Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > op2ndb | Structured version Visualization version GIF version |
Description: Extract the second member of an ordered pair. Theorem 5.12(ii) of [Monk1] p. 52. (See op1stb 5386 to extract the first member, op2nda 6131 for an alternate version, and op2nd 7840 for the preferred version.) (Contributed by NM, 25-Nov-2003.) |
Ref | Expression |
---|---|
cnvsn.1 | ⊢ 𝐴 ∈ V |
cnvsn.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
op2ndb | ⊢ ∩ ∩ ∩ ◡{〈𝐴, 𝐵〉} = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvsn.1 | . . . . . . 7 ⊢ 𝐴 ∈ V | |
2 | cnvsn.2 | . . . . . . 7 ⊢ 𝐵 ∈ V | |
3 | 1, 2 | cnvsn 6129 | . . . . . 6 ⊢ ◡{〈𝐴, 𝐵〉} = {〈𝐵, 𝐴〉} |
4 | 3 | inteqi 4883 | . . . . 5 ⊢ ∩ ◡{〈𝐴, 𝐵〉} = ∩ {〈𝐵, 𝐴〉} |
5 | opex 5379 | . . . . . 6 ⊢ 〈𝐵, 𝐴〉 ∈ V | |
6 | 5 | intsn 4917 | . . . . 5 ⊢ ∩ {〈𝐵, 𝐴〉} = 〈𝐵, 𝐴〉 |
7 | 4, 6 | eqtri 2766 | . . . 4 ⊢ ∩ ◡{〈𝐴, 𝐵〉} = 〈𝐵, 𝐴〉 |
8 | 7 | inteqi 4883 | . . 3 ⊢ ∩ ∩ ◡{〈𝐴, 𝐵〉} = ∩ 〈𝐵, 𝐴〉 |
9 | 8 | inteqi 4883 | . 2 ⊢ ∩ ∩ ∩ ◡{〈𝐴, 𝐵〉} = ∩ ∩ 〈𝐵, 𝐴〉 |
10 | 2, 1 | op1stb 5386 | . 2 ⊢ ∩ ∩ 〈𝐵, 𝐴〉 = 𝐵 |
11 | 9, 10 | eqtri 2766 | 1 ⊢ ∩ ∩ ∩ ◡{〈𝐴, 𝐵〉} = 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 Vcvv 3432 {csn 4561 〈cop 4567 ∩ cint 4879 ◡ccnv 5588 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-int 4880 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-cnv 5597 |
This theorem is referenced by: 2ndval2 7849 |
Copyright terms: Public domain | W3C validator |