MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fiin Structured version   Visualization version   GIF version

Theorem fiin 8870
Description: The elements of (fi‘𝐶) are closed under finite intersection. (Contributed by Mario Carneiro, 24-Nov-2013.)
Assertion
Ref Expression
fiin ((𝐴 ∈ (fi‘𝐶) ∧ 𝐵 ∈ (fi‘𝐶)) → (𝐴𝐵) ∈ (fi‘𝐶))

Proof of Theorem fiin
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvex 6678 . . . . . 6 (𝐴 ∈ (fi‘𝐶) → 𝐶 ∈ V)
2 elfi 8861 . . . . . 6 ((𝐴 ∈ (fi‘𝐶) ∧ 𝐶 ∈ V) → (𝐴 ∈ (fi‘𝐶) ↔ ∃𝑥 ∈ (𝒫 𝐶 ∩ Fin)𝐴 = 𝑥))
31, 2mpdan 686 . . . . 5 (𝐴 ∈ (fi‘𝐶) → (𝐴 ∈ (fi‘𝐶) ↔ ∃𝑥 ∈ (𝒫 𝐶 ∩ Fin)𝐴 = 𝑥))
43ibi 270 . . . 4 (𝐴 ∈ (fi‘𝐶) → ∃𝑥 ∈ (𝒫 𝐶 ∩ Fin)𝐴 = 𝑥)
54adantr 484 . . 3 ((𝐴 ∈ (fi‘𝐶) ∧ 𝐵 ∈ (fi‘𝐶)) → ∃𝑥 ∈ (𝒫 𝐶 ∩ Fin)𝐴 = 𝑥)
6 simpr 488 . . . 4 ((𝐴 ∈ (fi‘𝐶) ∧ 𝐵 ∈ (fi‘𝐶)) → 𝐵 ∈ (fi‘𝐶))
7 elfi 8861 . . . . . 6 ((𝐵 ∈ (fi‘𝐶) ∧ 𝐶 ∈ V) → (𝐵 ∈ (fi‘𝐶) ↔ ∃𝑦 ∈ (𝒫 𝐶 ∩ Fin)𝐵 = 𝑦))
87ancoms 462 . . . . 5 ((𝐶 ∈ V ∧ 𝐵 ∈ (fi‘𝐶)) → (𝐵 ∈ (fi‘𝐶) ↔ ∃𝑦 ∈ (𝒫 𝐶 ∩ Fin)𝐵 = 𝑦))
91, 8sylan 583 . . . 4 ((𝐴 ∈ (fi‘𝐶) ∧ 𝐵 ∈ (fi‘𝐶)) → (𝐵 ∈ (fi‘𝐶) ↔ ∃𝑦 ∈ (𝒫 𝐶 ∩ Fin)𝐵 = 𝑦))
106, 9mpbid 235 . . 3 ((𝐴 ∈ (fi‘𝐶) ∧ 𝐵 ∈ (fi‘𝐶)) → ∃𝑦 ∈ (𝒫 𝐶 ∩ Fin)𝐵 = 𝑦)
11 elin 3897 . . . . . . . . 9 (𝑥 ∈ (𝒫 𝐶 ∩ Fin) ↔ (𝑥 ∈ 𝒫 𝐶𝑥 ∈ Fin))
12 elin 3897 . . . . . . . . 9 (𝑦 ∈ (𝒫 𝐶 ∩ Fin) ↔ (𝑦 ∈ 𝒫 𝐶𝑦 ∈ Fin))
13 pwuncl 7472 . . . . . . . . . . 11 ((𝑥 ∈ 𝒫 𝐶𝑦 ∈ 𝒫 𝐶) → (𝑥𝑦) ∈ 𝒫 𝐶)
14 unfi 8769 . . . . . . . . . . 11 ((𝑥 ∈ Fin ∧ 𝑦 ∈ Fin) → (𝑥𝑦) ∈ Fin)
1513, 14anim12i 615 . . . . . . . . . 10 (((𝑥 ∈ 𝒫 𝐶𝑦 ∈ 𝒫 𝐶) ∧ (𝑥 ∈ Fin ∧ 𝑦 ∈ Fin)) → ((𝑥𝑦) ∈ 𝒫 𝐶 ∧ (𝑥𝑦) ∈ Fin))
1615an4s 659 . . . . . . . . 9 (((𝑥 ∈ 𝒫 𝐶𝑥 ∈ Fin) ∧ (𝑦 ∈ 𝒫 𝐶𝑦 ∈ Fin)) → ((𝑥𝑦) ∈ 𝒫 𝐶 ∧ (𝑥𝑦) ∈ Fin))
1711, 12, 16syl2anb 600 . . . . . . . 8 ((𝑥 ∈ (𝒫 𝐶 ∩ Fin) ∧ 𝑦 ∈ (𝒫 𝐶 ∩ Fin)) → ((𝑥𝑦) ∈ 𝒫 𝐶 ∧ (𝑥𝑦) ∈ Fin))
18 elin 3897 . . . . . . . 8 ((𝑥𝑦) ∈ (𝒫 𝐶 ∩ Fin) ↔ ((𝑥𝑦) ∈ 𝒫 𝐶 ∧ (𝑥𝑦) ∈ Fin))
1917, 18sylibr 237 . . . . . . 7 ((𝑥 ∈ (𝒫 𝐶 ∩ Fin) ∧ 𝑦 ∈ (𝒫 𝐶 ∩ Fin)) → (𝑥𝑦) ∈ (𝒫 𝐶 ∩ Fin))
20 ineq12 4134 . . . . . . . 8 ((𝐴 = 𝑥𝐵 = 𝑦) → (𝐴𝐵) = ( 𝑥 𝑦))
21 intun 4870 . . . . . . . 8 (𝑥𝑦) = ( 𝑥 𝑦)
2220, 21eqtr4di 2851 . . . . . . 7 ((𝐴 = 𝑥𝐵 = 𝑦) → (𝐴𝐵) = (𝑥𝑦))
23 inteq 4841 . . . . . . . 8 (𝑧 = (𝑥𝑦) → 𝑧 = (𝑥𝑦))
2423rspceeqv 3586 . . . . . . 7 (((𝑥𝑦) ∈ (𝒫 𝐶 ∩ Fin) ∧ (𝐴𝐵) = (𝑥𝑦)) → ∃𝑧 ∈ (𝒫 𝐶 ∩ Fin)(𝐴𝐵) = 𝑧)
2519, 22, 24syl2an 598 . . . . . 6 (((𝑥 ∈ (𝒫 𝐶 ∩ Fin) ∧ 𝑦 ∈ (𝒫 𝐶 ∩ Fin)) ∧ (𝐴 = 𝑥𝐵 = 𝑦)) → ∃𝑧 ∈ (𝒫 𝐶 ∩ Fin)(𝐴𝐵) = 𝑧)
2625an4s 659 . . . . 5 (((𝑥 ∈ (𝒫 𝐶 ∩ Fin) ∧ 𝐴 = 𝑥) ∧ (𝑦 ∈ (𝒫 𝐶 ∩ Fin) ∧ 𝐵 = 𝑦)) → ∃𝑧 ∈ (𝒫 𝐶 ∩ Fin)(𝐴𝐵) = 𝑧)
2726rexlimdvaa 3244 . . . 4 ((𝑥 ∈ (𝒫 𝐶 ∩ Fin) ∧ 𝐴 = 𝑥) → (∃𝑦 ∈ (𝒫 𝐶 ∩ Fin)𝐵 = 𝑦 → ∃𝑧 ∈ (𝒫 𝐶 ∩ Fin)(𝐴𝐵) = 𝑧))
2827rexlimiva 3240 . . 3 (∃𝑥 ∈ (𝒫 𝐶 ∩ Fin)𝐴 = 𝑥 → (∃𝑦 ∈ (𝒫 𝐶 ∩ Fin)𝐵 = 𝑦 → ∃𝑧 ∈ (𝒫 𝐶 ∩ Fin)(𝐴𝐵) = 𝑧))
295, 10, 28sylc 65 . 2 ((𝐴 ∈ (fi‘𝐶) ∧ 𝐵 ∈ (fi‘𝐶)) → ∃𝑧 ∈ (𝒫 𝐶 ∩ Fin)(𝐴𝐵) = 𝑧)
30 inex1g 5187 . . . 4 (𝐴 ∈ (fi‘𝐶) → (𝐴𝐵) ∈ V)
31 elfi 8861 . . . 4 (((𝐴𝐵) ∈ V ∧ 𝐶 ∈ V) → ((𝐴𝐵) ∈ (fi‘𝐶) ↔ ∃𝑧 ∈ (𝒫 𝐶 ∩ Fin)(𝐴𝐵) = 𝑧))
3230, 1, 31syl2anc 587 . . 3 (𝐴 ∈ (fi‘𝐶) → ((𝐴𝐵) ∈ (fi‘𝐶) ↔ ∃𝑧 ∈ (𝒫 𝐶 ∩ Fin)(𝐴𝐵) = 𝑧))
3332adantr 484 . 2 ((𝐴 ∈ (fi‘𝐶) ∧ 𝐵 ∈ (fi‘𝐶)) → ((𝐴𝐵) ∈ (fi‘𝐶) ↔ ∃𝑧 ∈ (𝒫 𝐶 ∩ Fin)(𝐴𝐵) = 𝑧))
3429, 33mpbird 260 1 ((𝐴 ∈ (fi‘𝐶) ∧ 𝐵 ∈ (fi‘𝐶)) → (𝐴𝐵) ∈ (fi‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wrex 3107  Vcvv 3441  cun 3879  cin 3880  𝒫 cpw 4497   cint 4838  cfv 6324  Fincfn 8492  ficfi 8858
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-oadd 8089  df-er 8272  df-en 8493  df-fin 8496  df-fi 8859
This theorem is referenced by:  dffi2  8871  inficl  8873  elfiun  8878  dffi3  8879  fibas  21582  ordtbas2  21796  fsubbas  22472
  Copyright terms: Public domain W3C validator