MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cflecard Structured version   Visualization version   GIF version

Theorem cflecard 9674
Description: Cofinality is bounded by the cardinality of its argument. (Contributed by NM, 24-Apr-2004.) (Revised by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
cflecard (cf‘𝐴) ⊆ (card‘𝐴)

Proof of Theorem cflecard
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cfval 9668 . . 3 (𝐴 ∈ On → (cf‘𝐴) = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))})
2 df-sn 4567 . . . . . 6 {(card‘𝐴)} = {𝑥𝑥 = (card‘𝐴)}
3 ssid 3988 . . . . . . . . 9 𝐴𝐴
4 ssid 3988 . . . . . . . . . . 11 𝑧𝑧
5 sseq2 3992 . . . . . . . . . . . 12 (𝑤 = 𝑧 → (𝑧𝑤𝑧𝑧))
65rspcev 3622 . . . . . . . . . . 11 ((𝑧𝐴𝑧𝑧) → ∃𝑤𝐴 𝑧𝑤)
74, 6mpan2 689 . . . . . . . . . 10 (𝑧𝐴 → ∃𝑤𝐴 𝑧𝑤)
87rgen 3148 . . . . . . . . 9 𝑧𝐴𝑤𝐴 𝑧𝑤
93, 8pm3.2i 473 . . . . . . . 8 (𝐴𝐴 ∧ ∀𝑧𝐴𝑤𝐴 𝑧𝑤)
10 fveq2 6669 . . . . . . . . . . 11 (𝑦 = 𝐴 → (card‘𝑦) = (card‘𝐴))
1110eqeq2d 2832 . . . . . . . . . 10 (𝑦 = 𝐴 → (𝑥 = (card‘𝑦) ↔ 𝑥 = (card‘𝐴)))
12 sseq1 3991 . . . . . . . . . . 11 (𝑦 = 𝐴 → (𝑦𝐴𝐴𝐴))
13 rexeq 3406 . . . . . . . . . . . 12 (𝑦 = 𝐴 → (∃𝑤𝑦 𝑧𝑤 ↔ ∃𝑤𝐴 𝑧𝑤))
1413ralbidv 3197 . . . . . . . . . . 11 (𝑦 = 𝐴 → (∀𝑧𝐴𝑤𝑦 𝑧𝑤 ↔ ∀𝑧𝐴𝑤𝐴 𝑧𝑤))
1512, 14anbi12d 632 . . . . . . . . . 10 (𝑦 = 𝐴 → ((𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤) ↔ (𝐴𝐴 ∧ ∀𝑧𝐴𝑤𝐴 𝑧𝑤)))
1611, 15anbi12d 632 . . . . . . . . 9 (𝑦 = 𝐴 → ((𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)) ↔ (𝑥 = (card‘𝐴) ∧ (𝐴𝐴 ∧ ∀𝑧𝐴𝑤𝐴 𝑧𝑤))))
1716spcegv 3596 . . . . . . . 8 (𝐴 ∈ On → ((𝑥 = (card‘𝐴) ∧ (𝐴𝐴 ∧ ∀𝑧𝐴𝑤𝐴 𝑧𝑤)) → ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))))
189, 17mpan2i 695 . . . . . . 7 (𝐴 ∈ On → (𝑥 = (card‘𝐴) → ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))))
1918ss2abdv 4043 . . . . . 6 (𝐴 ∈ On → {𝑥𝑥 = (card‘𝐴)} ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))})
202, 19eqsstrid 4014 . . . . 5 (𝐴 ∈ On → {(card‘𝐴)} ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))})
21 intss 4896 . . . . 5 ({(card‘𝐴)} ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} ⊆ {(card‘𝐴)})
2220, 21syl 17 . . . 4 (𝐴 ∈ On → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} ⊆ {(card‘𝐴)})
23 fvex 6682 . . . . 5 (card‘𝐴) ∈ V
2423intsn 4911 . . . 4 {(card‘𝐴)} = (card‘𝐴)
2522, 24sseqtrdi 4016 . . 3 (𝐴 ∈ On → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} ⊆ (card‘𝐴))
261, 25eqsstrd 4004 . 2 (𝐴 ∈ On → (cf‘𝐴) ⊆ (card‘𝐴))
27 cff 9669 . . . . . 6 cf:On⟶On
2827fdmi 6523 . . . . 5 dom cf = On
2928eleq2i 2904 . . . 4 (𝐴 ∈ dom cf ↔ 𝐴 ∈ On)
30 ndmfv 6699 . . . 4 𝐴 ∈ dom cf → (cf‘𝐴) = ∅)
3129, 30sylnbir 333 . . 3 𝐴 ∈ On → (cf‘𝐴) = ∅)
32 0ss 4349 . . 3 ∅ ⊆ (card‘𝐴)
3331, 32eqsstrdi 4020 . 2 𝐴 ∈ On → (cf‘𝐴) ⊆ (card‘𝐴))
3426, 33pm2.61i 184 1 (cf‘𝐴) ⊆ (card‘𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 398   = wceq 1533  wex 1776  wcel 2110  {cab 2799  wral 3138  wrex 3139  wss 3935  c0 4290  {csn 4566   cint 4875  dom cdm 5554  Oncon0 6190  cfv 6354  cardccrd 9363  cfccf 9365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-ord 6193  df-on 6194  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-fv 6362  df-card 9367  df-cf 9369
This theorem is referenced by:  cfle  9675
  Copyright terms: Public domain W3C validator