Step | Hyp | Ref
| Expression |
1 | | elfvex 6807 |
. . . . . 6
⊢ (𝐴 ∈ (fi‘𝐶) → 𝐶 ∈ V) |
2 | | elfi 9172 |
. . . . . 6
⊢ ((𝐴 ∈ (fi‘𝐶) ∧ 𝐶 ∈ V) → (𝐴 ∈ (fi‘𝐶) ↔ ∃𝑥 ∈ (𝒫 𝐶 ∩ Fin)𝐴 = ∩ 𝑥)) |
3 | 1, 2 | mpdan 684 |
. . . . 5
⊢ (𝐴 ∈ (fi‘𝐶) → (𝐴 ∈ (fi‘𝐶) ↔ ∃𝑥 ∈ (𝒫 𝐶 ∩ Fin)𝐴 = ∩ 𝑥)) |
4 | 3 | ibi 266 |
. . . 4
⊢ (𝐴 ∈ (fi‘𝐶) → ∃𝑥 ∈ (𝒫 𝐶 ∩ Fin)𝐴 = ∩ 𝑥) |
5 | 4 | adantr 481 |
. . 3
⊢ ((𝐴 ∈ (fi‘𝐶) ∧ 𝐵 ∈ (fi‘𝐶)) → ∃𝑥 ∈ (𝒫 𝐶 ∩ Fin)𝐴 = ∩ 𝑥) |
6 | | simpr 485 |
. . . 4
⊢ ((𝐴 ∈ (fi‘𝐶) ∧ 𝐵 ∈ (fi‘𝐶)) → 𝐵 ∈ (fi‘𝐶)) |
7 | | elfi 9172 |
. . . . . 6
⊢ ((𝐵 ∈ (fi‘𝐶) ∧ 𝐶 ∈ V) → (𝐵 ∈ (fi‘𝐶) ↔ ∃𝑦 ∈ (𝒫 𝐶 ∩ Fin)𝐵 = ∩ 𝑦)) |
8 | 7 | ancoms 459 |
. . . . 5
⊢ ((𝐶 ∈ V ∧ 𝐵 ∈ (fi‘𝐶)) → (𝐵 ∈ (fi‘𝐶) ↔ ∃𝑦 ∈ (𝒫 𝐶 ∩ Fin)𝐵 = ∩ 𝑦)) |
9 | 1, 8 | sylan 580 |
. . . 4
⊢ ((𝐴 ∈ (fi‘𝐶) ∧ 𝐵 ∈ (fi‘𝐶)) → (𝐵 ∈ (fi‘𝐶) ↔ ∃𝑦 ∈ (𝒫 𝐶 ∩ Fin)𝐵 = ∩ 𝑦)) |
10 | 6, 9 | mpbid 231 |
. . 3
⊢ ((𝐴 ∈ (fi‘𝐶) ∧ 𝐵 ∈ (fi‘𝐶)) → ∃𝑦 ∈ (𝒫 𝐶 ∩ Fin)𝐵 = ∩ 𝑦) |
11 | | elin 3903 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝒫 𝐶 ∩ Fin) ↔ (𝑥 ∈ 𝒫 𝐶 ∧ 𝑥 ∈ Fin)) |
12 | | elin 3903 |
. . . . . . . . 9
⊢ (𝑦 ∈ (𝒫 𝐶 ∩ Fin) ↔ (𝑦 ∈ 𝒫 𝐶 ∧ 𝑦 ∈ Fin)) |
13 | | pwuncl 7620 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝒫 𝐶 ∧ 𝑦 ∈ 𝒫 𝐶) → (𝑥 ∪ 𝑦) ∈ 𝒫 𝐶) |
14 | | unfi 8955 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ Fin ∧ 𝑦 ∈ Fin) → (𝑥 ∪ 𝑦) ∈ Fin) |
15 | 13, 14 | anim12i 613 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ 𝒫 𝐶 ∧ 𝑦 ∈ 𝒫 𝐶) ∧ (𝑥 ∈ Fin ∧ 𝑦 ∈ Fin)) → ((𝑥 ∪ 𝑦) ∈ 𝒫 𝐶 ∧ (𝑥 ∪ 𝑦) ∈ Fin)) |
16 | 15 | an4s 657 |
. . . . . . . . 9
⊢ (((𝑥 ∈ 𝒫 𝐶 ∧ 𝑥 ∈ Fin) ∧ (𝑦 ∈ 𝒫 𝐶 ∧ 𝑦 ∈ Fin)) → ((𝑥 ∪ 𝑦) ∈ 𝒫 𝐶 ∧ (𝑥 ∪ 𝑦) ∈ Fin)) |
17 | 11, 12, 16 | syl2anb 598 |
. . . . . . . 8
⊢ ((𝑥 ∈ (𝒫 𝐶 ∩ Fin) ∧ 𝑦 ∈ (𝒫 𝐶 ∩ Fin)) → ((𝑥 ∪ 𝑦) ∈ 𝒫 𝐶 ∧ (𝑥 ∪ 𝑦) ∈ Fin)) |
18 | | elin 3903 |
. . . . . . . 8
⊢ ((𝑥 ∪ 𝑦) ∈ (𝒫 𝐶 ∩ Fin) ↔ ((𝑥 ∪ 𝑦) ∈ 𝒫 𝐶 ∧ (𝑥 ∪ 𝑦) ∈ Fin)) |
19 | 17, 18 | sylibr 233 |
. . . . . . 7
⊢ ((𝑥 ∈ (𝒫 𝐶 ∩ Fin) ∧ 𝑦 ∈ (𝒫 𝐶 ∩ Fin)) → (𝑥 ∪ 𝑦) ∈ (𝒫 𝐶 ∩ Fin)) |
20 | | ineq12 4141 |
. . . . . . . 8
⊢ ((𝐴 = ∩
𝑥 ∧ 𝐵 = ∩ 𝑦) → (𝐴 ∩ 𝐵) = (∩ 𝑥 ∩ ∩ 𝑦)) |
21 | | intun 4911 |
. . . . . . . 8
⊢ ∩ (𝑥
∪ 𝑦) = (∩ 𝑥
∩ ∩ 𝑦) |
22 | 20, 21 | eqtr4di 2796 |
. . . . . . 7
⊢ ((𝐴 = ∩
𝑥 ∧ 𝐵 = ∩ 𝑦) → (𝐴 ∩ 𝐵) = ∩ (𝑥 ∪ 𝑦)) |
23 | | inteq 4882 |
. . . . . . . 8
⊢ (𝑧 = (𝑥 ∪ 𝑦) → ∩ 𝑧 = ∩
(𝑥 ∪ 𝑦)) |
24 | 23 | rspceeqv 3575 |
. . . . . . 7
⊢ (((𝑥 ∪ 𝑦) ∈ (𝒫 𝐶 ∩ Fin) ∧ (𝐴 ∩ 𝐵) = ∩ (𝑥 ∪ 𝑦)) → ∃𝑧 ∈ (𝒫 𝐶 ∩ Fin)(𝐴 ∩ 𝐵) = ∩ 𝑧) |
25 | 19, 22, 24 | syl2an 596 |
. . . . . 6
⊢ (((𝑥 ∈ (𝒫 𝐶 ∩ Fin) ∧ 𝑦 ∈ (𝒫 𝐶 ∩ Fin)) ∧ (𝐴 = ∩
𝑥 ∧ 𝐵 = ∩ 𝑦)) → ∃𝑧 ∈ (𝒫 𝐶 ∩ Fin)(𝐴 ∩ 𝐵) = ∩ 𝑧) |
26 | 25 | an4s 657 |
. . . . 5
⊢ (((𝑥 ∈ (𝒫 𝐶 ∩ Fin) ∧ 𝐴 = ∩
𝑥) ∧ (𝑦 ∈ (𝒫 𝐶 ∩ Fin) ∧ 𝐵 = ∩
𝑦)) → ∃𝑧 ∈ (𝒫 𝐶 ∩ Fin)(𝐴 ∩ 𝐵) = ∩ 𝑧) |
27 | 26 | rexlimdvaa 3214 |
. . . 4
⊢ ((𝑥 ∈ (𝒫 𝐶 ∩ Fin) ∧ 𝐴 = ∩
𝑥) → (∃𝑦 ∈ (𝒫 𝐶 ∩ Fin)𝐵 = ∩ 𝑦 → ∃𝑧 ∈ (𝒫 𝐶 ∩ Fin)(𝐴 ∩ 𝐵) = ∩ 𝑧)) |
28 | 27 | rexlimiva 3210 |
. . 3
⊢
(∃𝑥 ∈
(𝒫 𝐶 ∩
Fin)𝐴 = ∩ 𝑥
→ (∃𝑦 ∈
(𝒫 𝐶 ∩
Fin)𝐵 = ∩ 𝑦
→ ∃𝑧 ∈
(𝒫 𝐶 ∩
Fin)(𝐴 ∩ 𝐵) = ∩
𝑧)) |
29 | 5, 10, 28 | sylc 65 |
. 2
⊢ ((𝐴 ∈ (fi‘𝐶) ∧ 𝐵 ∈ (fi‘𝐶)) → ∃𝑧 ∈ (𝒫 𝐶 ∩ Fin)(𝐴 ∩ 𝐵) = ∩ 𝑧) |
30 | | inex1g 5243 |
. . . 4
⊢ (𝐴 ∈ (fi‘𝐶) → (𝐴 ∩ 𝐵) ∈ V) |
31 | | elfi 9172 |
. . . 4
⊢ (((𝐴 ∩ 𝐵) ∈ V ∧ 𝐶 ∈ V) → ((𝐴 ∩ 𝐵) ∈ (fi‘𝐶) ↔ ∃𝑧 ∈ (𝒫 𝐶 ∩ Fin)(𝐴 ∩ 𝐵) = ∩ 𝑧)) |
32 | 30, 1, 31 | syl2anc 584 |
. . 3
⊢ (𝐴 ∈ (fi‘𝐶) → ((𝐴 ∩ 𝐵) ∈ (fi‘𝐶) ↔ ∃𝑧 ∈ (𝒫 𝐶 ∩ Fin)(𝐴 ∩ 𝐵) = ∩ 𝑧)) |
33 | 32 | adantr 481 |
. 2
⊢ ((𝐴 ∈ (fi‘𝐶) ∧ 𝐵 ∈ (fi‘𝐶)) → ((𝐴 ∩ 𝐵) ∈ (fi‘𝐶) ↔ ∃𝑧 ∈ (𝒫 𝐶 ∩ Fin)(𝐴 ∩ 𝐵) = ∩ 𝑧)) |
34 | 29, 33 | mpbird 256 |
1
⊢ ((𝐴 ∈ (fi‘𝐶) ∧ 𝐵 ∈ (fi‘𝐶)) → (𝐴 ∩ 𝐵) ∈ (fi‘𝐶)) |