|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > fin1ai | Structured version Visualization version GIF version | ||
| Description: Property of a Ia-finite set. (Contributed by Stefan O'Rear, 16-May-2015.) | 
| Ref | Expression | 
|---|---|
| fin1ai | ⊢ ((𝐴 ∈ FinIa ∧ 𝑋 ⊆ 𝐴) → (𝑋 ∈ Fin ∨ (𝐴 ∖ 𝑋) ∈ Fin)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eleq1 2829 | . . 3 ⊢ (𝑥 = 𝑋 → (𝑥 ∈ Fin ↔ 𝑋 ∈ Fin)) | |
| 2 | difeq2 4120 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝐴 ∖ 𝑥) = (𝐴 ∖ 𝑋)) | |
| 3 | 2 | eleq1d 2826 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝐴 ∖ 𝑥) ∈ Fin ↔ (𝐴 ∖ 𝑋) ∈ Fin)) | 
| 4 | 1, 3 | orbi12d 919 | . 2 ⊢ (𝑥 = 𝑋 → ((𝑥 ∈ Fin ∨ (𝐴 ∖ 𝑥) ∈ Fin) ↔ (𝑋 ∈ Fin ∨ (𝐴 ∖ 𝑋) ∈ Fin))) | 
| 5 | isfin1a 10332 | . . . 4 ⊢ (𝐴 ∈ FinIa → (𝐴 ∈ FinIa ↔ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴 ∖ 𝑥) ∈ Fin))) | |
| 6 | 5 | ibi 267 | . . 3 ⊢ (𝐴 ∈ FinIa → ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴 ∖ 𝑥) ∈ Fin)) | 
| 7 | 6 | adantr 480 | . 2 ⊢ ((𝐴 ∈ FinIa ∧ 𝑋 ⊆ 𝐴) → ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴 ∖ 𝑥) ∈ Fin)) | 
| 8 | elpw2g 5333 | . . 3 ⊢ (𝐴 ∈ FinIa → (𝑋 ∈ 𝒫 𝐴 ↔ 𝑋 ⊆ 𝐴)) | |
| 9 | 8 | biimpar 477 | . 2 ⊢ ((𝐴 ∈ FinIa ∧ 𝑋 ⊆ 𝐴) → 𝑋 ∈ 𝒫 𝐴) | 
| 10 | 4, 7, 9 | rspcdva 3623 | 1 ⊢ ((𝐴 ∈ FinIa ∧ 𝑋 ⊆ 𝐴) → (𝑋 ∈ Fin ∨ (𝐴 ∖ 𝑋) ∈ Fin)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 848 = wceq 1540 ∈ wcel 2108 ∀wral 3061 ∖ cdif 3948 ⊆ wss 3951 𝒫 cpw 4600 Fincfn 8985 FinIacfin1a 10318 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rab 3437 df-v 3482 df-dif 3954 df-in 3958 df-ss 3968 df-pw 4602 df-fin1a 10325 | 
| This theorem is referenced by: enfin1ai 10424 fin1a2 10455 fin1aufil 23940 | 
| Copyright terms: Public domain | W3C validator |