| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssfin2 | Structured version Visualization version GIF version | ||
| Description: A subset of a II-finite set is II-finite. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Revised by Mario Carneiro, 16-May-2015.) |
| Ref | Expression |
|---|---|
| ssfin2 | ⊢ ((𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ FinII) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 766 | . . . 4 ⊢ (((𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝐴) ∧ 𝑥 ∈ 𝒫 𝒫 𝐵) → 𝐴 ∈ FinII) | |
| 2 | elpwi 4587 | . . . . . 6 ⊢ (𝑥 ∈ 𝒫 𝒫 𝐵 → 𝑥 ⊆ 𝒫 𝐵) | |
| 3 | 2 | adantl 481 | . . . . 5 ⊢ (((𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝐴) ∧ 𝑥 ∈ 𝒫 𝒫 𝐵) → 𝑥 ⊆ 𝒫 𝐵) |
| 4 | simplr 768 | . . . . . 6 ⊢ (((𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝐴) ∧ 𝑥 ∈ 𝒫 𝒫 𝐵) → 𝐵 ⊆ 𝐴) | |
| 5 | 4 | sspwd 4593 | . . . . 5 ⊢ (((𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝐴) ∧ 𝑥 ∈ 𝒫 𝒫 𝐵) → 𝒫 𝐵 ⊆ 𝒫 𝐴) |
| 6 | 3, 5 | sstrd 3974 | . . . 4 ⊢ (((𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝐴) ∧ 𝑥 ∈ 𝒫 𝒫 𝐵) → 𝑥 ⊆ 𝒫 𝐴) |
| 7 | fin2i 10317 | . . . . 5 ⊢ (((𝐴 ∈ FinII ∧ 𝑥 ⊆ 𝒫 𝐴) ∧ (𝑥 ≠ ∅ ∧ [⊊] Or 𝑥)) → ∪ 𝑥 ∈ 𝑥) | |
| 8 | 7 | ex 412 | . . . 4 ⊢ ((𝐴 ∈ FinII ∧ 𝑥 ⊆ 𝒫 𝐴) → ((𝑥 ≠ ∅ ∧ [⊊] Or 𝑥) → ∪ 𝑥 ∈ 𝑥)) |
| 9 | 1, 6, 8 | syl2anc 584 | . . 3 ⊢ (((𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝐴) ∧ 𝑥 ∈ 𝒫 𝒫 𝐵) → ((𝑥 ≠ ∅ ∧ [⊊] Or 𝑥) → ∪ 𝑥 ∈ 𝑥)) |
| 10 | 9 | ralrimiva 3133 | . 2 ⊢ ((𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝐴) → ∀𝑥 ∈ 𝒫 𝒫 𝐵((𝑥 ≠ ∅ ∧ [⊊] Or 𝑥) → ∪ 𝑥 ∈ 𝑥)) |
| 11 | ssexg 5303 | . . . 4 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐴 ∈ FinII) → 𝐵 ∈ V) | |
| 12 | 11 | ancoms 458 | . . 3 ⊢ ((𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ V) |
| 13 | isfin2 10316 | . . 3 ⊢ (𝐵 ∈ V → (𝐵 ∈ FinII ↔ ∀𝑥 ∈ 𝒫 𝒫 𝐵((𝑥 ≠ ∅ ∧ [⊊] Or 𝑥) → ∪ 𝑥 ∈ 𝑥))) | |
| 14 | 12, 13 | syl 17 | . 2 ⊢ ((𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝐴) → (𝐵 ∈ FinII ↔ ∀𝑥 ∈ 𝒫 𝒫 𝐵((𝑥 ≠ ∅ ∧ [⊊] Or 𝑥) → ∪ 𝑥 ∈ 𝑥))) |
| 15 | 10, 14 | mpbird 257 | 1 ⊢ ((𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ FinII) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2107 ≠ wne 2931 ∀wral 3050 Vcvv 3463 ⊆ wss 3931 ∅c0 4313 𝒫 cpw 4580 ∪ cuni 4887 Or wor 5571 [⊊] crpss 7724 FinIIcfin2 10301 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5276 ax-pow 5345 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-in 3938 df-ss 3948 df-pw 4582 df-uni 4888 df-po 5572 df-so 5573 df-fin2 10308 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |