Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssfin2 | Structured version Visualization version GIF version |
Description: A subset of a II-finite set is II-finite. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Revised by Mario Carneiro, 16-May-2015.) |
Ref | Expression |
---|---|
ssfin2 | ⊢ ((𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ FinII) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 767 | . . . 4 ⊢ (((𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝐴) ∧ 𝑥 ∈ 𝒫 𝒫 𝐵) → 𝐴 ∈ FinII) | |
2 | elpwi 4522 | . . . . . 6 ⊢ (𝑥 ∈ 𝒫 𝒫 𝐵 → 𝑥 ⊆ 𝒫 𝐵) | |
3 | 2 | adantl 485 | . . . . 5 ⊢ (((𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝐴) ∧ 𝑥 ∈ 𝒫 𝒫 𝐵) → 𝑥 ⊆ 𝒫 𝐵) |
4 | simplr 769 | . . . . . 6 ⊢ (((𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝐴) ∧ 𝑥 ∈ 𝒫 𝒫 𝐵) → 𝐵 ⊆ 𝐴) | |
5 | 4 | sspwd 4528 | . . . . 5 ⊢ (((𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝐴) ∧ 𝑥 ∈ 𝒫 𝒫 𝐵) → 𝒫 𝐵 ⊆ 𝒫 𝐴) |
6 | 3, 5 | sstrd 3911 | . . . 4 ⊢ (((𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝐴) ∧ 𝑥 ∈ 𝒫 𝒫 𝐵) → 𝑥 ⊆ 𝒫 𝐴) |
7 | fin2i 9909 | . . . . 5 ⊢ (((𝐴 ∈ FinII ∧ 𝑥 ⊆ 𝒫 𝐴) ∧ (𝑥 ≠ ∅ ∧ [⊊] Or 𝑥)) → ∪ 𝑥 ∈ 𝑥) | |
8 | 7 | ex 416 | . . . 4 ⊢ ((𝐴 ∈ FinII ∧ 𝑥 ⊆ 𝒫 𝐴) → ((𝑥 ≠ ∅ ∧ [⊊] Or 𝑥) → ∪ 𝑥 ∈ 𝑥)) |
9 | 1, 6, 8 | syl2anc 587 | . . 3 ⊢ (((𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝐴) ∧ 𝑥 ∈ 𝒫 𝒫 𝐵) → ((𝑥 ≠ ∅ ∧ [⊊] Or 𝑥) → ∪ 𝑥 ∈ 𝑥)) |
10 | 9 | ralrimiva 3105 | . 2 ⊢ ((𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝐴) → ∀𝑥 ∈ 𝒫 𝒫 𝐵((𝑥 ≠ ∅ ∧ [⊊] Or 𝑥) → ∪ 𝑥 ∈ 𝑥)) |
11 | ssexg 5216 | . . . 4 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐴 ∈ FinII) → 𝐵 ∈ V) | |
12 | 11 | ancoms 462 | . . 3 ⊢ ((𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ V) |
13 | isfin2 9908 | . . 3 ⊢ (𝐵 ∈ V → (𝐵 ∈ FinII ↔ ∀𝑥 ∈ 𝒫 𝒫 𝐵((𝑥 ≠ ∅ ∧ [⊊] Or 𝑥) → ∪ 𝑥 ∈ 𝑥))) | |
14 | 12, 13 | syl 17 | . 2 ⊢ ((𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝐴) → (𝐵 ∈ FinII ↔ ∀𝑥 ∈ 𝒫 𝒫 𝐵((𝑥 ≠ ∅ ∧ [⊊] Or 𝑥) → ∪ 𝑥 ∈ 𝑥))) |
15 | 10, 14 | mpbird 260 | 1 ⊢ ((𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ FinII) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∈ wcel 2110 ≠ wne 2940 ∀wral 3061 Vcvv 3408 ⊆ wss 3866 ∅c0 4237 𝒫 cpw 4513 ∪ cuni 4819 Or wor 5467 [⊊] crpss 7510 FinIIcfin2 9893 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 ax-sep 5192 ax-pow 5258 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1546 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3066 df-rab 3070 df-v 3410 df-in 3873 df-ss 3883 df-pw 4515 df-uni 4820 df-po 5468 df-so 5469 df-fin2 9900 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |