MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssfin2 Structured version   Visualization version   GIF version

Theorem ssfin2 10279
Description: A subset of a II-finite set is II-finite. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Revised by Mario Carneiro, 16-May-2015.)
Assertion
Ref Expression
ssfin2 ((𝐴 ∈ FinII𝐵𝐴) → 𝐵 ∈ FinII)

Proof of Theorem ssfin2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpll 766 . . . 4 (((𝐴 ∈ FinII𝐵𝐴) ∧ 𝑥 ∈ 𝒫 𝒫 𝐵) → 𝐴 ∈ FinII)
2 elpwi 4572 . . . . . 6 (𝑥 ∈ 𝒫 𝒫 𝐵𝑥 ⊆ 𝒫 𝐵)
32adantl 481 . . . . 5 (((𝐴 ∈ FinII𝐵𝐴) ∧ 𝑥 ∈ 𝒫 𝒫 𝐵) → 𝑥 ⊆ 𝒫 𝐵)
4 simplr 768 . . . . . 6 (((𝐴 ∈ FinII𝐵𝐴) ∧ 𝑥 ∈ 𝒫 𝒫 𝐵) → 𝐵𝐴)
54sspwd 4578 . . . . 5 (((𝐴 ∈ FinII𝐵𝐴) ∧ 𝑥 ∈ 𝒫 𝒫 𝐵) → 𝒫 𝐵 ⊆ 𝒫 𝐴)
63, 5sstrd 3959 . . . 4 (((𝐴 ∈ FinII𝐵𝐴) ∧ 𝑥 ∈ 𝒫 𝒫 𝐵) → 𝑥 ⊆ 𝒫 𝐴)
7 fin2i 10254 . . . . 5 (((𝐴 ∈ FinII𝑥 ⊆ 𝒫 𝐴) ∧ (𝑥 ≠ ∅ ∧ [] Or 𝑥)) → 𝑥𝑥)
87ex 412 . . . 4 ((𝐴 ∈ FinII𝑥 ⊆ 𝒫 𝐴) → ((𝑥 ≠ ∅ ∧ [] Or 𝑥) → 𝑥𝑥))
91, 6, 8syl2anc 584 . . 3 (((𝐴 ∈ FinII𝐵𝐴) ∧ 𝑥 ∈ 𝒫 𝒫 𝐵) → ((𝑥 ≠ ∅ ∧ [] Or 𝑥) → 𝑥𝑥))
109ralrimiva 3126 . 2 ((𝐴 ∈ FinII𝐵𝐴) → ∀𝑥 ∈ 𝒫 𝒫 𝐵((𝑥 ≠ ∅ ∧ [] Or 𝑥) → 𝑥𝑥))
11 ssexg 5280 . . . 4 ((𝐵𝐴𝐴 ∈ FinII) → 𝐵 ∈ V)
1211ancoms 458 . . 3 ((𝐴 ∈ FinII𝐵𝐴) → 𝐵 ∈ V)
13 isfin2 10253 . . 3 (𝐵 ∈ V → (𝐵 ∈ FinII ↔ ∀𝑥 ∈ 𝒫 𝒫 𝐵((𝑥 ≠ ∅ ∧ [] Or 𝑥) → 𝑥𝑥)))
1412, 13syl 17 . 2 ((𝐴 ∈ FinII𝐵𝐴) → (𝐵 ∈ FinII ↔ ∀𝑥 ∈ 𝒫 𝒫 𝐵((𝑥 ≠ ∅ ∧ [] Or 𝑥) → 𝑥𝑥)))
1510, 14mpbird 257 1 ((𝐴 ∈ FinII𝐵𝐴) → 𝐵 ∈ FinII)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  wne 2926  wral 3045  Vcvv 3450  wss 3916  c0 4298  𝒫 cpw 4565   cuni 4873   Or wor 5547   [] crpss 7700  FinIIcfin2 10238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5253  ax-pow 5322
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-in 3923  df-ss 3933  df-pw 4567  df-uni 4874  df-po 5548  df-so 5549  df-fin2 10245
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator