MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cflecard Structured version   Visualization version   GIF version

Theorem cflecard 10182
Description: Cofinality is bounded by the cardinality of its argument. (Contributed by NM, 24-Apr-2004.) (Revised by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
cflecard (cf‘𝐴) ⊆ (card‘𝐴)

Proof of Theorem cflecard
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cfval 10176 . . 3 (𝐴 ∈ On → (cf‘𝐴) = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))})
2 df-sn 4586 . . . . . 6 {(card‘𝐴)} = {𝑥𝑥 = (card‘𝐴)}
3 ssid 3966 . . . . . . . . 9 𝐴𝐴
4 ssid 3966 . . . . . . . . . . 11 𝑧𝑧
5 sseq2 3970 . . . . . . . . . . . 12 (𝑤 = 𝑧 → (𝑧𝑤𝑧𝑧))
65rspcev 3585 . . . . . . . . . . 11 ((𝑧𝐴𝑧𝑧) → ∃𝑤𝐴 𝑧𝑤)
74, 6mpan2 691 . . . . . . . . . 10 (𝑧𝐴 → ∃𝑤𝐴 𝑧𝑤)
87rgen 3046 . . . . . . . . 9 𝑧𝐴𝑤𝐴 𝑧𝑤
93, 8pm3.2i 470 . . . . . . . 8 (𝐴𝐴 ∧ ∀𝑧𝐴𝑤𝐴 𝑧𝑤)
10 fveq2 6840 . . . . . . . . . . 11 (𝑦 = 𝐴 → (card‘𝑦) = (card‘𝐴))
1110eqeq2d 2740 . . . . . . . . . 10 (𝑦 = 𝐴 → (𝑥 = (card‘𝑦) ↔ 𝑥 = (card‘𝐴)))
12 sseq1 3969 . . . . . . . . . . 11 (𝑦 = 𝐴 → (𝑦𝐴𝐴𝐴))
13 rexeq 3292 . . . . . . . . . . . 12 (𝑦 = 𝐴 → (∃𝑤𝑦 𝑧𝑤 ↔ ∃𝑤𝐴 𝑧𝑤))
1413ralbidv 3156 . . . . . . . . . . 11 (𝑦 = 𝐴 → (∀𝑧𝐴𝑤𝑦 𝑧𝑤 ↔ ∀𝑧𝐴𝑤𝐴 𝑧𝑤))
1512, 14anbi12d 632 . . . . . . . . . 10 (𝑦 = 𝐴 → ((𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤) ↔ (𝐴𝐴 ∧ ∀𝑧𝐴𝑤𝐴 𝑧𝑤)))
1611, 15anbi12d 632 . . . . . . . . 9 (𝑦 = 𝐴 → ((𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)) ↔ (𝑥 = (card‘𝐴) ∧ (𝐴𝐴 ∧ ∀𝑧𝐴𝑤𝐴 𝑧𝑤))))
1716spcegv 3560 . . . . . . . 8 (𝐴 ∈ On → ((𝑥 = (card‘𝐴) ∧ (𝐴𝐴 ∧ ∀𝑧𝐴𝑤𝐴 𝑧𝑤)) → ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))))
189, 17mpan2i 697 . . . . . . 7 (𝐴 ∈ On → (𝑥 = (card‘𝐴) → ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))))
1918ss2abdv 4026 . . . . . 6 (𝐴 ∈ On → {𝑥𝑥 = (card‘𝐴)} ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))})
202, 19eqsstrid 3982 . . . . 5 (𝐴 ∈ On → {(card‘𝐴)} ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))})
21 intss 4929 . . . . 5 ({(card‘𝐴)} ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} ⊆ {(card‘𝐴)})
2220, 21syl 17 . . . 4 (𝐴 ∈ On → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} ⊆ {(card‘𝐴)})
23 fvex 6853 . . . . 5 (card‘𝐴) ∈ V
2423intsn 4944 . . . 4 {(card‘𝐴)} = (card‘𝐴)
2522, 24sseqtrdi 3984 . . 3 (𝐴 ∈ On → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} ⊆ (card‘𝐴))
261, 25eqsstrd 3978 . 2 (𝐴 ∈ On → (cf‘𝐴) ⊆ (card‘𝐴))
27 cff 10177 . . . . . 6 cf:On⟶On
2827fdmi 6681 . . . . 5 dom cf = On
2928eleq2i 2820 . . . 4 (𝐴 ∈ dom cf ↔ 𝐴 ∈ On)
30 ndmfv 6875 . . . 4 𝐴 ∈ dom cf → (cf‘𝐴) = ∅)
3129, 30sylnbir 331 . . 3 𝐴 ∈ On → (cf‘𝐴) = ∅)
32 0ss 4359 . . 3 ∅ ⊆ (card‘𝐴)
3331, 32eqsstrdi 3988 . 2 𝐴 ∈ On → (cf‘𝐴) ⊆ (card‘𝐴))
3426, 33pm2.61i 182 1 (cf‘𝐴) ⊆ (card‘𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wex 1779  wcel 2109  {cab 2707  wral 3044  wrex 3053  wss 3911  c0 4292  {csn 4585   cint 4906  dom cdm 5631  Oncon0 6320  cfv 6499  cardccrd 9864  cfccf 9866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ord 6323  df-on 6324  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-card 9868  df-cf 9870
This theorem is referenced by:  cfle  10183
  Copyright terms: Public domain W3C validator