Step | Hyp | Ref
| Expression |
1 | | bren 8743 |
. . 3
⊢ (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) |
2 | | elpwi 4542 |
. . . . . . 7
⊢ (𝑥 ∈ 𝒫 𝒫
𝐵 → 𝑥 ⊆ 𝒫 𝐵) |
3 | | imauni 7119 |
. . . . . . . . . . 11
⊢ (𝑓 “ ∪ {𝑦
∈ 𝒫 𝐴 ∣
(𝑓 “ 𝑦) ∈ 𝑥}) = ∪
𝑧 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓 “ 𝑦) ∈ 𝑥} (𝑓 “ 𝑧) |
4 | | vex 3436 |
. . . . . . . . . . . . 13
⊢ 𝑓 ∈ V |
5 | 4 | imaex 7763 |
. . . . . . . . . . . 12
⊢ (𝑓 “ 𝑧) ∈ V |
6 | 5 | dfiun2 4963 |
. . . . . . . . . . 11
⊢ ∪ 𝑧 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓 “ 𝑦) ∈ 𝑥} (𝑓 “ 𝑧) = ∪ {𝑤 ∣ ∃𝑧 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓 “ 𝑦) ∈ 𝑥}𝑤 = (𝑓 “ 𝑧)} |
7 | 3, 6 | eqtri 2766 |
. . . . . . . . . 10
⊢ (𝑓 “ ∪ {𝑦
∈ 𝒫 𝐴 ∣
(𝑓 “ 𝑦) ∈ 𝑥}) = ∪ {𝑤 ∣ ∃𝑧 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓 “ 𝑦) ∈ 𝑥}𝑤 = (𝑓 “ 𝑧)} |
8 | | imaeq2 5965 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑧 → (𝑓 “ 𝑦) = (𝑓 “ 𝑧)) |
9 | 8 | eleq1d 2823 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑧 → ((𝑓 “ 𝑦) ∈ 𝑥 ↔ (𝑓 “ 𝑧) ∈ 𝑥)) |
10 | 9 | rexrab 3633 |
. . . . . . . . . . . . 13
⊢
(∃𝑧 ∈
{𝑦 ∈ 𝒫 𝐴 ∣ (𝑓 “ 𝑦) ∈ 𝑥}𝑤 = (𝑓 “ 𝑧) ↔ ∃𝑧 ∈ 𝒫 𝐴((𝑓 “ 𝑧) ∈ 𝑥 ∧ 𝑤 = (𝑓 “ 𝑧))) |
11 | | eleq1 2826 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 = (𝑓 “ 𝑧) → (𝑤 ∈ 𝑥 ↔ (𝑓 “ 𝑧) ∈ 𝑥)) |
12 | 11 | biimparc 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝑓 “ 𝑧) ∈ 𝑥 ∧ 𝑤 = (𝑓 “ 𝑧)) → 𝑤 ∈ 𝑥) |
13 | 12 | rexlimivw 3211 |
. . . . . . . . . . . . . 14
⊢
(∃𝑧 ∈
𝒫 𝐴((𝑓 “ 𝑧) ∈ 𝑥 ∧ 𝑤 = (𝑓 “ 𝑧)) → 𝑤 ∈ 𝑥) |
14 | | cnvimass 5989 |
. . . . . . . . . . . . . . . . . 18
⊢ (◡𝑓 “ 𝑤) ⊆ dom 𝑓 |
15 | | f1odm 6720 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓:𝐴–1-1-onto→𝐵 → dom 𝑓 = 𝐴) |
16 | 15 | ad3antrrr 727 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) ∧ 𝑤 ∈ 𝑥) → dom 𝑓 = 𝐴) |
17 | 14, 16 | sseqtrid 3973 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) ∧ 𝑤 ∈ 𝑥) → (◡𝑓 “ 𝑤) ⊆ 𝐴) |
18 | 4 | cnvex 7772 |
. . . . . . . . . . . . . . . . . . 19
⊢ ◡𝑓 ∈ V |
19 | 18 | imaex 7763 |
. . . . . . . . . . . . . . . . . 18
⊢ (◡𝑓 “ 𝑤) ∈ V |
20 | 19 | elpw 4537 |
. . . . . . . . . . . . . . . . 17
⊢ ((◡𝑓 “ 𝑤) ∈ 𝒫 𝐴 ↔ (◡𝑓 “ 𝑤) ⊆ 𝐴) |
21 | 17, 20 | sylibr 233 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) ∧ 𝑤 ∈ 𝑥) → (◡𝑓 “ 𝑤) ∈ 𝒫 𝐴) |
22 | | f1ofo 6723 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓:𝐴–onto→𝐵) |
23 | 22 | ad3antrrr 727 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) ∧ 𝑤 ∈ 𝑥) → 𝑓:𝐴–onto→𝐵) |
24 | | simprl 768 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) → 𝑥 ⊆ 𝒫 𝐵) |
25 | 24 | sselda 3921 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) ∧ 𝑤 ∈ 𝑥) → 𝑤 ∈ 𝒫 𝐵) |
26 | 25 | elpwid 4544 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) ∧ 𝑤 ∈ 𝑥) → 𝑤 ⊆ 𝐵) |
27 | | foimacnv 6733 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓:𝐴–onto→𝐵 ∧ 𝑤 ⊆ 𝐵) → (𝑓 “ (◡𝑓 “ 𝑤)) = 𝑤) |
28 | 23, 26, 27 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) ∧ 𝑤 ∈ 𝑥) → (𝑓 “ (◡𝑓 “ 𝑤)) = 𝑤) |
29 | 28 | eqcomd 2744 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) ∧ 𝑤 ∈ 𝑥) → 𝑤 = (𝑓 “ (◡𝑓 “ 𝑤))) |
30 | | simpr 485 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) ∧ 𝑤 ∈ 𝑥) → 𝑤 ∈ 𝑥) |
31 | 29, 30 | eqeltrrd 2840 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) ∧ 𝑤 ∈ 𝑥) → (𝑓 “ (◡𝑓 “ 𝑤)) ∈ 𝑥) |
32 | | imaeq2 5965 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 = (◡𝑓 “ 𝑤) → (𝑓 “ 𝑧) = (𝑓 “ (◡𝑓 “ 𝑤))) |
33 | 32 | eleq1d 2823 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = (◡𝑓 “ 𝑤) → ((𝑓 “ 𝑧) ∈ 𝑥 ↔ (𝑓 “ (◡𝑓 “ 𝑤)) ∈ 𝑥)) |
34 | 32 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = (◡𝑓 “ 𝑤) → (𝑤 = (𝑓 “ 𝑧) ↔ 𝑤 = (𝑓 “ (◡𝑓 “ 𝑤)))) |
35 | 33, 34 | anbi12d 631 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = (◡𝑓 “ 𝑤) → (((𝑓 “ 𝑧) ∈ 𝑥 ∧ 𝑤 = (𝑓 “ 𝑧)) ↔ ((𝑓 “ (◡𝑓 “ 𝑤)) ∈ 𝑥 ∧ 𝑤 = (𝑓 “ (◡𝑓 “ 𝑤))))) |
36 | 35 | rspcev 3561 |
. . . . . . . . . . . . . . . 16
⊢ (((◡𝑓 “ 𝑤) ∈ 𝒫 𝐴 ∧ ((𝑓 “ (◡𝑓 “ 𝑤)) ∈ 𝑥 ∧ 𝑤 = (𝑓 “ (◡𝑓 “ 𝑤)))) → ∃𝑧 ∈ 𝒫 𝐴((𝑓 “ 𝑧) ∈ 𝑥 ∧ 𝑤 = (𝑓 “ 𝑧))) |
37 | 21, 31, 29, 36 | syl12anc 834 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) ∧ 𝑤 ∈ 𝑥) → ∃𝑧 ∈ 𝒫 𝐴((𝑓 “ 𝑧) ∈ 𝑥 ∧ 𝑤 = (𝑓 “ 𝑧))) |
38 | 37 | ex 413 |
. . . . . . . . . . . . . 14
⊢ (((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) → (𝑤 ∈ 𝑥 → ∃𝑧 ∈ 𝒫 𝐴((𝑓 “ 𝑧) ∈ 𝑥 ∧ 𝑤 = (𝑓 “ 𝑧)))) |
39 | 13, 38 | impbid2 225 |
. . . . . . . . . . . . 13
⊢ (((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) → (∃𝑧 ∈ 𝒫 𝐴((𝑓 “ 𝑧) ∈ 𝑥 ∧ 𝑤 = (𝑓 “ 𝑧)) ↔ 𝑤 ∈ 𝑥)) |
40 | 10, 39 | bitrid 282 |
. . . . . . . . . . . 12
⊢ (((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) → (∃𝑧 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓 “ 𝑦) ∈ 𝑥}𝑤 = (𝑓 “ 𝑧) ↔ 𝑤 ∈ 𝑥)) |
41 | 40 | abbi1dv 2878 |
. . . . . . . . . . 11
⊢ (((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) → {𝑤 ∣ ∃𝑧 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓 “ 𝑦) ∈ 𝑥}𝑤 = (𝑓 “ 𝑧)} = 𝑥) |
42 | 41 | unieqd 4853 |
. . . . . . . . . 10
⊢ (((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) → ∪ {𝑤
∣ ∃𝑧 ∈
{𝑦 ∈ 𝒫 𝐴 ∣ (𝑓 “ 𝑦) ∈ 𝑥}𝑤 = (𝑓 “ 𝑧)} = ∪ 𝑥) |
43 | 7, 42 | eqtrid 2790 |
. . . . . . . . 9
⊢ (((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) → (𝑓 “ ∪ {𝑦
∈ 𝒫 𝐴 ∣
(𝑓 “ 𝑦) ∈ 𝑥}) = ∪ 𝑥) |
44 | | simplr 766 |
. . . . . . . . . . 11
⊢ (((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) → 𝐴 ∈
FinII) |
45 | | ssrab2 4013 |
. . . . . . . . . . . 12
⊢ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓 “ 𝑦) ∈ 𝑥} ⊆ 𝒫 𝐴 |
46 | 45 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) → {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓 “ 𝑦) ∈ 𝑥} ⊆ 𝒫 𝐴) |
47 | | simprrl 778 |
. . . . . . . . . . . . . 14
⊢ (((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) → 𝑥 ≠ ∅) |
48 | | n0 4280 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ≠ ∅ ↔
∃𝑤 𝑤 ∈ 𝑥) |
49 | 47, 48 | sylib 217 |
. . . . . . . . . . . . 13
⊢ (((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) → ∃𝑤 𝑤 ∈ 𝑥) |
50 | | imaeq2 5965 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = (◡𝑓 “ 𝑤) → (𝑓 “ 𝑦) = (𝑓 “ (◡𝑓 “ 𝑤))) |
51 | 50 | eleq1d 2823 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = (◡𝑓 “ 𝑤) → ((𝑓 “ 𝑦) ∈ 𝑥 ↔ (𝑓 “ (◡𝑓 “ 𝑤)) ∈ 𝑥)) |
52 | 51 | rspcev 3561 |
. . . . . . . . . . . . . 14
⊢ (((◡𝑓 “ 𝑤) ∈ 𝒫 𝐴 ∧ (𝑓 “ (◡𝑓 “ 𝑤)) ∈ 𝑥) → ∃𝑦 ∈ 𝒫 𝐴(𝑓 “ 𝑦) ∈ 𝑥) |
53 | 21, 31, 52 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) ∧ 𝑤 ∈ 𝑥) → ∃𝑦 ∈ 𝒫 𝐴(𝑓 “ 𝑦) ∈ 𝑥) |
54 | 49, 53 | exlimddv 1938 |
. . . . . . . . . . . 12
⊢ (((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) → ∃𝑦 ∈ 𝒫 𝐴(𝑓 “ 𝑦) ∈ 𝑥) |
55 | | rabn0 4319 |
. . . . . . . . . . . 12
⊢ ({𝑦 ∈ 𝒫 𝐴 ∣ (𝑓 “ 𝑦) ∈ 𝑥} ≠ ∅ ↔ ∃𝑦 ∈ 𝒫 𝐴(𝑓 “ 𝑦) ∈ 𝑥) |
56 | 54, 55 | sylibr 233 |
. . . . . . . . . . 11
⊢ (((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) → {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓 “ 𝑦) ∈ 𝑥} ≠ ∅) |
57 | 9 | elrab 3624 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓 “ 𝑦) ∈ 𝑥} ↔ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑓 “ 𝑧) ∈ 𝑥)) |
58 | | imaeq2 5965 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑤 → (𝑓 “ 𝑦) = (𝑓 “ 𝑤)) |
59 | 58 | eleq1d 2823 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑤 → ((𝑓 “ 𝑦) ∈ 𝑥 ↔ (𝑓 “ 𝑤) ∈ 𝑥)) |
60 | 59 | elrab 3624 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓 “ 𝑦) ∈ 𝑥} ↔ (𝑤 ∈ 𝒫 𝐴 ∧ (𝑓 “ 𝑤) ∈ 𝑥)) |
61 | 57, 60 | anbi12i 627 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓 “ 𝑦) ∈ 𝑥} ∧ 𝑤 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓 “ 𝑦) ∈ 𝑥}) ↔ ((𝑧 ∈ 𝒫 𝐴 ∧ (𝑓 “ 𝑧) ∈ 𝑥) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ (𝑓 “ 𝑤) ∈ 𝑥))) |
62 | | simprrr 779 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) →
[⊊] Or 𝑥) |
63 | 62 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) ∧ ((𝑧 ∈ 𝒫 𝐴 ∧ (𝑓 “ 𝑧) ∈ 𝑥) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ (𝑓 “ 𝑤) ∈ 𝑥))) → [⊊] Or 𝑥) |
64 | | simprlr 777 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) ∧ ((𝑧 ∈ 𝒫 𝐴 ∧ (𝑓 “ 𝑧) ∈ 𝑥) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ (𝑓 “ 𝑤) ∈ 𝑥))) → (𝑓 “ 𝑧) ∈ 𝑥) |
65 | | simprrr 779 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) ∧ ((𝑧 ∈ 𝒫 𝐴 ∧ (𝑓 “ 𝑧) ∈ 𝑥) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ (𝑓 “ 𝑤) ∈ 𝑥))) → (𝑓 “ 𝑤) ∈ 𝑥) |
66 | | sorpssi 7582 |
. . . . . . . . . . . . . . . 16
⊢ ((
[⊊] Or 𝑥
∧ ((𝑓 “ 𝑧) ∈ 𝑥 ∧ (𝑓 “ 𝑤) ∈ 𝑥)) → ((𝑓 “ 𝑧) ⊆ (𝑓 “ 𝑤) ∨ (𝑓 “ 𝑤) ⊆ (𝑓 “ 𝑧))) |
67 | 63, 64, 65, 66 | syl12anc 834 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) ∧ ((𝑧 ∈ 𝒫 𝐴 ∧ (𝑓 “ 𝑧) ∈ 𝑥) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ (𝑓 “ 𝑤) ∈ 𝑥))) → ((𝑓 “ 𝑧) ⊆ (𝑓 “ 𝑤) ∨ (𝑓 “ 𝑤) ⊆ (𝑓 “ 𝑧))) |
68 | | f1of1 6715 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓:𝐴–1-1→𝐵) |
69 | 68 | ad3antrrr 727 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) ∧ ((𝑧 ∈ 𝒫 𝐴 ∧ (𝑓 “ 𝑧) ∈ 𝑥) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ (𝑓 “ 𝑤) ∈ 𝑥))) → 𝑓:𝐴–1-1→𝐵) |
70 | | simprll 776 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) ∧ ((𝑧 ∈ 𝒫 𝐴 ∧ (𝑓 “ 𝑧) ∈ 𝑥) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ (𝑓 “ 𝑤) ∈ 𝑥))) → 𝑧 ∈ 𝒫 𝐴) |
71 | 70 | elpwid 4544 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) ∧ ((𝑧 ∈ 𝒫 𝐴 ∧ (𝑓 “ 𝑧) ∈ 𝑥) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ (𝑓 “ 𝑤) ∈ 𝑥))) → 𝑧 ⊆ 𝐴) |
72 | | simprrl 778 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) ∧ ((𝑧 ∈ 𝒫 𝐴 ∧ (𝑓 “ 𝑧) ∈ 𝑥) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ (𝑓 “ 𝑤) ∈ 𝑥))) → 𝑤 ∈ 𝒫 𝐴) |
73 | 72 | elpwid 4544 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) ∧ ((𝑧 ∈ 𝒫 𝐴 ∧ (𝑓 “ 𝑧) ∈ 𝑥) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ (𝑓 “ 𝑤) ∈ 𝑥))) → 𝑤 ⊆ 𝐴) |
74 | | f1imass 7137 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓:𝐴–1-1→𝐵 ∧ (𝑧 ⊆ 𝐴 ∧ 𝑤 ⊆ 𝐴)) → ((𝑓 “ 𝑧) ⊆ (𝑓 “ 𝑤) ↔ 𝑧 ⊆ 𝑤)) |
75 | 69, 71, 73, 74 | syl12anc 834 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) ∧ ((𝑧 ∈ 𝒫 𝐴 ∧ (𝑓 “ 𝑧) ∈ 𝑥) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ (𝑓 “ 𝑤) ∈ 𝑥))) → ((𝑓 “ 𝑧) ⊆ (𝑓 “ 𝑤) ↔ 𝑧 ⊆ 𝑤)) |
76 | | f1imass 7137 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓:𝐴–1-1→𝐵 ∧ (𝑤 ⊆ 𝐴 ∧ 𝑧 ⊆ 𝐴)) → ((𝑓 “ 𝑤) ⊆ (𝑓 “ 𝑧) ↔ 𝑤 ⊆ 𝑧)) |
77 | 69, 73, 71, 76 | syl12anc 834 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) ∧ ((𝑧 ∈ 𝒫 𝐴 ∧ (𝑓 “ 𝑧) ∈ 𝑥) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ (𝑓 “ 𝑤) ∈ 𝑥))) → ((𝑓 “ 𝑤) ⊆ (𝑓 “ 𝑧) ↔ 𝑤 ⊆ 𝑧)) |
78 | 75, 77 | orbi12d 916 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) ∧ ((𝑧 ∈ 𝒫 𝐴 ∧ (𝑓 “ 𝑧) ∈ 𝑥) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ (𝑓 “ 𝑤) ∈ 𝑥))) → (((𝑓 “ 𝑧) ⊆ (𝑓 “ 𝑤) ∨ (𝑓 “ 𝑤) ⊆ (𝑓 “ 𝑧)) ↔ (𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧))) |
79 | 67, 78 | mpbid 231 |
. . . . . . . . . . . . . 14
⊢ ((((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) ∧ ((𝑧 ∈ 𝒫 𝐴 ∧ (𝑓 “ 𝑧) ∈ 𝑥) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ (𝑓 “ 𝑤) ∈ 𝑥))) → (𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧)) |
80 | 61, 79 | sylan2b 594 |
. . . . . . . . . . . . 13
⊢ ((((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) ∧ (𝑧 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓 “ 𝑦) ∈ 𝑥} ∧ 𝑤 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓 “ 𝑦) ∈ 𝑥})) → (𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧)) |
81 | 80 | ralrimivva 3123 |
. . . . . . . . . . . 12
⊢ (((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) → ∀𝑧 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓 “ 𝑦) ∈ 𝑥}∀𝑤 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓 “ 𝑦) ∈ 𝑥} (𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧)) |
82 | | sorpss 7581 |
. . . . . . . . . . . 12
⊢ (
[⊊] Or {𝑦
∈ 𝒫 𝐴 ∣
(𝑓 “ 𝑦) ∈ 𝑥} ↔ ∀𝑧 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓 “ 𝑦) ∈ 𝑥}∀𝑤 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓 “ 𝑦) ∈ 𝑥} (𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧)) |
83 | 81, 82 | sylibr 233 |
. . . . . . . . . . 11
⊢ (((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) →
[⊊] Or {𝑦
∈ 𝒫 𝐴 ∣
(𝑓 “ 𝑦) ∈ 𝑥}) |
84 | | fin2i 10051 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ FinII ∧
{𝑦 ∈ 𝒫 𝐴 ∣ (𝑓 “ 𝑦) ∈ 𝑥} ⊆ 𝒫 𝐴) ∧ ({𝑦 ∈ 𝒫 𝐴 ∣ (𝑓 “ 𝑦) ∈ 𝑥} ≠ ∅ ∧ [⊊] Or
{𝑦 ∈ 𝒫 𝐴 ∣ (𝑓 “ 𝑦) ∈ 𝑥})) → ∪
{𝑦 ∈ 𝒫 𝐴 ∣ (𝑓 “ 𝑦) ∈ 𝑥} ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓 “ 𝑦) ∈ 𝑥}) |
85 | 44, 46, 56, 83, 84 | syl22anc 836 |
. . . . . . . . . 10
⊢ (((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) → ∪ {𝑦
∈ 𝒫 𝐴 ∣
(𝑓 “ 𝑦) ∈ 𝑥} ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓 “ 𝑦) ∈ 𝑥}) |
86 | | imaeq2 5965 |
. . . . . . . . . . . . 13
⊢ (𝑧 = ∪
{𝑦 ∈ 𝒫 𝐴 ∣ (𝑓 “ 𝑦) ∈ 𝑥} → (𝑓 “ 𝑧) = (𝑓 “ ∪ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓 “ 𝑦) ∈ 𝑥})) |
87 | 86 | eleq1d 2823 |
. . . . . . . . . . . 12
⊢ (𝑧 = ∪
{𝑦 ∈ 𝒫 𝐴 ∣ (𝑓 “ 𝑦) ∈ 𝑥} → ((𝑓 “ 𝑧) ∈ 𝑥 ↔ (𝑓 “ ∪ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓 “ 𝑦) ∈ 𝑥}) ∈ 𝑥)) |
88 | 9 | cbvrabv 3426 |
. . . . . . . . . . . 12
⊢ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓 “ 𝑦) ∈ 𝑥} = {𝑧 ∈ 𝒫 𝐴 ∣ (𝑓 “ 𝑧) ∈ 𝑥} |
89 | 87, 88 | elrab2 3627 |
. . . . . . . . . . 11
⊢ (∪ {𝑦
∈ 𝒫 𝐴 ∣
(𝑓 “ 𝑦) ∈ 𝑥} ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓 “ 𝑦) ∈ 𝑥} ↔ (∪ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓 “ 𝑦) ∈ 𝑥} ∈ 𝒫 𝐴 ∧ (𝑓 “ ∪ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓 “ 𝑦) ∈ 𝑥}) ∈ 𝑥)) |
90 | 89 | simprbi 497 |
. . . . . . . . . 10
⊢ (∪ {𝑦
∈ 𝒫 𝐴 ∣
(𝑓 “ 𝑦) ∈ 𝑥} ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓 “ 𝑦) ∈ 𝑥} → (𝑓 “ ∪ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓 “ 𝑦) ∈ 𝑥}) ∈ 𝑥) |
91 | 85, 90 | syl 17 |
. . . . . . . . 9
⊢ (((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) → (𝑓 “ ∪ {𝑦
∈ 𝒫 𝐴 ∣
(𝑓 “ 𝑦) ∈ 𝑥}) ∈ 𝑥) |
92 | 43, 91 | eqeltrrd 2840 |
. . . . . . . 8
⊢ (((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) → ∪ 𝑥
∈ 𝑥) |
93 | 92 | expr 457 |
. . . . . . 7
⊢ (((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ 𝑥 ⊆ 𝒫 𝐵) → ((𝑥 ≠ ∅ ∧ [⊊] Or
𝑥) → ∪ 𝑥
∈ 𝑥)) |
94 | 2, 93 | sylan2 593 |
. . . . . 6
⊢ (((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ 𝑥 ∈ 𝒫 𝒫
𝐵) → ((𝑥 ≠ ∅ ∧
[⊊] Or 𝑥)
→ ∪ 𝑥 ∈ 𝑥)) |
95 | 94 | ralrimiva 3103 |
. . . . 5
⊢ ((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) →
∀𝑥 ∈ 𝒫
𝒫 𝐵((𝑥 ≠ ∅ ∧
[⊊] Or 𝑥)
→ ∪ 𝑥 ∈ 𝑥)) |
96 | 95 | ex 413 |
. . . 4
⊢ (𝑓:𝐴–1-1-onto→𝐵 → (𝐴 ∈ FinII →
∀𝑥 ∈ 𝒫
𝒫 𝐵((𝑥 ≠ ∅ ∧
[⊊] Or 𝑥)
→ ∪ 𝑥 ∈ 𝑥))) |
97 | 96 | exlimiv 1933 |
. . 3
⊢
(∃𝑓 𝑓:𝐴–1-1-onto→𝐵 → (𝐴 ∈ FinII →
∀𝑥 ∈ 𝒫
𝒫 𝐵((𝑥 ≠ ∅ ∧
[⊊] Or 𝑥)
→ ∪ 𝑥 ∈ 𝑥))) |
98 | 1, 97 | sylbi 216 |
. 2
⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ FinII →
∀𝑥 ∈ 𝒫
𝒫 𝐵((𝑥 ≠ ∅ ∧
[⊊] Or 𝑥)
→ ∪ 𝑥 ∈ 𝑥))) |
99 | | relen 8738 |
. . . 4
⊢ Rel
≈ |
100 | 99 | brrelex2i 5644 |
. . 3
⊢ (𝐴 ≈ 𝐵 → 𝐵 ∈ V) |
101 | | isfin2 10050 |
. . 3
⊢ (𝐵 ∈ V → (𝐵 ∈ FinII ↔
∀𝑥 ∈ 𝒫
𝒫 𝐵((𝑥 ≠ ∅ ∧
[⊊] Or 𝑥)
→ ∪ 𝑥 ∈ 𝑥))) |
102 | 100, 101 | syl 17 |
. 2
⊢ (𝐴 ≈ 𝐵 → (𝐵 ∈ FinII ↔
∀𝑥 ∈ 𝒫
𝒫 𝐵((𝑥 ≠ ∅ ∧
[⊊] Or 𝑥)
→ ∪ 𝑥 ∈ 𝑥))) |
103 | 98, 102 | sylibrd 258 |
1
⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ FinII → 𝐵 ∈
FinII)) |