MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssfin2 Structured version   Visualization version   GIF version

Theorem ssfin2 9595
Description: A subset of a II-finite set is II-finite. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Revised by Mario Carneiro, 16-May-2015.)
Assertion
Ref Expression
ssfin2 ((𝐴 ∈ FinII𝐵𝐴) → 𝐵 ∈ FinII)

Proof of Theorem ssfin2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpll 763 . . . 4 (((𝐴 ∈ FinII𝐵𝐴) ∧ 𝑥 ∈ 𝒫 𝒫 𝐵) → 𝐴 ∈ FinII)
2 elpwi 4469 . . . . . 6 (𝑥 ∈ 𝒫 𝒫 𝐵𝑥 ⊆ 𝒫 𝐵)
32adantl 482 . . . . 5 (((𝐴 ∈ FinII𝐵𝐴) ∧ 𝑥 ∈ 𝒫 𝒫 𝐵) → 𝑥 ⊆ 𝒫 𝐵)
4 simplr 765 . . . . . 6 (((𝐴 ∈ FinII𝐵𝐴) ∧ 𝑥 ∈ 𝒫 𝒫 𝐵) → 𝐵𝐴)
5 sspwb 5240 . . . . . 6 (𝐵𝐴 ↔ 𝒫 𝐵 ⊆ 𝒫 𝐴)
64, 5sylib 219 . . . . 5 (((𝐴 ∈ FinII𝐵𝐴) ∧ 𝑥 ∈ 𝒫 𝒫 𝐵) → 𝒫 𝐵 ⊆ 𝒫 𝐴)
73, 6sstrd 3905 . . . 4 (((𝐴 ∈ FinII𝐵𝐴) ∧ 𝑥 ∈ 𝒫 𝒫 𝐵) → 𝑥 ⊆ 𝒫 𝐴)
8 fin2i 9570 . . . . 5 (((𝐴 ∈ FinII𝑥 ⊆ 𝒫 𝐴) ∧ (𝑥 ≠ ∅ ∧ [] Or 𝑥)) → 𝑥𝑥)
98ex 413 . . . 4 ((𝐴 ∈ FinII𝑥 ⊆ 𝒫 𝐴) → ((𝑥 ≠ ∅ ∧ [] Or 𝑥) → 𝑥𝑥))
101, 7, 9syl2anc 584 . . 3 (((𝐴 ∈ FinII𝐵𝐴) ∧ 𝑥 ∈ 𝒫 𝒫 𝐵) → ((𝑥 ≠ ∅ ∧ [] Or 𝑥) → 𝑥𝑥))
1110ralrimiva 3151 . 2 ((𝐴 ∈ FinII𝐵𝐴) → ∀𝑥 ∈ 𝒫 𝒫 𝐵((𝑥 ≠ ∅ ∧ [] Or 𝑥) → 𝑥𝑥))
12 ssexg 5125 . . . 4 ((𝐵𝐴𝐴 ∈ FinII) → 𝐵 ∈ V)
1312ancoms 459 . . 3 ((𝐴 ∈ FinII𝐵𝐴) → 𝐵 ∈ V)
14 isfin2 9569 . . 3 (𝐵 ∈ V → (𝐵 ∈ FinII ↔ ∀𝑥 ∈ 𝒫 𝒫 𝐵((𝑥 ≠ ∅ ∧ [] Or 𝑥) → 𝑥𝑥)))
1513, 14syl 17 . 2 ((𝐴 ∈ FinII𝐵𝐴) → (𝐵 ∈ FinII ↔ ∀𝑥 ∈ 𝒫 𝒫 𝐵((𝑥 ≠ ∅ ∧ [] Or 𝑥) → 𝑥𝑥)))
1611, 15mpbird 258 1 ((𝐴 ∈ FinII𝐵𝐴) → 𝐵 ∈ FinII)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  wcel 2083  wne 2986  wral 3107  Vcvv 3440  wss 3865  c0 4217  𝒫 cpw 4459   cuni 4751   Or wor 5368   [] crpss 7313  FinIIcfin2 9554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-ext 2771  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-ral 3112  df-rex 3113  df-v 3442  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-nul 4218  df-pw 4461  df-sn 4479  df-pr 4481  df-uni 4752  df-po 5369  df-so 5370  df-fin2 9561
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator