MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  op2ndb Structured version   Visualization version   GIF version

Theorem op2ndb 6231
Description: Extract the second member of an ordered pair. Theorem 5.12(ii) of [Monk1] p. 52. (See op1stb 5473 to extract the first member, op2nda 6232 for an alternate version, and op2nd 8002 for the preferred version.) (Contributed by NM, 25-Nov-2003.)
Hypotheses
Ref Expression
cnvsn.1 𝐴 ∈ V
cnvsn.2 𝐵 ∈ V
Assertion
Ref Expression
op2ndb {⟨𝐴, 𝐵⟩} = 𝐵

Proof of Theorem op2ndb
StepHypRef Expression
1 cnvsn.1 . . . . . . 7 𝐴 ∈ V
2 cnvsn.2 . . . . . . 7 𝐵 ∈ V
31, 2cnvsn 6230 . . . . . 6 {⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩}
43inteqi 4953 . . . . 5 {⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩}
5 opex 5466 . . . . . 6 𝐵, 𝐴⟩ ∈ V
65intsn 4989 . . . . 5 {⟨𝐵, 𝐴⟩} = ⟨𝐵, 𝐴
74, 6eqtri 2756 . . . 4 {⟨𝐴, 𝐵⟩} = ⟨𝐵, 𝐴
87inteqi 4953 . . 3 {⟨𝐴, 𝐵⟩} = 𝐵, 𝐴
98inteqi 4953 . 2 {⟨𝐴, 𝐵⟩} = 𝐵, 𝐴
102, 1op1stb 5473 . 2 𝐵, 𝐴⟩ = 𝐵
119, 10eqtri 2756 1 {⟨𝐴, 𝐵⟩} = 𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  wcel 2099  Vcvv 3471  {csn 4629  cop 4635   cint 4949  ccnv 5677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-int 4950  df-br 5149  df-opab 5211  df-xp 5684  df-rel 5685  df-cnv 5686
This theorem is referenced by:  2ndval2  8011
  Copyright terms: Public domain W3C validator