MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  riinint Structured version   Visualization version   GIF version

Theorem riinint 5804
Description: Express a relative indexed intersection as an intersection. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
riinint ((𝑋𝑉 ∧ ∀𝑘𝐼 𝑆𝑋) → (𝑋 𝑘𝐼 𝑆) = ({𝑋} ∪ ran (𝑘𝐼𝑆)))
Distinct variable groups:   𝑘,𝑉   𝑘,𝑋
Allowed substitution hints:   𝑆(𝑘)   𝐼(𝑘)

Proof of Theorem riinint
StepHypRef Expression
1 ssexg 5191 . . . . . . 7 ((𝑆𝑋𝑋𝑉) → 𝑆 ∈ V)
21expcom 417 . . . . . 6 (𝑋𝑉 → (𝑆𝑋𝑆 ∈ V))
32ralimdv 3145 . . . . 5 (𝑋𝑉 → (∀𝑘𝐼 𝑆𝑋 → ∀𝑘𝐼 𝑆 ∈ V))
43imp 410 . . . 4 ((𝑋𝑉 ∧ ∀𝑘𝐼 𝑆𝑋) → ∀𝑘𝐼 𝑆 ∈ V)
5 dfiin3g 5801 . . . 4 (∀𝑘𝐼 𝑆 ∈ V → 𝑘𝐼 𝑆 = ran (𝑘𝐼𝑆))
64, 5syl 17 . . 3 ((𝑋𝑉 ∧ ∀𝑘𝐼 𝑆𝑋) → 𝑘𝐼 𝑆 = ran (𝑘𝐼𝑆))
76ineq2d 4139 . 2 ((𝑋𝑉 ∧ ∀𝑘𝐼 𝑆𝑋) → (𝑋 𝑘𝐼 𝑆) = (𝑋 ran (𝑘𝐼𝑆)))
8 intun 4870 . . 3 ({𝑋} ∪ ran (𝑘𝐼𝑆)) = ( {𝑋} ∩ ran (𝑘𝐼𝑆))
9 intsng 4873 . . . . 5 (𝑋𝑉 {𝑋} = 𝑋)
109adantr 484 . . . 4 ((𝑋𝑉 ∧ ∀𝑘𝐼 𝑆𝑋) → {𝑋} = 𝑋)
1110ineq1d 4138 . . 3 ((𝑋𝑉 ∧ ∀𝑘𝐼 𝑆𝑋) → ( {𝑋} ∩ ran (𝑘𝐼𝑆)) = (𝑋 ran (𝑘𝐼𝑆)))
128, 11syl5eq 2845 . 2 ((𝑋𝑉 ∧ ∀𝑘𝐼 𝑆𝑋) → ({𝑋} ∪ ran (𝑘𝐼𝑆)) = (𝑋 ran (𝑘𝐼𝑆)))
137, 12eqtr4d 2836 1 ((𝑋𝑉 ∧ ∀𝑘𝐼 𝑆𝑋) → (𝑋 𝑘𝐼 𝑆) = ({𝑋} ∪ ran (𝑘𝐼𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wral 3106  Vcvv 3441  cun 3879  cin 3880  wss 3881  {csn 4525   cint 4838   ciin 4882  cmpt 5110  ran crn 5520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-int 4839  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-cnv 5527  df-dm 5529  df-rn 5530
This theorem is referenced by:  cmpfiiin  39638
  Copyright terms: Public domain W3C validator