | 28 | a1i 11 |
. . . 4
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋) → (𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥} ↔ (𝑦 ∈ 𝒫 𝑋 ∧ 𝐴 ∈ 𝑦))) |
30 | | elfg 23022 |
. . . . 5
⊢ ({{𝐴}} ∈ (fBas‘𝑋) → (𝑦 ∈ (𝑋filGen{{𝐴}}) ↔ (𝑦 ⊆ 𝑋 ∧ ∃𝑥 ∈ {{𝐴}}𝑥 ⊆ 𝑦))) |
31 | 5, 30 | syl 17 |
. . . 4
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋) → (𝑦 ∈ (𝑋filGen{{𝐴}}) ↔ (𝑦 ⊆ 𝑋 ∧ ∃𝑥 ∈ {{𝐴}}𝑥 ⊆ 𝑦))) |
32 | 26, 29, 31 | 3bitr4d 311 |
. . 3
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋) → (𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥} ↔ 𝑦 ∈ (𝑋filGen{{𝐴}}))) |
33 | 32 | eqrdv 2736 |
. 2
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋) → {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥} = (𝑋filGen{{𝐴}})) |
34 | 5, 33 | jca 512 |
1
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋) → ({{𝐴}} ∈ (fBas‘𝑋) ∧ {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥} = (𝑋filGen{{𝐴}}))) |