MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin11a Structured version   Visualization version   GIF version

Theorem fin11a 10281
Description: Every I-finite set is Ia-finite. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Revised by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
fin11a (𝐴 ∈ Fin → 𝐴 ∈ FinIa)

Proof of Theorem fin11a
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elpwi 4556 . . . . 5 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
2 ssfi 9089 . . . . 5 ((𝐴 ∈ Fin ∧ 𝑥𝐴) → 𝑥 ∈ Fin)
31, 2sylan2 593 . . . 4 ((𝐴 ∈ Fin ∧ 𝑥 ∈ 𝒫 𝐴) → 𝑥 ∈ Fin)
43orcd 873 . . 3 ((𝐴 ∈ Fin ∧ 𝑥 ∈ 𝒫 𝐴) → (𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ Fin))
54ralrimiva 3125 . 2 (𝐴 ∈ Fin → ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ Fin))
6 isfin1a 10190 . 2 (𝐴 ∈ Fin → (𝐴 ∈ FinIa ↔ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ Fin)))
75, 6mpbird 257 1 (𝐴 ∈ Fin → 𝐴 ∈ FinIa)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  wcel 2113  wral 3048  cdif 3895  wss 3898  𝒫 cpw 4549  Fincfn 8875  FinIacfin1a 10176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-om 7803  df-1o 8391  df-en 8876  df-fin 8879  df-fin1a 10183
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator