MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin11a Structured version   Visualization version   GIF version

Theorem fin11a 9493
Description: Every I-finite set is Ia-finite. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Revised by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
fin11a (𝐴 ∈ Fin → 𝐴 ∈ FinIa)

Proof of Theorem fin11a
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elpwi 4359 . . . . 5 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
2 ssfi 8422 . . . . 5 ((𝐴 ∈ Fin ∧ 𝑥𝐴) → 𝑥 ∈ Fin)
31, 2sylan2 587 . . . 4 ((𝐴 ∈ Fin ∧ 𝑥 ∈ 𝒫 𝐴) → 𝑥 ∈ Fin)
43orcd 900 . . 3 ((𝐴 ∈ Fin ∧ 𝑥 ∈ 𝒫 𝐴) → (𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ Fin))
54ralrimiva 3147 . 2 (𝐴 ∈ Fin → ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ Fin))
6 isfin1a 9402 . 2 (𝐴 ∈ Fin → (𝐴 ∈ FinIa ↔ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ Fin)))
75, 6mpbird 249 1 (𝐴 ∈ Fin → 𝐴 ∈ FinIa)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385  wo 874  wcel 2157  wral 3089  cdif 3766  wss 3769  𝒫 cpw 4349  Fincfn 8195  FinIacfin1a 9388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3387  df-sbc 3634  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-br 4844  df-opab 4906  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-om 7300  df-er 7982  df-en 8196  df-fin 8199  df-fin1a 9395
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator