MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  riinint Structured version   Visualization version   GIF version

Theorem riinint 5913
Description: Express a relative indexed intersection as an intersection. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
riinint ((𝑋𝑉 ∧ ∀𝑘𝐼 𝑆𝑋) → (𝑋 𝑘𝐼 𝑆) = ({𝑋} ∪ ran (𝑘𝐼𝑆)))
Distinct variable groups:   𝑘,𝑉   𝑘,𝑋
Allowed substitution hints:   𝑆(𝑘)   𝐼(𝑘)

Proof of Theorem riinint
StepHypRef Expression
1 ssexg 5262 . . . . . . 7 ((𝑆𝑋𝑋𝑉) → 𝑆 ∈ V)
21expcom 413 . . . . . 6 (𝑋𝑉 → (𝑆𝑋𝑆 ∈ V))
32ralimdv 3143 . . . . 5 (𝑋𝑉 → (∀𝑘𝐼 𝑆𝑋 → ∀𝑘𝐼 𝑆 ∈ V))
43imp 406 . . . 4 ((𝑋𝑉 ∧ ∀𝑘𝐼 𝑆𝑋) → ∀𝑘𝐼 𝑆 ∈ V)
5 dfiin3g 5910 . . . 4 (∀𝑘𝐼 𝑆 ∈ V → 𝑘𝐼 𝑆 = ran (𝑘𝐼𝑆))
64, 5syl 17 . . 3 ((𝑋𝑉 ∧ ∀𝑘𝐼 𝑆𝑋) → 𝑘𝐼 𝑆 = ran (𝑘𝐼𝑆))
76ineq2d 4171 . 2 ((𝑋𝑉 ∧ ∀𝑘𝐼 𝑆𝑋) → (𝑋 𝑘𝐼 𝑆) = (𝑋 ran (𝑘𝐼𝑆)))
8 intun 4930 . . 3 ({𝑋} ∪ ran (𝑘𝐼𝑆)) = ( {𝑋} ∩ ran (𝑘𝐼𝑆))
9 intsng 4933 . . . . 5 (𝑋𝑉 {𝑋} = 𝑋)
109adantr 480 . . . 4 ((𝑋𝑉 ∧ ∀𝑘𝐼 𝑆𝑋) → {𝑋} = 𝑋)
1110ineq1d 4170 . . 3 ((𝑋𝑉 ∧ ∀𝑘𝐼 𝑆𝑋) → ( {𝑋} ∩ ran (𝑘𝐼𝑆)) = (𝑋 ran (𝑘𝐼𝑆)))
128, 11eqtrid 2776 . 2 ((𝑋𝑉 ∧ ∀𝑘𝐼 𝑆𝑋) → ({𝑋} ∪ ran (𝑘𝐼𝑆)) = (𝑋 ran (𝑘𝐼𝑆)))
137, 12eqtr4d 2767 1 ((𝑋𝑉 ∧ ∀𝑘𝐼 𝑆𝑋) → (𝑋 𝑘𝐼 𝑆) = ({𝑋} ∪ ran (𝑘𝐼𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3436  cun 3901  cin 3902  wss 3903  {csn 4577   cint 4896   ciin 4942  cmpt 5173  ran crn 5620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-int 4897  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-cnv 5627  df-dm 5629  df-rn 5630
This theorem is referenced by:  cmpfiiin  42674
  Copyright terms: Public domain W3C validator