MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enfin1ai Structured version   Visualization version   GIF version

Theorem enfin1ai 10453
Description: Ia-finiteness is a cardinal property. (Contributed by Mario Carneiro, 18-May-2015.)
Assertion
Ref Expression
enfin1ai (𝐴𝐵 → (𝐴 ∈ FinIa𝐵 ∈ FinIa))

Proof of Theorem enfin1ai
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ensym 9063 . . 3 (𝐴𝐵𝐵𝐴)
2 bren 9013 . . 3 (𝐵𝐴 ↔ ∃𝑓 𝑓:𝐵1-1-onto𝐴)
31, 2sylib 218 . 2 (𝐴𝐵 → ∃𝑓 𝑓:𝐵1-1-onto𝐴)
4 elpwi 4629 . . . . . . 7 (𝑥 ∈ 𝒫 𝐵𝑥𝐵)
5 simplr 768 . . . . . . . . 9 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → 𝐴 ∈ FinIa)
6 imassrn 6100 . . . . . . . . . 10 (𝑓𝑥) ⊆ ran 𝑓
7 f1of 6862 . . . . . . . . . . . 12 (𝑓:𝐵1-1-onto𝐴𝑓:𝐵𝐴)
87ad2antrr 725 . . . . . . . . . . 11 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → 𝑓:𝐵𝐴)
98frnd 6755 . . . . . . . . . 10 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → ran 𝑓𝐴)
106, 9sstrid 4020 . . . . . . . . 9 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → (𝑓𝑥) ⊆ 𝐴)
11 fin1ai 10362 . . . . . . . . 9 ((𝐴 ∈ FinIa ∧ (𝑓𝑥) ⊆ 𝐴) → ((𝑓𝑥) ∈ Fin ∨ (𝐴 ∖ (𝑓𝑥)) ∈ Fin))
125, 10, 11syl2anc 583 . . . . . . . 8 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → ((𝑓𝑥) ∈ Fin ∨ (𝐴 ∖ (𝑓𝑥)) ∈ Fin))
13 f1of1 6861 . . . . . . . . . . . 12 (𝑓:𝐵1-1-onto𝐴𝑓:𝐵1-1𝐴)
1413ad2antrr 725 . . . . . . . . . . 11 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → 𝑓:𝐵1-1𝐴)
15 simpr 484 . . . . . . . . . . 11 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → 𝑥𝐵)
16 vex 3492 . . . . . . . . . . . 12 𝑥 ∈ V
1716a1i 11 . . . . . . . . . . 11 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → 𝑥 ∈ V)
18 f1imaeng 9074 . . . . . . . . . . 11 ((𝑓:𝐵1-1𝐴𝑥𝐵𝑥 ∈ V) → (𝑓𝑥) ≈ 𝑥)
1914, 15, 17, 18syl3anc 1371 . . . . . . . . . 10 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → (𝑓𝑥) ≈ 𝑥)
20 enfi 9253 . . . . . . . . . 10 ((𝑓𝑥) ≈ 𝑥 → ((𝑓𝑥) ∈ Fin ↔ 𝑥 ∈ Fin))
2119, 20syl 17 . . . . . . . . 9 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → ((𝑓𝑥) ∈ Fin ↔ 𝑥 ∈ Fin))
22 df-f1 6578 . . . . . . . . . . . . . 14 (𝑓:𝐵1-1𝐴 ↔ (𝑓:𝐵𝐴 ∧ Fun 𝑓))
2322simprbi 496 . . . . . . . . . . . . 13 (𝑓:𝐵1-1𝐴 → Fun 𝑓)
24 imadif 6662 . . . . . . . . . . . . 13 (Fun 𝑓 → (𝑓 “ (𝐵𝑥)) = ((𝑓𝐵) ∖ (𝑓𝑥)))
2514, 23, 243syl 18 . . . . . . . . . . . 12 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → (𝑓 “ (𝐵𝑥)) = ((𝑓𝐵) ∖ (𝑓𝑥)))
26 f1ofo 6869 . . . . . . . . . . . . . . 15 (𝑓:𝐵1-1-onto𝐴𝑓:𝐵onto𝐴)
27 foima 6839 . . . . . . . . . . . . . . 15 (𝑓:𝐵onto𝐴 → (𝑓𝐵) = 𝐴)
2826, 27syl 17 . . . . . . . . . . . . . 14 (𝑓:𝐵1-1-onto𝐴 → (𝑓𝐵) = 𝐴)
2928ad2antrr 725 . . . . . . . . . . . . 13 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → (𝑓𝐵) = 𝐴)
3029difeq1d 4148 . . . . . . . . . . . 12 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → ((𝑓𝐵) ∖ (𝑓𝑥)) = (𝐴 ∖ (𝑓𝑥)))
3125, 30eqtrd 2780 . . . . . . . . . . 11 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → (𝑓 “ (𝐵𝑥)) = (𝐴 ∖ (𝑓𝑥)))
32 difssd 4160 . . . . . . . . . . . 12 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → (𝐵𝑥) ⊆ 𝐵)
33 vex 3492 . . . . . . . . . . . . . . 15 𝑓 ∈ V
347adantr 480 . . . . . . . . . . . . . . 15 ((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) → 𝑓:𝐵𝐴)
35 dmfex 7945 . . . . . . . . . . . . . . 15 ((𝑓 ∈ V ∧ 𝑓:𝐵𝐴) → 𝐵 ∈ V)
3633, 34, 35sylancr 586 . . . . . . . . . . . . . 14 ((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) → 𝐵 ∈ V)
3736adantr 480 . . . . . . . . . . . . 13 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → 𝐵 ∈ V)
3837difexd 5349 . . . . . . . . . . . 12 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → (𝐵𝑥) ∈ V)
39 f1imaeng 9074 . . . . . . . . . . . 12 ((𝑓:𝐵1-1𝐴 ∧ (𝐵𝑥) ⊆ 𝐵 ∧ (𝐵𝑥) ∈ V) → (𝑓 “ (𝐵𝑥)) ≈ (𝐵𝑥))
4014, 32, 38, 39syl3anc 1371 . . . . . . . . . . 11 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → (𝑓 “ (𝐵𝑥)) ≈ (𝐵𝑥))
4131, 40eqbrtrrd 5190 . . . . . . . . . 10 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → (𝐴 ∖ (𝑓𝑥)) ≈ (𝐵𝑥))
42 enfi 9253 . . . . . . . . . 10 ((𝐴 ∖ (𝑓𝑥)) ≈ (𝐵𝑥) → ((𝐴 ∖ (𝑓𝑥)) ∈ Fin ↔ (𝐵𝑥) ∈ Fin))
4341, 42syl 17 . . . . . . . . 9 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → ((𝐴 ∖ (𝑓𝑥)) ∈ Fin ↔ (𝐵𝑥) ∈ Fin))
4421, 43orbi12d 917 . . . . . . . 8 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → (((𝑓𝑥) ∈ Fin ∨ (𝐴 ∖ (𝑓𝑥)) ∈ Fin) ↔ (𝑥 ∈ Fin ∨ (𝐵𝑥) ∈ Fin)))
4512, 44mpbid 232 . . . . . . 7 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → (𝑥 ∈ Fin ∨ (𝐵𝑥) ∈ Fin))
464, 45sylan2 592 . . . . . 6 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥 ∈ 𝒫 𝐵) → (𝑥 ∈ Fin ∨ (𝐵𝑥) ∈ Fin))
4746ralrimiva 3152 . . . . 5 ((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) → ∀𝑥 ∈ 𝒫 𝐵(𝑥 ∈ Fin ∨ (𝐵𝑥) ∈ Fin))
48 isfin1a 10361 . . . . . 6 (𝐵 ∈ V → (𝐵 ∈ FinIa ↔ ∀𝑥 ∈ 𝒫 𝐵(𝑥 ∈ Fin ∨ (𝐵𝑥) ∈ Fin)))
4936, 48syl 17 . . . . 5 ((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) → (𝐵 ∈ FinIa ↔ ∀𝑥 ∈ 𝒫 𝐵(𝑥 ∈ Fin ∨ (𝐵𝑥) ∈ Fin)))
5047, 49mpbird 257 . . . 4 ((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) → 𝐵 ∈ FinIa)
5150ex 412 . . 3 (𝑓:𝐵1-1-onto𝐴 → (𝐴 ∈ FinIa𝐵 ∈ FinIa))
5251exlimiv 1929 . 2 (∃𝑓 𝑓:𝐵1-1-onto𝐴 → (𝐴 ∈ FinIa𝐵 ∈ FinIa))
533, 52syl 17 1 (𝐴𝐵 → (𝐴 ∈ FinIa𝐵 ∈ FinIa))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wex 1777  wcel 2108  wral 3067  Vcvv 3488  cdif 3973  wss 3976  𝒫 cpw 4622   class class class wbr 5166  ccnv 5699  ran crn 5701  cima 5703  Fun wfun 6567  wf 6569  1-1wf1 6570  ontowfo 6571  1-1-ontowf1o 6572  cen 9000  Fincfn 9003  FinIacfin1a 10347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-om 7904  df-1o 8522  df-er 8763  df-en 9004  df-fin 9007  df-fin1a 10354
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator