MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enfin1ai Structured version   Visualization version   GIF version

Theorem enfin1ai 10320
Description: Ia-finiteness is a cardinal property. (Contributed by Mario Carneiro, 18-May-2015.)
Assertion
Ref Expression
enfin1ai (𝐴𝐵 → (𝐴 ∈ FinIa𝐵 ∈ FinIa))

Proof of Theorem enfin1ai
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ensym 8943 . . 3 (𝐴𝐵𝐵𝐴)
2 bren 8893 . . 3 (𝐵𝐴 ↔ ∃𝑓 𝑓:𝐵1-1-onto𝐴)
31, 2sylib 217 . 2 (𝐴𝐵 → ∃𝑓 𝑓:𝐵1-1-onto𝐴)
4 elpwi 4567 . . . . . . 7 (𝑥 ∈ 𝒫 𝐵𝑥𝐵)
5 simplr 767 . . . . . . . . 9 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → 𝐴 ∈ FinIa)
6 imassrn 6024 . . . . . . . . . 10 (𝑓𝑥) ⊆ ran 𝑓
7 f1of 6784 . . . . . . . . . . . 12 (𝑓:𝐵1-1-onto𝐴𝑓:𝐵𝐴)
87ad2antrr 724 . . . . . . . . . . 11 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → 𝑓:𝐵𝐴)
98frnd 6676 . . . . . . . . . 10 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → ran 𝑓𝐴)
106, 9sstrid 3955 . . . . . . . . 9 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → (𝑓𝑥) ⊆ 𝐴)
11 fin1ai 10229 . . . . . . . . 9 ((𝐴 ∈ FinIa ∧ (𝑓𝑥) ⊆ 𝐴) → ((𝑓𝑥) ∈ Fin ∨ (𝐴 ∖ (𝑓𝑥)) ∈ Fin))
125, 10, 11syl2anc 584 . . . . . . . 8 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → ((𝑓𝑥) ∈ Fin ∨ (𝐴 ∖ (𝑓𝑥)) ∈ Fin))
13 f1of1 6783 . . . . . . . . . . . 12 (𝑓:𝐵1-1-onto𝐴𝑓:𝐵1-1𝐴)
1413ad2antrr 724 . . . . . . . . . . 11 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → 𝑓:𝐵1-1𝐴)
15 simpr 485 . . . . . . . . . . 11 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → 𝑥𝐵)
16 vex 3449 . . . . . . . . . . . 12 𝑥 ∈ V
1716a1i 11 . . . . . . . . . . 11 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → 𝑥 ∈ V)
18 f1imaeng 8954 . . . . . . . . . . 11 ((𝑓:𝐵1-1𝐴𝑥𝐵𝑥 ∈ V) → (𝑓𝑥) ≈ 𝑥)
1914, 15, 17, 18syl3anc 1371 . . . . . . . . . 10 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → (𝑓𝑥) ≈ 𝑥)
20 enfi 9134 . . . . . . . . . 10 ((𝑓𝑥) ≈ 𝑥 → ((𝑓𝑥) ∈ Fin ↔ 𝑥 ∈ Fin))
2119, 20syl 17 . . . . . . . . 9 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → ((𝑓𝑥) ∈ Fin ↔ 𝑥 ∈ Fin))
22 df-f1 6501 . . . . . . . . . . . . . 14 (𝑓:𝐵1-1𝐴 ↔ (𝑓:𝐵𝐴 ∧ Fun 𝑓))
2322simprbi 497 . . . . . . . . . . . . 13 (𝑓:𝐵1-1𝐴 → Fun 𝑓)
24 imadif 6585 . . . . . . . . . . . . 13 (Fun 𝑓 → (𝑓 “ (𝐵𝑥)) = ((𝑓𝐵) ∖ (𝑓𝑥)))
2514, 23, 243syl 18 . . . . . . . . . . . 12 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → (𝑓 “ (𝐵𝑥)) = ((𝑓𝐵) ∖ (𝑓𝑥)))
26 f1ofo 6791 . . . . . . . . . . . . . . 15 (𝑓:𝐵1-1-onto𝐴𝑓:𝐵onto𝐴)
27 foima 6761 . . . . . . . . . . . . . . 15 (𝑓:𝐵onto𝐴 → (𝑓𝐵) = 𝐴)
2826, 27syl 17 . . . . . . . . . . . . . 14 (𝑓:𝐵1-1-onto𝐴 → (𝑓𝐵) = 𝐴)
2928ad2antrr 724 . . . . . . . . . . . . 13 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → (𝑓𝐵) = 𝐴)
3029difeq1d 4081 . . . . . . . . . . . 12 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → ((𝑓𝐵) ∖ (𝑓𝑥)) = (𝐴 ∖ (𝑓𝑥)))
3125, 30eqtrd 2776 . . . . . . . . . . 11 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → (𝑓 “ (𝐵𝑥)) = (𝐴 ∖ (𝑓𝑥)))
32 difssd 4092 . . . . . . . . . . . 12 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → (𝐵𝑥) ⊆ 𝐵)
33 vex 3449 . . . . . . . . . . . . . . 15 𝑓 ∈ V
347adantr 481 . . . . . . . . . . . . . . 15 ((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) → 𝑓:𝐵𝐴)
35 dmfex 7844 . . . . . . . . . . . . . . 15 ((𝑓 ∈ V ∧ 𝑓:𝐵𝐴) → 𝐵 ∈ V)
3633, 34, 35sylancr 587 . . . . . . . . . . . . . 14 ((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) → 𝐵 ∈ V)
3736adantr 481 . . . . . . . . . . . . 13 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → 𝐵 ∈ V)
3837difexd 5286 . . . . . . . . . . . 12 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → (𝐵𝑥) ∈ V)
39 f1imaeng 8954 . . . . . . . . . . . 12 ((𝑓:𝐵1-1𝐴 ∧ (𝐵𝑥) ⊆ 𝐵 ∧ (𝐵𝑥) ∈ V) → (𝑓 “ (𝐵𝑥)) ≈ (𝐵𝑥))
4014, 32, 38, 39syl3anc 1371 . . . . . . . . . . 11 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → (𝑓 “ (𝐵𝑥)) ≈ (𝐵𝑥))
4131, 40eqbrtrrd 5129 . . . . . . . . . 10 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → (𝐴 ∖ (𝑓𝑥)) ≈ (𝐵𝑥))
42 enfi 9134 . . . . . . . . . 10 ((𝐴 ∖ (𝑓𝑥)) ≈ (𝐵𝑥) → ((𝐴 ∖ (𝑓𝑥)) ∈ Fin ↔ (𝐵𝑥) ∈ Fin))
4341, 42syl 17 . . . . . . . . 9 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → ((𝐴 ∖ (𝑓𝑥)) ∈ Fin ↔ (𝐵𝑥) ∈ Fin))
4421, 43orbi12d 917 . . . . . . . 8 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → (((𝑓𝑥) ∈ Fin ∨ (𝐴 ∖ (𝑓𝑥)) ∈ Fin) ↔ (𝑥 ∈ Fin ∨ (𝐵𝑥) ∈ Fin)))
4512, 44mpbid 231 . . . . . . 7 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → (𝑥 ∈ Fin ∨ (𝐵𝑥) ∈ Fin))
464, 45sylan2 593 . . . . . 6 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥 ∈ 𝒫 𝐵) → (𝑥 ∈ Fin ∨ (𝐵𝑥) ∈ Fin))
4746ralrimiva 3143 . . . . 5 ((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) → ∀𝑥 ∈ 𝒫 𝐵(𝑥 ∈ Fin ∨ (𝐵𝑥) ∈ Fin))
48 isfin1a 10228 . . . . . 6 (𝐵 ∈ V → (𝐵 ∈ FinIa ↔ ∀𝑥 ∈ 𝒫 𝐵(𝑥 ∈ Fin ∨ (𝐵𝑥) ∈ Fin)))
4936, 48syl 17 . . . . 5 ((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) → (𝐵 ∈ FinIa ↔ ∀𝑥 ∈ 𝒫 𝐵(𝑥 ∈ Fin ∨ (𝐵𝑥) ∈ Fin)))
5047, 49mpbird 256 . . . 4 ((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) → 𝐵 ∈ FinIa)
5150ex 413 . . 3 (𝑓:𝐵1-1-onto𝐴 → (𝐴 ∈ FinIa𝐵 ∈ FinIa))
5251exlimiv 1933 . 2 (∃𝑓 𝑓:𝐵1-1-onto𝐴 → (𝐴 ∈ FinIa𝐵 ∈ FinIa))
533, 52syl 17 1 (𝐴𝐵 → (𝐴 ∈ FinIa𝐵 ∈ FinIa))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 845   = wceq 1541  wex 1781  wcel 2106  wral 3064  Vcvv 3445  cdif 3907  wss 3910  𝒫 cpw 4560   class class class wbr 5105  ccnv 5632  ran crn 5634  cima 5636  Fun wfun 6490  wf 6492  1-1wf1 6493  ontowfo 6494  1-1-ontowf1o 6495  cen 8880  Fincfn 8883  FinIacfin1a 10214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-om 7803  df-1o 8412  df-er 8648  df-en 8884  df-fin 8887  df-fin1a 10221
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator