MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cflecard Structured version   Visualization version   GIF version

Theorem cflecard 10147
Description: Cofinality is bounded by the cardinality of its argument. (Contributed by NM, 24-Apr-2004.) (Revised by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
cflecard (cf‘𝐴) ⊆ (card‘𝐴)

Proof of Theorem cflecard
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cfval 10141 . . 3 (𝐴 ∈ On → (cf‘𝐴) = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))})
2 df-sn 4578 . . . . . 6 {(card‘𝐴)} = {𝑥𝑥 = (card‘𝐴)}
3 ssid 3958 . . . . . . . . 9 𝐴𝐴
4 ssid 3958 . . . . . . . . . . 11 𝑧𝑧
5 sseq2 3962 . . . . . . . . . . . 12 (𝑤 = 𝑧 → (𝑧𝑤𝑧𝑧))
65rspcev 3577 . . . . . . . . . . 11 ((𝑧𝐴𝑧𝑧) → ∃𝑤𝐴 𝑧𝑤)
74, 6mpan2 691 . . . . . . . . . 10 (𝑧𝐴 → ∃𝑤𝐴 𝑧𝑤)
87rgen 3046 . . . . . . . . 9 𝑧𝐴𝑤𝐴 𝑧𝑤
93, 8pm3.2i 470 . . . . . . . 8 (𝐴𝐴 ∧ ∀𝑧𝐴𝑤𝐴 𝑧𝑤)
10 fveq2 6822 . . . . . . . . . . 11 (𝑦 = 𝐴 → (card‘𝑦) = (card‘𝐴))
1110eqeq2d 2740 . . . . . . . . . 10 (𝑦 = 𝐴 → (𝑥 = (card‘𝑦) ↔ 𝑥 = (card‘𝐴)))
12 sseq1 3961 . . . . . . . . . . 11 (𝑦 = 𝐴 → (𝑦𝐴𝐴𝐴))
13 rexeq 3285 . . . . . . . . . . . 12 (𝑦 = 𝐴 → (∃𝑤𝑦 𝑧𝑤 ↔ ∃𝑤𝐴 𝑧𝑤))
1413ralbidv 3152 . . . . . . . . . . 11 (𝑦 = 𝐴 → (∀𝑧𝐴𝑤𝑦 𝑧𝑤 ↔ ∀𝑧𝐴𝑤𝐴 𝑧𝑤))
1512, 14anbi12d 632 . . . . . . . . . 10 (𝑦 = 𝐴 → ((𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤) ↔ (𝐴𝐴 ∧ ∀𝑧𝐴𝑤𝐴 𝑧𝑤)))
1611, 15anbi12d 632 . . . . . . . . 9 (𝑦 = 𝐴 → ((𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)) ↔ (𝑥 = (card‘𝐴) ∧ (𝐴𝐴 ∧ ∀𝑧𝐴𝑤𝐴 𝑧𝑤))))
1716spcegv 3552 . . . . . . . 8 (𝐴 ∈ On → ((𝑥 = (card‘𝐴) ∧ (𝐴𝐴 ∧ ∀𝑧𝐴𝑤𝐴 𝑧𝑤)) → ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))))
189, 17mpan2i 697 . . . . . . 7 (𝐴 ∈ On → (𝑥 = (card‘𝐴) → ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))))
1918ss2abdv 4018 . . . . . 6 (𝐴 ∈ On → {𝑥𝑥 = (card‘𝐴)} ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))})
202, 19eqsstrid 3974 . . . . 5 (𝐴 ∈ On → {(card‘𝐴)} ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))})
21 intss 4919 . . . . 5 ({(card‘𝐴)} ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} ⊆ {(card‘𝐴)})
2220, 21syl 17 . . . 4 (𝐴 ∈ On → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} ⊆ {(card‘𝐴)})
23 fvex 6835 . . . . 5 (card‘𝐴) ∈ V
2423intsn 4934 . . . 4 {(card‘𝐴)} = (card‘𝐴)
2522, 24sseqtrdi 3976 . . 3 (𝐴 ∈ On → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} ⊆ (card‘𝐴))
261, 25eqsstrd 3970 . 2 (𝐴 ∈ On → (cf‘𝐴) ⊆ (card‘𝐴))
27 cff 10142 . . . . . 6 cf:On⟶On
2827fdmi 6663 . . . . 5 dom cf = On
2928eleq2i 2820 . . . 4 (𝐴 ∈ dom cf ↔ 𝐴 ∈ On)
30 ndmfv 6855 . . . 4 𝐴 ∈ dom cf → (cf‘𝐴) = ∅)
3129, 30sylnbir 331 . . 3 𝐴 ∈ On → (cf‘𝐴) = ∅)
32 0ss 4351 . . 3 ∅ ⊆ (card‘𝐴)
3331, 32eqsstrdi 3980 . 2 𝐴 ∈ On → (cf‘𝐴) ⊆ (card‘𝐴))
3426, 33pm2.61i 182 1 (cf‘𝐴) ⊆ (card‘𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wex 1779  wcel 2109  {cab 2707  wral 3044  wrex 3053  wss 3903  c0 4284  {csn 4577   cint 4896  dom cdm 5619  Oncon0 6307  cfv 6482  cardccrd 9831  cfccf 9833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6310  df-on 6311  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fv 6490  df-card 9835  df-cf 9837
This theorem is referenced by:  cfle  10148
  Copyright terms: Public domain W3C validator