MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin11a Structured version   Visualization version   GIF version

Theorem fin11a 10426
Description: Every I-finite set is Ia-finite. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Revised by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
fin11a (𝐴 ∈ Fin → 𝐴 ∈ FinIa)

Proof of Theorem fin11a
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elpwi 4614 . . . . 5 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
2 ssfi 9211 . . . . 5 ((𝐴 ∈ Fin ∧ 𝑥𝐴) → 𝑥 ∈ Fin)
31, 2sylan2 591 . . . 4 ((𝐴 ∈ Fin ∧ 𝑥 ∈ 𝒫 𝐴) → 𝑥 ∈ Fin)
43orcd 871 . . 3 ((𝐴 ∈ Fin ∧ 𝑥 ∈ 𝒫 𝐴) → (𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ Fin))
54ralrimiva 3136 . 2 (𝐴 ∈ Fin → ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ Fin))
6 isfin1a 10335 . 2 (𝐴 ∈ Fin → (𝐴 ∈ FinIa ↔ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ Fin)))
75, 6mpbird 256 1 (𝐴 ∈ Fin → 𝐴 ∈ FinIa)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wo 845  wcel 2099  wral 3051  cdif 3944  wss 3947  𝒫 cpw 4607  Fincfn 8974  FinIacfin1a 10321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-br 5154  df-opab 5216  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-om 7877  df-1o 8496  df-en 8975  df-fin 8978  df-fin1a 10328
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator