MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fiin Structured version   Visualization version   GIF version

Theorem fiin 9434
Description: The elements of (fi‘𝐶) are closed under finite intersection. (Contributed by Mario Carneiro, 24-Nov-2013.)
Assertion
Ref Expression
fiin ((𝐴 ∈ (fi‘𝐶) ∧ 𝐵 ∈ (fi‘𝐶)) → (𝐴𝐵) ∈ (fi‘𝐶))

Proof of Theorem fiin
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvex 6914 . . . . . 6 (𝐴 ∈ (fi‘𝐶) → 𝐶 ∈ V)
2 elfi 9425 . . . . . 6 ((𝐴 ∈ (fi‘𝐶) ∧ 𝐶 ∈ V) → (𝐴 ∈ (fi‘𝐶) ↔ ∃𝑥 ∈ (𝒫 𝐶 ∩ Fin)𝐴 = 𝑥))
31, 2mpdan 687 . . . . 5 (𝐴 ∈ (fi‘𝐶) → (𝐴 ∈ (fi‘𝐶) ↔ ∃𝑥 ∈ (𝒫 𝐶 ∩ Fin)𝐴 = 𝑥))
43ibi 267 . . . 4 (𝐴 ∈ (fi‘𝐶) → ∃𝑥 ∈ (𝒫 𝐶 ∩ Fin)𝐴 = 𝑥)
54adantr 480 . . 3 ((𝐴 ∈ (fi‘𝐶) ∧ 𝐵 ∈ (fi‘𝐶)) → ∃𝑥 ∈ (𝒫 𝐶 ∩ Fin)𝐴 = 𝑥)
6 simpr 484 . . . 4 ((𝐴 ∈ (fi‘𝐶) ∧ 𝐵 ∈ (fi‘𝐶)) → 𝐵 ∈ (fi‘𝐶))
7 elfi 9425 . . . . . 6 ((𝐵 ∈ (fi‘𝐶) ∧ 𝐶 ∈ V) → (𝐵 ∈ (fi‘𝐶) ↔ ∃𝑦 ∈ (𝒫 𝐶 ∩ Fin)𝐵 = 𝑦))
87ancoms 458 . . . . 5 ((𝐶 ∈ V ∧ 𝐵 ∈ (fi‘𝐶)) → (𝐵 ∈ (fi‘𝐶) ↔ ∃𝑦 ∈ (𝒫 𝐶 ∩ Fin)𝐵 = 𝑦))
91, 8sylan 580 . . . 4 ((𝐴 ∈ (fi‘𝐶) ∧ 𝐵 ∈ (fi‘𝐶)) → (𝐵 ∈ (fi‘𝐶) ↔ ∃𝑦 ∈ (𝒫 𝐶 ∩ Fin)𝐵 = 𝑦))
106, 9mpbid 232 . . 3 ((𝐴 ∈ (fi‘𝐶) ∧ 𝐵 ∈ (fi‘𝐶)) → ∃𝑦 ∈ (𝒫 𝐶 ∩ Fin)𝐵 = 𝑦)
11 elin 3942 . . . . . . . . 9 (𝑥 ∈ (𝒫 𝐶 ∩ Fin) ↔ (𝑥 ∈ 𝒫 𝐶𝑥 ∈ Fin))
12 elin 3942 . . . . . . . . 9 (𝑦 ∈ (𝒫 𝐶 ∩ Fin) ↔ (𝑦 ∈ 𝒫 𝐶𝑦 ∈ Fin))
13 pwuncl 7764 . . . . . . . . . . 11 ((𝑥 ∈ 𝒫 𝐶𝑦 ∈ 𝒫 𝐶) → (𝑥𝑦) ∈ 𝒫 𝐶)
14 unfi 9185 . . . . . . . . . . 11 ((𝑥 ∈ Fin ∧ 𝑦 ∈ Fin) → (𝑥𝑦) ∈ Fin)
1513, 14anim12i 613 . . . . . . . . . 10 (((𝑥 ∈ 𝒫 𝐶𝑦 ∈ 𝒫 𝐶) ∧ (𝑥 ∈ Fin ∧ 𝑦 ∈ Fin)) → ((𝑥𝑦) ∈ 𝒫 𝐶 ∧ (𝑥𝑦) ∈ Fin))
1615an4s 660 . . . . . . . . 9 (((𝑥 ∈ 𝒫 𝐶𝑥 ∈ Fin) ∧ (𝑦 ∈ 𝒫 𝐶𝑦 ∈ Fin)) → ((𝑥𝑦) ∈ 𝒫 𝐶 ∧ (𝑥𝑦) ∈ Fin))
1711, 12, 16syl2anb 598 . . . . . . . 8 ((𝑥 ∈ (𝒫 𝐶 ∩ Fin) ∧ 𝑦 ∈ (𝒫 𝐶 ∩ Fin)) → ((𝑥𝑦) ∈ 𝒫 𝐶 ∧ (𝑥𝑦) ∈ Fin))
18 elin 3942 . . . . . . . 8 ((𝑥𝑦) ∈ (𝒫 𝐶 ∩ Fin) ↔ ((𝑥𝑦) ∈ 𝒫 𝐶 ∧ (𝑥𝑦) ∈ Fin))
1917, 18sylibr 234 . . . . . . 7 ((𝑥 ∈ (𝒫 𝐶 ∩ Fin) ∧ 𝑦 ∈ (𝒫 𝐶 ∩ Fin)) → (𝑥𝑦) ∈ (𝒫 𝐶 ∩ Fin))
20 ineq12 4190 . . . . . . . 8 ((𝐴 = 𝑥𝐵 = 𝑦) → (𝐴𝐵) = ( 𝑥 𝑦))
21 intun 4956 . . . . . . . 8 (𝑥𝑦) = ( 𝑥 𝑦)
2220, 21eqtr4di 2788 . . . . . . 7 ((𝐴 = 𝑥𝐵 = 𝑦) → (𝐴𝐵) = (𝑥𝑦))
23 inteq 4925 . . . . . . . 8 (𝑧 = (𝑥𝑦) → 𝑧 = (𝑥𝑦))
2423rspceeqv 3624 . . . . . . 7 (((𝑥𝑦) ∈ (𝒫 𝐶 ∩ Fin) ∧ (𝐴𝐵) = (𝑥𝑦)) → ∃𝑧 ∈ (𝒫 𝐶 ∩ Fin)(𝐴𝐵) = 𝑧)
2519, 22, 24syl2an 596 . . . . . 6 (((𝑥 ∈ (𝒫 𝐶 ∩ Fin) ∧ 𝑦 ∈ (𝒫 𝐶 ∩ Fin)) ∧ (𝐴 = 𝑥𝐵 = 𝑦)) → ∃𝑧 ∈ (𝒫 𝐶 ∩ Fin)(𝐴𝐵) = 𝑧)
2625an4s 660 . . . . 5 (((𝑥 ∈ (𝒫 𝐶 ∩ Fin) ∧ 𝐴 = 𝑥) ∧ (𝑦 ∈ (𝒫 𝐶 ∩ Fin) ∧ 𝐵 = 𝑦)) → ∃𝑧 ∈ (𝒫 𝐶 ∩ Fin)(𝐴𝐵) = 𝑧)
2726rexlimdvaa 3142 . . . 4 ((𝑥 ∈ (𝒫 𝐶 ∩ Fin) ∧ 𝐴 = 𝑥) → (∃𝑦 ∈ (𝒫 𝐶 ∩ Fin)𝐵 = 𝑦 → ∃𝑧 ∈ (𝒫 𝐶 ∩ Fin)(𝐴𝐵) = 𝑧))
2827rexlimiva 3133 . . 3 (∃𝑥 ∈ (𝒫 𝐶 ∩ Fin)𝐴 = 𝑥 → (∃𝑦 ∈ (𝒫 𝐶 ∩ Fin)𝐵 = 𝑦 → ∃𝑧 ∈ (𝒫 𝐶 ∩ Fin)(𝐴𝐵) = 𝑧))
295, 10, 28sylc 65 . 2 ((𝐴 ∈ (fi‘𝐶) ∧ 𝐵 ∈ (fi‘𝐶)) → ∃𝑧 ∈ (𝒫 𝐶 ∩ Fin)(𝐴𝐵) = 𝑧)
30 inex1g 5289 . . . 4 (𝐴 ∈ (fi‘𝐶) → (𝐴𝐵) ∈ V)
31 elfi 9425 . . . 4 (((𝐴𝐵) ∈ V ∧ 𝐶 ∈ V) → ((𝐴𝐵) ∈ (fi‘𝐶) ↔ ∃𝑧 ∈ (𝒫 𝐶 ∩ Fin)(𝐴𝐵) = 𝑧))
3230, 1, 31syl2anc 584 . . 3 (𝐴 ∈ (fi‘𝐶) → ((𝐴𝐵) ∈ (fi‘𝐶) ↔ ∃𝑧 ∈ (𝒫 𝐶 ∩ Fin)(𝐴𝐵) = 𝑧))
3332adantr 480 . 2 ((𝐴 ∈ (fi‘𝐶) ∧ 𝐵 ∈ (fi‘𝐶)) → ((𝐴𝐵) ∈ (fi‘𝐶) ↔ ∃𝑧 ∈ (𝒫 𝐶 ∩ Fin)(𝐴𝐵) = 𝑧))
3429, 33mpbird 257 1 ((𝐴 ∈ (fi‘𝐶) ∧ 𝐵 ∈ (fi‘𝐶)) → (𝐴𝐵) ∈ (fi‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wrex 3060  Vcvv 3459  cun 3924  cin 3925  𝒫 cpw 4575   cint 4922  cfv 6531  Fincfn 8959  ficfi 9422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-om 7862  df-en 8960  df-fin 8963  df-fi 9423
This theorem is referenced by:  dffi2  9435  inficl  9437  elfiun  9442  dffi3  9443  fibas  22915  ordtbas2  23129  fsubbas  23805
  Copyright terms: Public domain W3C validator