![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > op2ndb | Structured version Visualization version GIF version |
Description: Extract the second member of an ordered pair. Theorem 5.12(ii) of [Monk1] p. 52. (See op1stb 5471 to extract the first member, op2nda 6227 for an alternate version, and op2nd 7983 for the preferred version.) (Contributed by NM, 25-Nov-2003.) |
Ref | Expression |
---|---|
cnvsn.1 | ⊢ 𝐴 ∈ V |
cnvsn.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
op2ndb | ⊢ ∩ ∩ ∩ ◡{⟨𝐴, 𝐵⟩} = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvsn.1 | . . . . . . 7 ⊢ 𝐴 ∈ V | |
2 | cnvsn.2 | . . . . . . 7 ⊢ 𝐵 ∈ V | |
3 | 1, 2 | cnvsn 6225 | . . . . . 6 ⊢ ◡{⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩} |
4 | 3 | inteqi 4954 | . . . . 5 ⊢ ∩ ◡{⟨𝐴, 𝐵⟩} = ∩ {⟨𝐵, 𝐴⟩} |
5 | opex 5464 | . . . . . 6 ⊢ ⟨𝐵, 𝐴⟩ ∈ V | |
6 | 5 | intsn 4990 | . . . . 5 ⊢ ∩ {⟨𝐵, 𝐴⟩} = ⟨𝐵, 𝐴⟩ |
7 | 4, 6 | eqtri 2760 | . . . 4 ⊢ ∩ ◡{⟨𝐴, 𝐵⟩} = ⟨𝐵, 𝐴⟩ |
8 | 7 | inteqi 4954 | . . 3 ⊢ ∩ ∩ ◡{⟨𝐴, 𝐵⟩} = ∩ ⟨𝐵, 𝐴⟩ |
9 | 8 | inteqi 4954 | . 2 ⊢ ∩ ∩ ∩ ◡{⟨𝐴, 𝐵⟩} = ∩ ∩ ⟨𝐵, 𝐴⟩ |
10 | 2, 1 | op1stb 5471 | . 2 ⊢ ∩ ∩ ⟨𝐵, 𝐴⟩ = 𝐵 |
11 | 9, 10 | eqtri 2760 | 1 ⊢ ∩ ∩ ∩ ◡{⟨𝐴, 𝐵⟩} = 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∈ wcel 2106 Vcvv 3474 {csn 4628 ⟨cop 4634 ∩ cint 4950 ◡ccnv 5675 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-int 4951 df-br 5149 df-opab 5211 df-xp 5682 df-rel 5683 df-cnv 5684 |
This theorem is referenced by: 2ndval2 7992 |
Copyright terms: Public domain | W3C validator |