![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > riinint | Structured version Visualization version GIF version |
Description: Express a relative indexed intersection as an intersection. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
Ref | Expression |
---|---|
riinint | ⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐼 𝑆 ⊆ 𝑋) → (𝑋 ∩ ∩ 𝑘 ∈ 𝐼 𝑆) = ∩ ({𝑋} ∪ ran (𝑘 ∈ 𝐼 ↦ 𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssexg 5327 | . . . . . . 7 ⊢ ((𝑆 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) → 𝑆 ∈ V) | |
2 | 1 | expcom 412 | . . . . . 6 ⊢ (𝑋 ∈ 𝑉 → (𝑆 ⊆ 𝑋 → 𝑆 ∈ V)) |
3 | 2 | ralimdv 3166 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → (∀𝑘 ∈ 𝐼 𝑆 ⊆ 𝑋 → ∀𝑘 ∈ 𝐼 𝑆 ∈ V)) |
4 | 3 | imp 405 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐼 𝑆 ⊆ 𝑋) → ∀𝑘 ∈ 𝐼 𝑆 ∈ V) |
5 | dfiin3g 5972 | . . . 4 ⊢ (∀𝑘 ∈ 𝐼 𝑆 ∈ V → ∩ 𝑘 ∈ 𝐼 𝑆 = ∩ ran (𝑘 ∈ 𝐼 ↦ 𝑆)) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐼 𝑆 ⊆ 𝑋) → ∩ 𝑘 ∈ 𝐼 𝑆 = ∩ ran (𝑘 ∈ 𝐼 ↦ 𝑆)) |
7 | 6 | ineq2d 4214 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐼 𝑆 ⊆ 𝑋) → (𝑋 ∩ ∩ 𝑘 ∈ 𝐼 𝑆) = (𝑋 ∩ ∩ ran (𝑘 ∈ 𝐼 ↦ 𝑆))) |
8 | intun 4987 | . . 3 ⊢ ∩ ({𝑋} ∪ ran (𝑘 ∈ 𝐼 ↦ 𝑆)) = (∩ {𝑋} ∩ ∩ ran (𝑘 ∈ 𝐼 ↦ 𝑆)) | |
9 | intsng 4992 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → ∩ {𝑋} = 𝑋) | |
10 | 9 | adantr 479 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐼 𝑆 ⊆ 𝑋) → ∩ {𝑋} = 𝑋) |
11 | 10 | ineq1d 4213 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐼 𝑆 ⊆ 𝑋) → (∩ {𝑋} ∩ ∩ ran (𝑘 ∈ 𝐼 ↦ 𝑆)) = (𝑋 ∩ ∩ ran (𝑘 ∈ 𝐼 ↦ 𝑆))) |
12 | 8, 11 | eqtrid 2780 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐼 𝑆 ⊆ 𝑋) → ∩ ({𝑋} ∪ ran (𝑘 ∈ 𝐼 ↦ 𝑆)) = (𝑋 ∩ ∩ ran (𝑘 ∈ 𝐼 ↦ 𝑆))) |
13 | 7, 12 | eqtr4d 2771 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐼 𝑆 ⊆ 𝑋) → (𝑋 ∩ ∩ 𝑘 ∈ 𝐼 𝑆) = ∩ ({𝑋} ∪ ran (𝑘 ∈ 𝐼 ↦ 𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∀wral 3058 Vcvv 3473 ∪ cun 3947 ∩ cin 3948 ⊆ wss 3949 {csn 4632 ∩ cint 4953 ∩ ciin 5001 ↦ cmpt 5235 ran crn 5683 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-int 4954 df-iin 5003 df-br 5153 df-opab 5215 df-mpt 5236 df-cnv 5690 df-dm 5692 df-rn 5693 |
This theorem is referenced by: cmpfiiin 42148 |
Copyright terms: Public domain | W3C validator |