MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fiin Structured version   Visualization version   GIF version

Theorem fiin 9181
Description: The elements of (fi‘𝐶) are closed under finite intersection. (Contributed by Mario Carneiro, 24-Nov-2013.)
Assertion
Ref Expression
fiin ((𝐴 ∈ (fi‘𝐶) ∧ 𝐵 ∈ (fi‘𝐶)) → (𝐴𝐵) ∈ (fi‘𝐶))

Proof of Theorem fiin
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvex 6807 . . . . . 6 (𝐴 ∈ (fi‘𝐶) → 𝐶 ∈ V)
2 elfi 9172 . . . . . 6 ((𝐴 ∈ (fi‘𝐶) ∧ 𝐶 ∈ V) → (𝐴 ∈ (fi‘𝐶) ↔ ∃𝑥 ∈ (𝒫 𝐶 ∩ Fin)𝐴 = 𝑥))
31, 2mpdan 684 . . . . 5 (𝐴 ∈ (fi‘𝐶) → (𝐴 ∈ (fi‘𝐶) ↔ ∃𝑥 ∈ (𝒫 𝐶 ∩ Fin)𝐴 = 𝑥))
43ibi 266 . . . 4 (𝐴 ∈ (fi‘𝐶) → ∃𝑥 ∈ (𝒫 𝐶 ∩ Fin)𝐴 = 𝑥)
54adantr 481 . . 3 ((𝐴 ∈ (fi‘𝐶) ∧ 𝐵 ∈ (fi‘𝐶)) → ∃𝑥 ∈ (𝒫 𝐶 ∩ Fin)𝐴 = 𝑥)
6 simpr 485 . . . 4 ((𝐴 ∈ (fi‘𝐶) ∧ 𝐵 ∈ (fi‘𝐶)) → 𝐵 ∈ (fi‘𝐶))
7 elfi 9172 . . . . . 6 ((𝐵 ∈ (fi‘𝐶) ∧ 𝐶 ∈ V) → (𝐵 ∈ (fi‘𝐶) ↔ ∃𝑦 ∈ (𝒫 𝐶 ∩ Fin)𝐵 = 𝑦))
87ancoms 459 . . . . 5 ((𝐶 ∈ V ∧ 𝐵 ∈ (fi‘𝐶)) → (𝐵 ∈ (fi‘𝐶) ↔ ∃𝑦 ∈ (𝒫 𝐶 ∩ Fin)𝐵 = 𝑦))
91, 8sylan 580 . . . 4 ((𝐴 ∈ (fi‘𝐶) ∧ 𝐵 ∈ (fi‘𝐶)) → (𝐵 ∈ (fi‘𝐶) ↔ ∃𝑦 ∈ (𝒫 𝐶 ∩ Fin)𝐵 = 𝑦))
106, 9mpbid 231 . . 3 ((𝐴 ∈ (fi‘𝐶) ∧ 𝐵 ∈ (fi‘𝐶)) → ∃𝑦 ∈ (𝒫 𝐶 ∩ Fin)𝐵 = 𝑦)
11 elin 3903 . . . . . . . . 9 (𝑥 ∈ (𝒫 𝐶 ∩ Fin) ↔ (𝑥 ∈ 𝒫 𝐶𝑥 ∈ Fin))
12 elin 3903 . . . . . . . . 9 (𝑦 ∈ (𝒫 𝐶 ∩ Fin) ↔ (𝑦 ∈ 𝒫 𝐶𝑦 ∈ Fin))
13 pwuncl 7620 . . . . . . . . . . 11 ((𝑥 ∈ 𝒫 𝐶𝑦 ∈ 𝒫 𝐶) → (𝑥𝑦) ∈ 𝒫 𝐶)
14 unfi 8955 . . . . . . . . . . 11 ((𝑥 ∈ Fin ∧ 𝑦 ∈ Fin) → (𝑥𝑦) ∈ Fin)
1513, 14anim12i 613 . . . . . . . . . 10 (((𝑥 ∈ 𝒫 𝐶𝑦 ∈ 𝒫 𝐶) ∧ (𝑥 ∈ Fin ∧ 𝑦 ∈ Fin)) → ((𝑥𝑦) ∈ 𝒫 𝐶 ∧ (𝑥𝑦) ∈ Fin))
1615an4s 657 . . . . . . . . 9 (((𝑥 ∈ 𝒫 𝐶𝑥 ∈ Fin) ∧ (𝑦 ∈ 𝒫 𝐶𝑦 ∈ Fin)) → ((𝑥𝑦) ∈ 𝒫 𝐶 ∧ (𝑥𝑦) ∈ Fin))
1711, 12, 16syl2anb 598 . . . . . . . 8 ((𝑥 ∈ (𝒫 𝐶 ∩ Fin) ∧ 𝑦 ∈ (𝒫 𝐶 ∩ Fin)) → ((𝑥𝑦) ∈ 𝒫 𝐶 ∧ (𝑥𝑦) ∈ Fin))
18 elin 3903 . . . . . . . 8 ((𝑥𝑦) ∈ (𝒫 𝐶 ∩ Fin) ↔ ((𝑥𝑦) ∈ 𝒫 𝐶 ∧ (𝑥𝑦) ∈ Fin))
1917, 18sylibr 233 . . . . . . 7 ((𝑥 ∈ (𝒫 𝐶 ∩ Fin) ∧ 𝑦 ∈ (𝒫 𝐶 ∩ Fin)) → (𝑥𝑦) ∈ (𝒫 𝐶 ∩ Fin))
20 ineq12 4141 . . . . . . . 8 ((𝐴 = 𝑥𝐵 = 𝑦) → (𝐴𝐵) = ( 𝑥 𝑦))
21 intun 4911 . . . . . . . 8 (𝑥𝑦) = ( 𝑥 𝑦)
2220, 21eqtr4di 2796 . . . . . . 7 ((𝐴 = 𝑥𝐵 = 𝑦) → (𝐴𝐵) = (𝑥𝑦))
23 inteq 4882 . . . . . . . 8 (𝑧 = (𝑥𝑦) → 𝑧 = (𝑥𝑦))
2423rspceeqv 3575 . . . . . . 7 (((𝑥𝑦) ∈ (𝒫 𝐶 ∩ Fin) ∧ (𝐴𝐵) = (𝑥𝑦)) → ∃𝑧 ∈ (𝒫 𝐶 ∩ Fin)(𝐴𝐵) = 𝑧)
2519, 22, 24syl2an 596 . . . . . 6 (((𝑥 ∈ (𝒫 𝐶 ∩ Fin) ∧ 𝑦 ∈ (𝒫 𝐶 ∩ Fin)) ∧ (𝐴 = 𝑥𝐵 = 𝑦)) → ∃𝑧 ∈ (𝒫 𝐶 ∩ Fin)(𝐴𝐵) = 𝑧)
2625an4s 657 . . . . 5 (((𝑥 ∈ (𝒫 𝐶 ∩ Fin) ∧ 𝐴 = 𝑥) ∧ (𝑦 ∈ (𝒫 𝐶 ∩ Fin) ∧ 𝐵 = 𝑦)) → ∃𝑧 ∈ (𝒫 𝐶 ∩ Fin)(𝐴𝐵) = 𝑧)
2726rexlimdvaa 3214 . . . 4 ((𝑥 ∈ (𝒫 𝐶 ∩ Fin) ∧ 𝐴 = 𝑥) → (∃𝑦 ∈ (𝒫 𝐶 ∩ Fin)𝐵 = 𝑦 → ∃𝑧 ∈ (𝒫 𝐶 ∩ Fin)(𝐴𝐵) = 𝑧))
2827rexlimiva 3210 . . 3 (∃𝑥 ∈ (𝒫 𝐶 ∩ Fin)𝐴 = 𝑥 → (∃𝑦 ∈ (𝒫 𝐶 ∩ Fin)𝐵 = 𝑦 → ∃𝑧 ∈ (𝒫 𝐶 ∩ Fin)(𝐴𝐵) = 𝑧))
295, 10, 28sylc 65 . 2 ((𝐴 ∈ (fi‘𝐶) ∧ 𝐵 ∈ (fi‘𝐶)) → ∃𝑧 ∈ (𝒫 𝐶 ∩ Fin)(𝐴𝐵) = 𝑧)
30 inex1g 5243 . . . 4 (𝐴 ∈ (fi‘𝐶) → (𝐴𝐵) ∈ V)
31 elfi 9172 . . . 4 (((𝐴𝐵) ∈ V ∧ 𝐶 ∈ V) → ((𝐴𝐵) ∈ (fi‘𝐶) ↔ ∃𝑧 ∈ (𝒫 𝐶 ∩ Fin)(𝐴𝐵) = 𝑧))
3230, 1, 31syl2anc 584 . . 3 (𝐴 ∈ (fi‘𝐶) → ((𝐴𝐵) ∈ (fi‘𝐶) ↔ ∃𝑧 ∈ (𝒫 𝐶 ∩ Fin)(𝐴𝐵) = 𝑧))
3332adantr 481 . 2 ((𝐴 ∈ (fi‘𝐶) ∧ 𝐵 ∈ (fi‘𝐶)) → ((𝐴𝐵) ∈ (fi‘𝐶) ↔ ∃𝑧 ∈ (𝒫 𝐶 ∩ Fin)(𝐴𝐵) = 𝑧))
3429, 33mpbird 256 1 ((𝐴 ∈ (fi‘𝐶) ∧ 𝐵 ∈ (fi‘𝐶)) → (𝐴𝐵) ∈ (fi‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wrex 3065  Vcvv 3432  cun 3885  cin 3886  𝒫 cpw 4533   cint 4879  cfv 6433  Fincfn 8733  ficfi 9169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-om 7713  df-en 8734  df-fin 8737  df-fi 9170
This theorem is referenced by:  dffi2  9182  inficl  9184  elfiun  9189  dffi3  9190  fibas  22127  ordtbas2  22342  fsubbas  23018
  Copyright terms: Public domain W3C validator