| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > riinint | Structured version Visualization version GIF version | ||
| Description: Express a relative indexed intersection as an intersection. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
| Ref | Expression |
|---|---|
| riinint | ⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐼 𝑆 ⊆ 𝑋) → (𝑋 ∩ ∩ 𝑘 ∈ 𝐼 𝑆) = ∩ ({𝑋} ∪ ran (𝑘 ∈ 𝐼 ↦ 𝑆))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssexg 5323 | . . . . . . 7 ⊢ ((𝑆 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) → 𝑆 ∈ V) | |
| 2 | 1 | expcom 413 | . . . . . 6 ⊢ (𝑋 ∈ 𝑉 → (𝑆 ⊆ 𝑋 → 𝑆 ∈ V)) |
| 3 | 2 | ralimdv 3169 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → (∀𝑘 ∈ 𝐼 𝑆 ⊆ 𝑋 → ∀𝑘 ∈ 𝐼 𝑆 ∈ V)) |
| 4 | 3 | imp 406 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐼 𝑆 ⊆ 𝑋) → ∀𝑘 ∈ 𝐼 𝑆 ∈ V) |
| 5 | dfiin3g 5979 | . . . 4 ⊢ (∀𝑘 ∈ 𝐼 𝑆 ∈ V → ∩ 𝑘 ∈ 𝐼 𝑆 = ∩ ran (𝑘 ∈ 𝐼 ↦ 𝑆)) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐼 𝑆 ⊆ 𝑋) → ∩ 𝑘 ∈ 𝐼 𝑆 = ∩ ran (𝑘 ∈ 𝐼 ↦ 𝑆)) |
| 7 | 6 | ineq2d 4220 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐼 𝑆 ⊆ 𝑋) → (𝑋 ∩ ∩ 𝑘 ∈ 𝐼 𝑆) = (𝑋 ∩ ∩ ran (𝑘 ∈ 𝐼 ↦ 𝑆))) |
| 8 | intun 4980 | . . 3 ⊢ ∩ ({𝑋} ∪ ran (𝑘 ∈ 𝐼 ↦ 𝑆)) = (∩ {𝑋} ∩ ∩ ran (𝑘 ∈ 𝐼 ↦ 𝑆)) | |
| 9 | intsng 4983 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → ∩ {𝑋} = 𝑋) | |
| 10 | 9 | adantr 480 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐼 𝑆 ⊆ 𝑋) → ∩ {𝑋} = 𝑋) |
| 11 | 10 | ineq1d 4219 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐼 𝑆 ⊆ 𝑋) → (∩ {𝑋} ∩ ∩ ran (𝑘 ∈ 𝐼 ↦ 𝑆)) = (𝑋 ∩ ∩ ran (𝑘 ∈ 𝐼 ↦ 𝑆))) |
| 12 | 8, 11 | eqtrid 2789 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐼 𝑆 ⊆ 𝑋) → ∩ ({𝑋} ∪ ran (𝑘 ∈ 𝐼 ↦ 𝑆)) = (𝑋 ∩ ∩ ran (𝑘 ∈ 𝐼 ↦ 𝑆))) |
| 13 | 7, 12 | eqtr4d 2780 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐼 𝑆 ⊆ 𝑋) → (𝑋 ∩ ∩ 𝑘 ∈ 𝐼 𝑆) = ∩ ({𝑋} ∪ ran (𝑘 ∈ 𝐼 ↦ 𝑆))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3061 Vcvv 3480 ∪ cun 3949 ∩ cin 3950 ⊆ wss 3951 {csn 4626 ∩ cint 4946 ∩ ciin 4992 ↦ cmpt 5225 ran crn 5686 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-int 4947 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5226 df-cnv 5693 df-dm 5695 df-rn 5696 |
| This theorem is referenced by: cmpfiiin 42708 |
| Copyright terms: Public domain | W3C validator |