Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fin1ai | Structured version Visualization version GIF version |
Description: Property of a Ia-finite set. (Contributed by Stefan O'Rear, 16-May-2015.) |
Ref | Expression |
---|---|
fin1ai | ⊢ ((𝐴 ∈ FinIa ∧ 𝑋 ⊆ 𝐴) → (𝑋 ∈ Fin ∨ (𝐴 ∖ 𝑋) ∈ Fin)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2826 | . . 3 ⊢ (𝑥 = 𝑋 → (𝑥 ∈ Fin ↔ 𝑋 ∈ Fin)) | |
2 | difeq2 4047 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝐴 ∖ 𝑥) = (𝐴 ∖ 𝑋)) | |
3 | 2 | eleq1d 2823 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝐴 ∖ 𝑥) ∈ Fin ↔ (𝐴 ∖ 𝑋) ∈ Fin)) |
4 | 1, 3 | orbi12d 915 | . 2 ⊢ (𝑥 = 𝑋 → ((𝑥 ∈ Fin ∨ (𝐴 ∖ 𝑥) ∈ Fin) ↔ (𝑋 ∈ Fin ∨ (𝐴 ∖ 𝑋) ∈ Fin))) |
5 | isfin1a 9979 | . . . 4 ⊢ (𝐴 ∈ FinIa → (𝐴 ∈ FinIa ↔ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴 ∖ 𝑥) ∈ Fin))) | |
6 | 5 | ibi 266 | . . 3 ⊢ (𝐴 ∈ FinIa → ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴 ∖ 𝑥) ∈ Fin)) |
7 | 6 | adantr 480 | . 2 ⊢ ((𝐴 ∈ FinIa ∧ 𝑋 ⊆ 𝐴) → ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴 ∖ 𝑥) ∈ Fin)) |
8 | elpw2g 5263 | . . 3 ⊢ (𝐴 ∈ FinIa → (𝑋 ∈ 𝒫 𝐴 ↔ 𝑋 ⊆ 𝐴)) | |
9 | 8 | biimpar 477 | . 2 ⊢ ((𝐴 ∈ FinIa ∧ 𝑋 ⊆ 𝐴) → 𝑋 ∈ 𝒫 𝐴) |
10 | 4, 7, 9 | rspcdva 3554 | 1 ⊢ ((𝐴 ∈ FinIa ∧ 𝑋 ⊆ 𝐴) → (𝑋 ∈ Fin ∨ (𝐴 ∖ 𝑋) ∈ Fin)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 843 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∖ cdif 3880 ⊆ wss 3883 𝒫 cpw 4530 Fincfn 8691 FinIacfin1a 9965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-in 3890 df-ss 3900 df-pw 4532 df-fin1a 9972 |
This theorem is referenced by: enfin1ai 10071 fin1a2 10102 fin1aufil 22991 |
Copyright terms: Public domain | W3C validator |