| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fin1ai | Structured version Visualization version GIF version | ||
| Description: Property of a Ia-finite set. (Contributed by Stefan O'Rear, 16-May-2015.) |
| Ref | Expression |
|---|---|
| fin1ai | ⊢ ((𝐴 ∈ FinIa ∧ 𝑋 ⊆ 𝐴) → (𝑋 ∈ Fin ∨ (𝐴 ∖ 𝑋) ∈ Fin)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2822 | . . 3 ⊢ (𝑥 = 𝑋 → (𝑥 ∈ Fin ↔ 𝑋 ∈ Fin)) | |
| 2 | difeq2 4095 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝐴 ∖ 𝑥) = (𝐴 ∖ 𝑋)) | |
| 3 | 2 | eleq1d 2819 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝐴 ∖ 𝑥) ∈ Fin ↔ (𝐴 ∖ 𝑋) ∈ Fin)) |
| 4 | 1, 3 | orbi12d 918 | . 2 ⊢ (𝑥 = 𝑋 → ((𝑥 ∈ Fin ∨ (𝐴 ∖ 𝑥) ∈ Fin) ↔ (𝑋 ∈ Fin ∨ (𝐴 ∖ 𝑋) ∈ Fin))) |
| 5 | isfin1a 10306 | . . . 4 ⊢ (𝐴 ∈ FinIa → (𝐴 ∈ FinIa ↔ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴 ∖ 𝑥) ∈ Fin))) | |
| 6 | 5 | ibi 267 | . . 3 ⊢ (𝐴 ∈ FinIa → ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴 ∖ 𝑥) ∈ Fin)) |
| 7 | 6 | adantr 480 | . 2 ⊢ ((𝐴 ∈ FinIa ∧ 𝑋 ⊆ 𝐴) → ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴 ∖ 𝑥) ∈ Fin)) |
| 8 | elpw2g 5303 | . . 3 ⊢ (𝐴 ∈ FinIa → (𝑋 ∈ 𝒫 𝐴 ↔ 𝑋 ⊆ 𝐴)) | |
| 9 | 8 | biimpar 477 | . 2 ⊢ ((𝐴 ∈ FinIa ∧ 𝑋 ⊆ 𝐴) → 𝑋 ∈ 𝒫 𝐴) |
| 10 | 4, 7, 9 | rspcdva 3602 | 1 ⊢ ((𝐴 ∈ FinIa ∧ 𝑋 ⊆ 𝐴) → (𝑋 ∈ Fin ∨ (𝐴 ∖ 𝑋) ∈ Fin)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ∖ cdif 3923 ⊆ wss 3926 𝒫 cpw 4575 Fincfn 8959 FinIacfin1a 10292 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rab 3416 df-v 3461 df-dif 3929 df-in 3933 df-ss 3943 df-pw 4577 df-fin1a 10299 |
| This theorem is referenced by: enfin1ai 10398 fin1a2 10429 fin1aufil 23870 |
| Copyright terms: Public domain | W3C validator |