MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cflecard Structured version   Visualization version   GIF version

Theorem cflecard 10009
Description: Cofinality is bounded by the cardinality of its argument. (Contributed by NM, 24-Apr-2004.) (Revised by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
cflecard (cf‘𝐴) ⊆ (card‘𝐴)

Proof of Theorem cflecard
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cfval 10003 . . 3 (𝐴 ∈ On → (cf‘𝐴) = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))})
2 df-sn 4562 . . . . . 6 {(card‘𝐴)} = {𝑥𝑥 = (card‘𝐴)}
3 ssid 3943 . . . . . . . . 9 𝐴𝐴
4 ssid 3943 . . . . . . . . . . 11 𝑧𝑧
5 sseq2 3947 . . . . . . . . . . . 12 (𝑤 = 𝑧 → (𝑧𝑤𝑧𝑧))
65rspcev 3561 . . . . . . . . . . 11 ((𝑧𝐴𝑧𝑧) → ∃𝑤𝐴 𝑧𝑤)
74, 6mpan2 688 . . . . . . . . . 10 (𝑧𝐴 → ∃𝑤𝐴 𝑧𝑤)
87rgen 3074 . . . . . . . . 9 𝑧𝐴𝑤𝐴 𝑧𝑤
93, 8pm3.2i 471 . . . . . . . 8 (𝐴𝐴 ∧ ∀𝑧𝐴𝑤𝐴 𝑧𝑤)
10 fveq2 6774 . . . . . . . . . . 11 (𝑦 = 𝐴 → (card‘𝑦) = (card‘𝐴))
1110eqeq2d 2749 . . . . . . . . . 10 (𝑦 = 𝐴 → (𝑥 = (card‘𝑦) ↔ 𝑥 = (card‘𝐴)))
12 sseq1 3946 . . . . . . . . . . 11 (𝑦 = 𝐴 → (𝑦𝐴𝐴𝐴))
13 rexeq 3343 . . . . . . . . . . . 12 (𝑦 = 𝐴 → (∃𝑤𝑦 𝑧𝑤 ↔ ∃𝑤𝐴 𝑧𝑤))
1413ralbidv 3112 . . . . . . . . . . 11 (𝑦 = 𝐴 → (∀𝑧𝐴𝑤𝑦 𝑧𝑤 ↔ ∀𝑧𝐴𝑤𝐴 𝑧𝑤))
1512, 14anbi12d 631 . . . . . . . . . 10 (𝑦 = 𝐴 → ((𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤) ↔ (𝐴𝐴 ∧ ∀𝑧𝐴𝑤𝐴 𝑧𝑤)))
1611, 15anbi12d 631 . . . . . . . . 9 (𝑦 = 𝐴 → ((𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)) ↔ (𝑥 = (card‘𝐴) ∧ (𝐴𝐴 ∧ ∀𝑧𝐴𝑤𝐴 𝑧𝑤))))
1716spcegv 3536 . . . . . . . 8 (𝐴 ∈ On → ((𝑥 = (card‘𝐴) ∧ (𝐴𝐴 ∧ ∀𝑧𝐴𝑤𝐴 𝑧𝑤)) → ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))))
189, 17mpan2i 694 . . . . . . 7 (𝐴 ∈ On → (𝑥 = (card‘𝐴) → ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))))
1918ss2abdv 3997 . . . . . 6 (𝐴 ∈ On → {𝑥𝑥 = (card‘𝐴)} ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))})
202, 19eqsstrid 3969 . . . . 5 (𝐴 ∈ On → {(card‘𝐴)} ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))})
21 intss 4900 . . . . 5 ({(card‘𝐴)} ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} ⊆ {(card‘𝐴)})
2220, 21syl 17 . . . 4 (𝐴 ∈ On → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} ⊆ {(card‘𝐴)})
23 fvex 6787 . . . . 5 (card‘𝐴) ∈ V
2423intsn 4917 . . . 4 {(card‘𝐴)} = (card‘𝐴)
2522, 24sseqtrdi 3971 . . 3 (𝐴 ∈ On → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} ⊆ (card‘𝐴))
261, 25eqsstrd 3959 . 2 (𝐴 ∈ On → (cf‘𝐴) ⊆ (card‘𝐴))
27 cff 10004 . . . . . 6 cf:On⟶On
2827fdmi 6612 . . . . 5 dom cf = On
2928eleq2i 2830 . . . 4 (𝐴 ∈ dom cf ↔ 𝐴 ∈ On)
30 ndmfv 6804 . . . 4 𝐴 ∈ dom cf → (cf‘𝐴) = ∅)
3129, 30sylnbir 331 . . 3 𝐴 ∈ On → (cf‘𝐴) = ∅)
32 0ss 4330 . . 3 ∅ ⊆ (card‘𝐴)
3331, 32eqsstrdi 3975 . 2 𝐴 ∈ On → (cf‘𝐴) ⊆ (card‘𝐴))
3426, 33pm2.61i 182 1 (cf‘𝐴) ⊆ (card‘𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 396   = wceq 1539  wex 1782  wcel 2106  {cab 2715  wral 3064  wrex 3065  wss 3887  c0 4256  {csn 4561   cint 4879  dom cdm 5589  Oncon0 6266  cfv 6433  cardccrd 9693  cfccf 9695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-card 9697  df-cf 9699
This theorem is referenced by:  cfle  10010
  Copyright terms: Public domain W3C validator