| Step | Hyp | Ref
| Expression |
| 1 | | ensym 9017 |
. . 3
⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) |
| 2 | | bren 8969 |
. . 3
⊢ (𝐵 ≈ 𝐴 ↔ ∃𝑓 𝑓:𝐵–1-1-onto→𝐴) |
| 3 | 1, 2 | sylib 218 |
. 2
⊢ (𝐴 ≈ 𝐵 → ∃𝑓 𝑓:𝐵–1-1-onto→𝐴) |
| 4 | | elpwi 4582 |
. . . . . . 7
⊢ (𝑥 ∈ 𝒫 𝐵 → 𝑥 ⊆ 𝐵) |
| 5 | | simplr 768 |
. . . . . . . . 9
⊢ (((𝑓:𝐵–1-1-onto→𝐴 ∧ 𝐴 ∈ FinIa) ∧ 𝑥 ⊆ 𝐵) → 𝐴 ∈ FinIa) |
| 6 | | imassrn 6058 |
. . . . . . . . . 10
⊢ (𝑓 “ 𝑥) ⊆ ran 𝑓 |
| 7 | | f1of 6818 |
. . . . . . . . . . . 12
⊢ (𝑓:𝐵–1-1-onto→𝐴 → 𝑓:𝐵⟶𝐴) |
| 8 | 7 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝑓:𝐵–1-1-onto→𝐴 ∧ 𝐴 ∈ FinIa) ∧ 𝑥 ⊆ 𝐵) → 𝑓:𝐵⟶𝐴) |
| 9 | 8 | frnd 6714 |
. . . . . . . . . 10
⊢ (((𝑓:𝐵–1-1-onto→𝐴 ∧ 𝐴 ∈ FinIa) ∧ 𝑥 ⊆ 𝐵) → ran 𝑓 ⊆ 𝐴) |
| 10 | 6, 9 | sstrid 3970 |
. . . . . . . . 9
⊢ (((𝑓:𝐵–1-1-onto→𝐴 ∧ 𝐴 ∈ FinIa) ∧ 𝑥 ⊆ 𝐵) → (𝑓 “ 𝑥) ⊆ 𝐴) |
| 11 | | fin1ai 10307 |
. . . . . . . . 9
⊢ ((𝐴 ∈ FinIa ∧
(𝑓 “ 𝑥) ⊆ 𝐴) → ((𝑓 “ 𝑥) ∈ Fin ∨ (𝐴 ∖ (𝑓 “ 𝑥)) ∈ Fin)) |
| 12 | 5, 10, 11 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝑓:𝐵–1-1-onto→𝐴 ∧ 𝐴 ∈ FinIa) ∧ 𝑥 ⊆ 𝐵) → ((𝑓 “ 𝑥) ∈ Fin ∨ (𝐴 ∖ (𝑓 “ 𝑥)) ∈ Fin)) |
| 13 | | f1of1 6817 |
. . . . . . . . . . . 12
⊢ (𝑓:𝐵–1-1-onto→𝐴 → 𝑓:𝐵–1-1→𝐴) |
| 14 | 13 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝑓:𝐵–1-1-onto→𝐴 ∧ 𝐴 ∈ FinIa) ∧ 𝑥 ⊆ 𝐵) → 𝑓:𝐵–1-1→𝐴) |
| 15 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝑓:𝐵–1-1-onto→𝐴 ∧ 𝐴 ∈ FinIa) ∧ 𝑥 ⊆ 𝐵) → 𝑥 ⊆ 𝐵) |
| 16 | | vex 3463 |
. . . . . . . . . . . 12
⊢ 𝑥 ∈ V |
| 17 | 16 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝑓:𝐵–1-1-onto→𝐴 ∧ 𝐴 ∈ FinIa) ∧ 𝑥 ⊆ 𝐵) → 𝑥 ∈ V) |
| 18 | | f1imaeng 9028 |
. . . . . . . . . . 11
⊢ ((𝑓:𝐵–1-1→𝐴 ∧ 𝑥 ⊆ 𝐵 ∧ 𝑥 ∈ V) → (𝑓 “ 𝑥) ≈ 𝑥) |
| 19 | 14, 15, 17, 18 | syl3anc 1373 |
. . . . . . . . . 10
⊢ (((𝑓:𝐵–1-1-onto→𝐴 ∧ 𝐴 ∈ FinIa) ∧ 𝑥 ⊆ 𝐵) → (𝑓 “ 𝑥) ≈ 𝑥) |
| 20 | | enfi 9201 |
. . . . . . . . . 10
⊢ ((𝑓 “ 𝑥) ≈ 𝑥 → ((𝑓 “ 𝑥) ∈ Fin ↔ 𝑥 ∈ Fin)) |
| 21 | 19, 20 | syl 17 |
. . . . . . . . 9
⊢ (((𝑓:𝐵–1-1-onto→𝐴 ∧ 𝐴 ∈ FinIa) ∧ 𝑥 ⊆ 𝐵) → ((𝑓 “ 𝑥) ∈ Fin ↔ 𝑥 ∈ Fin)) |
| 22 | | df-f1 6536 |
. . . . . . . . . . . . . 14
⊢ (𝑓:𝐵–1-1→𝐴 ↔ (𝑓:𝐵⟶𝐴 ∧ Fun ◡𝑓)) |
| 23 | 22 | simprbi 496 |
. . . . . . . . . . . . 13
⊢ (𝑓:𝐵–1-1→𝐴 → Fun ◡𝑓) |
| 24 | | imadif 6620 |
. . . . . . . . . . . . 13
⊢ (Fun
◡𝑓 → (𝑓 “ (𝐵 ∖ 𝑥)) = ((𝑓 “ 𝐵) ∖ (𝑓 “ 𝑥))) |
| 25 | 14, 23, 24 | 3syl 18 |
. . . . . . . . . . . 12
⊢ (((𝑓:𝐵–1-1-onto→𝐴 ∧ 𝐴 ∈ FinIa) ∧ 𝑥 ⊆ 𝐵) → (𝑓 “ (𝐵 ∖ 𝑥)) = ((𝑓 “ 𝐵) ∖ (𝑓 “ 𝑥))) |
| 26 | | f1ofo 6825 |
. . . . . . . . . . . . . . 15
⊢ (𝑓:𝐵–1-1-onto→𝐴 → 𝑓:𝐵–onto→𝐴) |
| 27 | | foima 6795 |
. . . . . . . . . . . . . . 15
⊢ (𝑓:𝐵–onto→𝐴 → (𝑓 “ 𝐵) = 𝐴) |
| 28 | 26, 27 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑓:𝐵–1-1-onto→𝐴 → (𝑓 “ 𝐵) = 𝐴) |
| 29 | 28 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝑓:𝐵–1-1-onto→𝐴 ∧ 𝐴 ∈ FinIa) ∧ 𝑥 ⊆ 𝐵) → (𝑓 “ 𝐵) = 𝐴) |
| 30 | 29 | difeq1d 4100 |
. . . . . . . . . . . 12
⊢ (((𝑓:𝐵–1-1-onto→𝐴 ∧ 𝐴 ∈ FinIa) ∧ 𝑥 ⊆ 𝐵) → ((𝑓 “ 𝐵) ∖ (𝑓 “ 𝑥)) = (𝐴 ∖ (𝑓 “ 𝑥))) |
| 31 | 25, 30 | eqtrd 2770 |
. . . . . . . . . . 11
⊢ (((𝑓:𝐵–1-1-onto→𝐴 ∧ 𝐴 ∈ FinIa) ∧ 𝑥 ⊆ 𝐵) → (𝑓 “ (𝐵 ∖ 𝑥)) = (𝐴 ∖ (𝑓 “ 𝑥))) |
| 32 | | difssd 4112 |
. . . . . . . . . . . 12
⊢ (((𝑓:𝐵–1-1-onto→𝐴 ∧ 𝐴 ∈ FinIa) ∧ 𝑥 ⊆ 𝐵) → (𝐵 ∖ 𝑥) ⊆ 𝐵) |
| 33 | | vex 3463 |
. . . . . . . . . . . . . . 15
⊢ 𝑓 ∈ V |
| 34 | 7 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓:𝐵–1-1-onto→𝐴 ∧ 𝐴 ∈ FinIa) → 𝑓:𝐵⟶𝐴) |
| 35 | | dmfex 7901 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓 ∈ V ∧ 𝑓:𝐵⟶𝐴) → 𝐵 ∈ V) |
| 36 | 33, 34, 35 | sylancr 587 |
. . . . . . . . . . . . . 14
⊢ ((𝑓:𝐵–1-1-onto→𝐴 ∧ 𝐴 ∈ FinIa) → 𝐵 ∈ V) |
| 37 | 36 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝑓:𝐵–1-1-onto→𝐴 ∧ 𝐴 ∈ FinIa) ∧ 𝑥 ⊆ 𝐵) → 𝐵 ∈ V) |
| 38 | 37 | difexd 5301 |
. . . . . . . . . . . 12
⊢ (((𝑓:𝐵–1-1-onto→𝐴 ∧ 𝐴 ∈ FinIa) ∧ 𝑥 ⊆ 𝐵) → (𝐵 ∖ 𝑥) ∈ V) |
| 39 | | f1imaeng 9028 |
. . . . . . . . . . . 12
⊢ ((𝑓:𝐵–1-1→𝐴 ∧ (𝐵 ∖ 𝑥) ⊆ 𝐵 ∧ (𝐵 ∖ 𝑥) ∈ V) → (𝑓 “ (𝐵 ∖ 𝑥)) ≈ (𝐵 ∖ 𝑥)) |
| 40 | 14, 32, 38, 39 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ (((𝑓:𝐵–1-1-onto→𝐴 ∧ 𝐴 ∈ FinIa) ∧ 𝑥 ⊆ 𝐵) → (𝑓 “ (𝐵 ∖ 𝑥)) ≈ (𝐵 ∖ 𝑥)) |
| 41 | 31, 40 | eqbrtrrd 5143 |
. . . . . . . . . 10
⊢ (((𝑓:𝐵–1-1-onto→𝐴 ∧ 𝐴 ∈ FinIa) ∧ 𝑥 ⊆ 𝐵) → (𝐴 ∖ (𝑓 “ 𝑥)) ≈ (𝐵 ∖ 𝑥)) |
| 42 | | enfi 9201 |
. . . . . . . . . 10
⊢ ((𝐴 ∖ (𝑓 “ 𝑥)) ≈ (𝐵 ∖ 𝑥) → ((𝐴 ∖ (𝑓 “ 𝑥)) ∈ Fin ↔ (𝐵 ∖ 𝑥) ∈ Fin)) |
| 43 | 41, 42 | syl 17 |
. . . . . . . . 9
⊢ (((𝑓:𝐵–1-1-onto→𝐴 ∧ 𝐴 ∈ FinIa) ∧ 𝑥 ⊆ 𝐵) → ((𝐴 ∖ (𝑓 “ 𝑥)) ∈ Fin ↔ (𝐵 ∖ 𝑥) ∈ Fin)) |
| 44 | 21, 43 | orbi12d 918 |
. . . . . . . 8
⊢ (((𝑓:𝐵–1-1-onto→𝐴 ∧ 𝐴 ∈ FinIa) ∧ 𝑥 ⊆ 𝐵) → (((𝑓 “ 𝑥) ∈ Fin ∨ (𝐴 ∖ (𝑓 “ 𝑥)) ∈ Fin) ↔ (𝑥 ∈ Fin ∨ (𝐵 ∖ 𝑥) ∈ Fin))) |
| 45 | 12, 44 | mpbid 232 |
. . . . . . 7
⊢ (((𝑓:𝐵–1-1-onto→𝐴 ∧ 𝐴 ∈ FinIa) ∧ 𝑥 ⊆ 𝐵) → (𝑥 ∈ Fin ∨ (𝐵 ∖ 𝑥) ∈ Fin)) |
| 46 | 4, 45 | sylan2 593 |
. . . . . 6
⊢ (((𝑓:𝐵–1-1-onto→𝐴 ∧ 𝐴 ∈ FinIa) ∧ 𝑥 ∈ 𝒫 𝐵) → (𝑥 ∈ Fin ∨ (𝐵 ∖ 𝑥) ∈ Fin)) |
| 47 | 46 | ralrimiva 3132 |
. . . . 5
⊢ ((𝑓:𝐵–1-1-onto→𝐴 ∧ 𝐴 ∈ FinIa) →
∀𝑥 ∈ 𝒫
𝐵(𝑥 ∈ Fin ∨ (𝐵 ∖ 𝑥) ∈ Fin)) |
| 48 | | isfin1a 10306 |
. . . . . 6
⊢ (𝐵 ∈ V → (𝐵 ∈ FinIa ↔
∀𝑥 ∈ 𝒫
𝐵(𝑥 ∈ Fin ∨ (𝐵 ∖ 𝑥) ∈ Fin))) |
| 49 | 36, 48 | syl 17 |
. . . . 5
⊢ ((𝑓:𝐵–1-1-onto→𝐴 ∧ 𝐴 ∈ FinIa) → (𝐵 ∈ FinIa ↔
∀𝑥 ∈ 𝒫
𝐵(𝑥 ∈ Fin ∨ (𝐵 ∖ 𝑥) ∈ Fin))) |
| 50 | 47, 49 | mpbird 257 |
. . . 4
⊢ ((𝑓:𝐵–1-1-onto→𝐴 ∧ 𝐴 ∈ FinIa) → 𝐵 ∈
FinIa) |
| 51 | 50 | ex 412 |
. . 3
⊢ (𝑓:𝐵–1-1-onto→𝐴 → (𝐴 ∈ FinIa → 𝐵 ∈
FinIa)) |
| 52 | 51 | exlimiv 1930 |
. 2
⊢
(∃𝑓 𝑓:𝐵–1-1-onto→𝐴 → (𝐴 ∈ FinIa → 𝐵 ∈
FinIa)) |
| 53 | 3, 52 | syl 17 |
1
⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ FinIa → 𝐵 ∈
FinIa)) |