![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > op2ndb | Structured version Visualization version GIF version |
Description: Extract the second member of an ordered pair. Theorem 5.12(ii) of [Monk1] p. 52. (See op1stb 5473 to extract the first member, op2nda 6232 for an alternate version, and op2nd 8002 for the preferred version.) (Contributed by NM, 25-Nov-2003.) |
Ref | Expression |
---|---|
cnvsn.1 | ⊢ 𝐴 ∈ V |
cnvsn.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
op2ndb | ⊢ ∩ ∩ ∩ ◡{⟨𝐴, 𝐵⟩} = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvsn.1 | . . . . . . 7 ⊢ 𝐴 ∈ V | |
2 | cnvsn.2 | . . . . . . 7 ⊢ 𝐵 ∈ V | |
3 | 1, 2 | cnvsn 6230 | . . . . . 6 ⊢ ◡{⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩} |
4 | 3 | inteqi 4953 | . . . . 5 ⊢ ∩ ◡{⟨𝐴, 𝐵⟩} = ∩ {⟨𝐵, 𝐴⟩} |
5 | opex 5466 | . . . . . 6 ⊢ ⟨𝐵, 𝐴⟩ ∈ V | |
6 | 5 | intsn 4989 | . . . . 5 ⊢ ∩ {⟨𝐵, 𝐴⟩} = ⟨𝐵, 𝐴⟩ |
7 | 4, 6 | eqtri 2756 | . . . 4 ⊢ ∩ ◡{⟨𝐴, 𝐵⟩} = ⟨𝐵, 𝐴⟩ |
8 | 7 | inteqi 4953 | . . 3 ⊢ ∩ ∩ ◡{⟨𝐴, 𝐵⟩} = ∩ ⟨𝐵, 𝐴⟩ |
9 | 8 | inteqi 4953 | . 2 ⊢ ∩ ∩ ∩ ◡{⟨𝐴, 𝐵⟩} = ∩ ∩ ⟨𝐵, 𝐴⟩ |
10 | 2, 1 | op1stb 5473 | . 2 ⊢ ∩ ∩ ⟨𝐵, 𝐴⟩ = 𝐵 |
11 | 9, 10 | eqtri 2756 | 1 ⊢ ∩ ∩ ∩ ◡{⟨𝐴, 𝐵⟩} = 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ∈ wcel 2099 Vcvv 3471 {csn 4629 ⟨cop 4635 ∩ cint 4949 ◡ccnv 5677 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-int 4950 df-br 5149 df-opab 5211 df-xp 5684 df-rel 5685 df-cnv 5686 |
This theorem is referenced by: 2ndval2 8011 |
Copyright terms: Public domain | W3C validator |