MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  op2ndb Structured version   Visualization version   GIF version

Theorem op2ndb 6174
Description: Extract the second member of an ordered pair. Theorem 5.12(ii) of [Monk1] p. 52. (See op1stb 5411 to extract the first member, op2nda 6175 for an alternate version, and op2nd 7930 for the preferred version.) (Contributed by NM, 25-Nov-2003.)
Hypotheses
Ref Expression
cnvsn.1 𝐴 ∈ V
cnvsn.2 𝐵 ∈ V
Assertion
Ref Expression
op2ndb {⟨𝐴, 𝐵⟩} = 𝐵

Proof of Theorem op2ndb
StepHypRef Expression
1 cnvsn.1 . . . . . . 7 𝐴 ∈ V
2 cnvsn.2 . . . . . . 7 𝐵 ∈ V
31, 2cnvsn 6173 . . . . . 6 {⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩}
43inteqi 4901 . . . . 5 {⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩}
5 opex 5404 . . . . . 6 𝐵, 𝐴⟩ ∈ V
65intsn 4934 . . . . 5 {⟨𝐵, 𝐴⟩} = ⟨𝐵, 𝐴
74, 6eqtri 2754 . . . 4 {⟨𝐴, 𝐵⟩} = ⟨𝐵, 𝐴
87inteqi 4901 . . 3 {⟨𝐴, 𝐵⟩} = 𝐵, 𝐴
98inteqi 4901 . 2 {⟨𝐴, 𝐵⟩} = 𝐵, 𝐴
102, 1op1stb 5411 . 2 𝐵, 𝐴⟩ = 𝐵
119, 10eqtri 2754 1 {⟨𝐴, 𝐵⟩} = 𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2111  Vcvv 3436  {csn 4576  cop 4582   cint 4897  ccnv 5615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-int 4898  df-br 5092  df-opab 5154  df-xp 5622  df-rel 5623  df-cnv 5624
This theorem is referenced by:  2ndval2  7939
  Copyright terms: Public domain W3C validator