![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssfin2 | Structured version Visualization version GIF version |
Description: A subset of a II-finite set is II-finite. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Revised by Mario Carneiro, 16-May-2015.) |
Ref | Expression |
---|---|
ssfin2 | ⊢ ((𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ FinII) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 767 | . . . 4 ⊢ (((𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝐴) ∧ 𝑥 ∈ 𝒫 𝒫 𝐵) → 𝐴 ∈ FinII) | |
2 | elpwi 4615 | . . . . . 6 ⊢ (𝑥 ∈ 𝒫 𝒫 𝐵 → 𝑥 ⊆ 𝒫 𝐵) | |
3 | 2 | adantl 481 | . . . . 5 ⊢ (((𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝐴) ∧ 𝑥 ∈ 𝒫 𝒫 𝐵) → 𝑥 ⊆ 𝒫 𝐵) |
4 | simplr 769 | . . . . . 6 ⊢ (((𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝐴) ∧ 𝑥 ∈ 𝒫 𝒫 𝐵) → 𝐵 ⊆ 𝐴) | |
5 | 4 | sspwd 4621 | . . . . 5 ⊢ (((𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝐴) ∧ 𝑥 ∈ 𝒫 𝒫 𝐵) → 𝒫 𝐵 ⊆ 𝒫 𝐴) |
6 | 3, 5 | sstrd 4009 | . . . 4 ⊢ (((𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝐴) ∧ 𝑥 ∈ 𝒫 𝒫 𝐵) → 𝑥 ⊆ 𝒫 𝐴) |
7 | fin2i 10342 | . . . . 5 ⊢ (((𝐴 ∈ FinII ∧ 𝑥 ⊆ 𝒫 𝐴) ∧ (𝑥 ≠ ∅ ∧ [⊊] Or 𝑥)) → ∪ 𝑥 ∈ 𝑥) | |
8 | 7 | ex 412 | . . . 4 ⊢ ((𝐴 ∈ FinII ∧ 𝑥 ⊆ 𝒫 𝐴) → ((𝑥 ≠ ∅ ∧ [⊊] Or 𝑥) → ∪ 𝑥 ∈ 𝑥)) |
9 | 1, 6, 8 | syl2anc 584 | . . 3 ⊢ (((𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝐴) ∧ 𝑥 ∈ 𝒫 𝒫 𝐵) → ((𝑥 ≠ ∅ ∧ [⊊] Or 𝑥) → ∪ 𝑥 ∈ 𝑥)) |
10 | 9 | ralrimiva 3146 | . 2 ⊢ ((𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝐴) → ∀𝑥 ∈ 𝒫 𝒫 𝐵((𝑥 ≠ ∅ ∧ [⊊] Or 𝑥) → ∪ 𝑥 ∈ 𝑥)) |
11 | ssexg 5332 | . . . 4 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐴 ∈ FinII) → 𝐵 ∈ V) | |
12 | 11 | ancoms 458 | . . 3 ⊢ ((𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ V) |
13 | isfin2 10341 | . . 3 ⊢ (𝐵 ∈ V → (𝐵 ∈ FinII ↔ ∀𝑥 ∈ 𝒫 𝒫 𝐵((𝑥 ≠ ∅ ∧ [⊊] Or 𝑥) → ∪ 𝑥 ∈ 𝑥))) | |
14 | 12, 13 | syl 17 | . 2 ⊢ ((𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝐴) → (𝐵 ∈ FinII ↔ ∀𝑥 ∈ 𝒫 𝒫 𝐵((𝑥 ≠ ∅ ∧ [⊊] Or 𝑥) → ∪ 𝑥 ∈ 𝑥))) |
15 | 10, 14 | mpbird 257 | 1 ⊢ ((𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ FinII) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ≠ wne 2940 ∀wral 3061 Vcvv 3481 ⊆ wss 3966 ∅c0 4342 𝒫 cpw 4608 ∪ cuni 4915 Or wor 5600 [⊊] crpss 7748 FinIIcfin2 10326 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5305 ax-pow 5374 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1542 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-in 3973 df-ss 3983 df-pw 4610 df-uni 4916 df-po 5601 df-so 5602 df-fin2 10333 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |