![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > riinint | Structured version Visualization version GIF version |
Description: Express a relative indexed intersection as an intersection. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
Ref | Expression |
---|---|
riinint | ⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐼 𝑆 ⊆ 𝑋) → (𝑋 ∩ ∩ 𝑘 ∈ 𝐼 𝑆) = ∩ ({𝑋} ∪ ran (𝑘 ∈ 𝐼 ↦ 𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssexg 5322 | . . . . . . 7 ⊢ ((𝑆 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) → 𝑆 ∈ V) | |
2 | 1 | expcom 414 | . . . . . 6 ⊢ (𝑋 ∈ 𝑉 → (𝑆 ⊆ 𝑋 → 𝑆 ∈ V)) |
3 | 2 | ralimdv 3169 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → (∀𝑘 ∈ 𝐼 𝑆 ⊆ 𝑋 → ∀𝑘 ∈ 𝐼 𝑆 ∈ V)) |
4 | 3 | imp 407 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐼 𝑆 ⊆ 𝑋) → ∀𝑘 ∈ 𝐼 𝑆 ∈ V) |
5 | dfiin3g 5962 | . . . 4 ⊢ (∀𝑘 ∈ 𝐼 𝑆 ∈ V → ∩ 𝑘 ∈ 𝐼 𝑆 = ∩ ran (𝑘 ∈ 𝐼 ↦ 𝑆)) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐼 𝑆 ⊆ 𝑋) → ∩ 𝑘 ∈ 𝐼 𝑆 = ∩ ran (𝑘 ∈ 𝐼 ↦ 𝑆)) |
7 | 6 | ineq2d 4211 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐼 𝑆 ⊆ 𝑋) → (𝑋 ∩ ∩ 𝑘 ∈ 𝐼 𝑆) = (𝑋 ∩ ∩ ran (𝑘 ∈ 𝐼 ↦ 𝑆))) |
8 | intun 4983 | . . 3 ⊢ ∩ ({𝑋} ∪ ran (𝑘 ∈ 𝐼 ↦ 𝑆)) = (∩ {𝑋} ∩ ∩ ran (𝑘 ∈ 𝐼 ↦ 𝑆)) | |
9 | intsng 4988 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → ∩ {𝑋} = 𝑋) | |
10 | 9 | adantr 481 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐼 𝑆 ⊆ 𝑋) → ∩ {𝑋} = 𝑋) |
11 | 10 | ineq1d 4210 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐼 𝑆 ⊆ 𝑋) → (∩ {𝑋} ∩ ∩ ran (𝑘 ∈ 𝐼 ↦ 𝑆)) = (𝑋 ∩ ∩ ran (𝑘 ∈ 𝐼 ↦ 𝑆))) |
12 | 8, 11 | eqtrid 2784 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐼 𝑆 ⊆ 𝑋) → ∩ ({𝑋} ∪ ran (𝑘 ∈ 𝐼 ↦ 𝑆)) = (𝑋 ∩ ∩ ran (𝑘 ∈ 𝐼 ↦ 𝑆))) |
13 | 7, 12 | eqtr4d 2775 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐼 𝑆 ⊆ 𝑋) → (𝑋 ∩ ∩ 𝑘 ∈ 𝐼 𝑆) = ∩ ({𝑋} ∪ ran (𝑘 ∈ 𝐼 ↦ 𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3061 Vcvv 3474 ∪ cun 3945 ∩ cin 3946 ⊆ wss 3947 {csn 4627 ∩ cint 4949 ∩ ciin 4997 ↦ cmpt 5230 ran crn 5676 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-int 4950 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-cnv 5683 df-dm 5685 df-rn 5686 |
This theorem is referenced by: cmpfiiin 41420 |
Copyright terms: Public domain | W3C validator |