MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enfin2i Structured version   Visualization version   GIF version

Theorem enfin2i 10390
Description: II-finiteness is a cardinal property. (Contributed by Mario Carneiro, 18-May-2015.)
Assertion
Ref Expression
enfin2i (𝐴𝐵 → (𝐴 ∈ FinII𝐵 ∈ FinII))

Proof of Theorem enfin2i
Dummy variables 𝑓 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bren 9013 . . 3 (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝐵)
2 elpwi 4629 . . . . . . 7 (𝑥 ∈ 𝒫 𝒫 𝐵𝑥 ⊆ 𝒫 𝐵)
3 imauni 7283 . . . . . . . . . . 11 (𝑓 {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓𝑦) ∈ 𝑥}) = 𝑧 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓𝑦) ∈ 𝑥} (𝑓𝑧)
4 vex 3492 . . . . . . . . . . . . 13 𝑓 ∈ V
54imaex 7954 . . . . . . . . . . . 12 (𝑓𝑧) ∈ V
65dfiun2 5056 . . . . . . . . . . 11 𝑧 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓𝑦) ∈ 𝑥} (𝑓𝑧) = {𝑤 ∣ ∃𝑧 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓𝑦) ∈ 𝑥}𝑤 = (𝑓𝑧)}
73, 6eqtri 2768 . . . . . . . . . 10 (𝑓 {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓𝑦) ∈ 𝑥}) = {𝑤 ∣ ∃𝑧 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓𝑦) ∈ 𝑥}𝑤 = (𝑓𝑧)}
8 imaeq2 6085 . . . . . . . . . . . . . . 15 (𝑦 = 𝑧 → (𝑓𝑦) = (𝑓𝑧))
98eleq1d 2829 . . . . . . . . . . . . . 14 (𝑦 = 𝑧 → ((𝑓𝑦) ∈ 𝑥 ↔ (𝑓𝑧) ∈ 𝑥))
109rexrab 3718 . . . . . . . . . . . . 13 (∃𝑧 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓𝑦) ∈ 𝑥}𝑤 = (𝑓𝑧) ↔ ∃𝑧 ∈ 𝒫 𝐴((𝑓𝑧) ∈ 𝑥𝑤 = (𝑓𝑧)))
11 eleq1 2832 . . . . . . . . . . . . . . . 16 (𝑤 = (𝑓𝑧) → (𝑤𝑥 ↔ (𝑓𝑧) ∈ 𝑥))
1211biimparc 479 . . . . . . . . . . . . . . 15 (((𝑓𝑧) ∈ 𝑥𝑤 = (𝑓𝑧)) → 𝑤𝑥)
1312rexlimivw 3157 . . . . . . . . . . . . . 14 (∃𝑧 ∈ 𝒫 𝐴((𝑓𝑧) ∈ 𝑥𝑤 = (𝑓𝑧)) → 𝑤𝑥)
14 cnvimass 6111 . . . . . . . . . . . . . . . . . 18 (𝑓𝑤) ⊆ dom 𝑓
15 f1odm 6866 . . . . . . . . . . . . . . . . . . 19 (𝑓:𝐴1-1-onto𝐵 → dom 𝑓 = 𝐴)
1615ad3antrrr 729 . . . . . . . . . . . . . . . . . 18 ((((𝑓:𝐴1-1-onto𝐵𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [] Or 𝑥))) ∧ 𝑤𝑥) → dom 𝑓 = 𝐴)
1714, 16sseqtrid 4061 . . . . . . . . . . . . . . . . 17 ((((𝑓:𝐴1-1-onto𝐵𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [] Or 𝑥))) ∧ 𝑤𝑥) → (𝑓𝑤) ⊆ 𝐴)
184cnvex 7965 . . . . . . . . . . . . . . . . . . 19 𝑓 ∈ V
1918imaex 7954 . . . . . . . . . . . . . . . . . 18 (𝑓𝑤) ∈ V
2019elpw 4626 . . . . . . . . . . . . . . . . 17 ((𝑓𝑤) ∈ 𝒫 𝐴 ↔ (𝑓𝑤) ⊆ 𝐴)
2117, 20sylibr 234 . . . . . . . . . . . . . . . 16 ((((𝑓:𝐴1-1-onto𝐵𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [] Or 𝑥))) ∧ 𝑤𝑥) → (𝑓𝑤) ∈ 𝒫 𝐴)
22 f1ofo 6869 . . . . . . . . . . . . . . . . . . . 20 (𝑓:𝐴1-1-onto𝐵𝑓:𝐴onto𝐵)
2322ad3antrrr 729 . . . . . . . . . . . . . . . . . . 19 ((((𝑓:𝐴1-1-onto𝐵𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [] Or 𝑥))) ∧ 𝑤𝑥) → 𝑓:𝐴onto𝐵)
24 simprl 770 . . . . . . . . . . . . . . . . . . . . 21 (((𝑓:𝐴1-1-onto𝐵𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [] Or 𝑥))) → 𝑥 ⊆ 𝒫 𝐵)
2524sselda 4008 . . . . . . . . . . . . . . . . . . . 20 ((((𝑓:𝐴1-1-onto𝐵𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [] Or 𝑥))) ∧ 𝑤𝑥) → 𝑤 ∈ 𝒫 𝐵)
2625elpwid 4631 . . . . . . . . . . . . . . . . . . 19 ((((𝑓:𝐴1-1-onto𝐵𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [] Or 𝑥))) ∧ 𝑤𝑥) → 𝑤𝐵)
27 foimacnv 6879 . . . . . . . . . . . . . . . . . . 19 ((𝑓:𝐴onto𝐵𝑤𝐵) → (𝑓 “ (𝑓𝑤)) = 𝑤)
2823, 26, 27syl2anc 583 . . . . . . . . . . . . . . . . . 18 ((((𝑓:𝐴1-1-onto𝐵𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [] Or 𝑥))) ∧ 𝑤𝑥) → (𝑓 “ (𝑓𝑤)) = 𝑤)
2928eqcomd 2746 . . . . . . . . . . . . . . . . 17 ((((𝑓:𝐴1-1-onto𝐵𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [] Or 𝑥))) ∧ 𝑤𝑥) → 𝑤 = (𝑓 “ (𝑓𝑤)))
30 simpr 484 . . . . . . . . . . . . . . . . 17 ((((𝑓:𝐴1-1-onto𝐵𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [] Or 𝑥))) ∧ 𝑤𝑥) → 𝑤𝑥)
3129, 30eqeltrrd 2845 . . . . . . . . . . . . . . . 16 ((((𝑓:𝐴1-1-onto𝐵𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [] Or 𝑥))) ∧ 𝑤𝑥) → (𝑓 “ (𝑓𝑤)) ∈ 𝑥)
32 imaeq2 6085 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝑓𝑤) → (𝑓𝑧) = (𝑓 “ (𝑓𝑤)))
3332eleq1d 2829 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝑓𝑤) → ((𝑓𝑧) ∈ 𝑥 ↔ (𝑓 “ (𝑓𝑤)) ∈ 𝑥))
3432eqeq2d 2751 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝑓𝑤) → (𝑤 = (𝑓𝑧) ↔ 𝑤 = (𝑓 “ (𝑓𝑤))))
3533, 34anbi12d 631 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝑓𝑤) → (((𝑓𝑧) ∈ 𝑥𝑤 = (𝑓𝑧)) ↔ ((𝑓 “ (𝑓𝑤)) ∈ 𝑥𝑤 = (𝑓 “ (𝑓𝑤)))))
3635rspcev 3635 . . . . . . . . . . . . . . . 16 (((𝑓𝑤) ∈ 𝒫 𝐴 ∧ ((𝑓 “ (𝑓𝑤)) ∈ 𝑥𝑤 = (𝑓 “ (𝑓𝑤)))) → ∃𝑧 ∈ 𝒫 𝐴((𝑓𝑧) ∈ 𝑥𝑤 = (𝑓𝑧)))
3721, 31, 29, 36syl12anc 836 . . . . . . . . . . . . . . 15 ((((𝑓:𝐴1-1-onto𝐵𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [] Or 𝑥))) ∧ 𝑤𝑥) → ∃𝑧 ∈ 𝒫 𝐴((𝑓𝑧) ∈ 𝑥𝑤 = (𝑓𝑧)))
3837ex 412 . . . . . . . . . . . . . 14 (((𝑓:𝐴1-1-onto𝐵𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [] Or 𝑥))) → (𝑤𝑥 → ∃𝑧 ∈ 𝒫 𝐴((𝑓𝑧) ∈ 𝑥𝑤 = (𝑓𝑧))))
3913, 38impbid2 226 . . . . . . . . . . . . 13 (((𝑓:𝐴1-1-onto𝐵𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [] Or 𝑥))) → (∃𝑧 ∈ 𝒫 𝐴((𝑓𝑧) ∈ 𝑥𝑤 = (𝑓𝑧)) ↔ 𝑤𝑥))
4010, 39bitrid 283 . . . . . . . . . . . 12 (((𝑓:𝐴1-1-onto𝐵𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [] Or 𝑥))) → (∃𝑧 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓𝑦) ∈ 𝑥}𝑤 = (𝑓𝑧) ↔ 𝑤𝑥))
4140eqabcdv 2879 . . . . . . . . . . 11 (((𝑓:𝐴1-1-onto𝐵𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [] Or 𝑥))) → {𝑤 ∣ ∃𝑧 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓𝑦) ∈ 𝑥}𝑤 = (𝑓𝑧)} = 𝑥)
4241unieqd 4944 . . . . . . . . . 10 (((𝑓:𝐴1-1-onto𝐵𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [] Or 𝑥))) → {𝑤 ∣ ∃𝑧 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓𝑦) ∈ 𝑥}𝑤 = (𝑓𝑧)} = 𝑥)
437, 42eqtrid 2792 . . . . . . . . 9 (((𝑓:𝐴1-1-onto𝐵𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [] Or 𝑥))) → (𝑓 {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓𝑦) ∈ 𝑥}) = 𝑥)
44 simplr 768 . . . . . . . . . . 11 (((𝑓:𝐴1-1-onto𝐵𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [] Or 𝑥))) → 𝐴 ∈ FinII)
45 ssrab2 4103 . . . . . . . . . . . 12 {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓𝑦) ∈ 𝑥} ⊆ 𝒫 𝐴
4645a1i 11 . . . . . . . . . . 11 (((𝑓:𝐴1-1-onto𝐵𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [] Or 𝑥))) → {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓𝑦) ∈ 𝑥} ⊆ 𝒫 𝐴)
47 simprrl 780 . . . . . . . . . . . . . 14 (((𝑓:𝐴1-1-onto𝐵𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [] Or 𝑥))) → 𝑥 ≠ ∅)
48 n0 4376 . . . . . . . . . . . . . 14 (𝑥 ≠ ∅ ↔ ∃𝑤 𝑤𝑥)
4947, 48sylib 218 . . . . . . . . . . . . 13 (((𝑓:𝐴1-1-onto𝐵𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [] Or 𝑥))) → ∃𝑤 𝑤𝑥)
50 imaeq2 6085 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑓𝑤) → (𝑓𝑦) = (𝑓 “ (𝑓𝑤)))
5150eleq1d 2829 . . . . . . . . . . . . . . 15 (𝑦 = (𝑓𝑤) → ((𝑓𝑦) ∈ 𝑥 ↔ (𝑓 “ (𝑓𝑤)) ∈ 𝑥))
5251rspcev 3635 . . . . . . . . . . . . . 14 (((𝑓𝑤) ∈ 𝒫 𝐴 ∧ (𝑓 “ (𝑓𝑤)) ∈ 𝑥) → ∃𝑦 ∈ 𝒫 𝐴(𝑓𝑦) ∈ 𝑥)
5321, 31, 52syl2anc 583 . . . . . . . . . . . . 13 ((((𝑓:𝐴1-1-onto𝐵𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [] Or 𝑥))) ∧ 𝑤𝑥) → ∃𝑦 ∈ 𝒫 𝐴(𝑓𝑦) ∈ 𝑥)
5449, 53exlimddv 1934 . . . . . . . . . . . 12 (((𝑓:𝐴1-1-onto𝐵𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [] Or 𝑥))) → ∃𝑦 ∈ 𝒫 𝐴(𝑓𝑦) ∈ 𝑥)
55 rabn0 4412 . . . . . . . . . . . 12 ({𝑦 ∈ 𝒫 𝐴 ∣ (𝑓𝑦) ∈ 𝑥} ≠ ∅ ↔ ∃𝑦 ∈ 𝒫 𝐴(𝑓𝑦) ∈ 𝑥)
5654, 55sylibr 234 . . . . . . . . . . 11 (((𝑓:𝐴1-1-onto𝐵𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [] Or 𝑥))) → {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓𝑦) ∈ 𝑥} ≠ ∅)
579elrab 3708 . . . . . . . . . . . . . . 15 (𝑧 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓𝑦) ∈ 𝑥} ↔ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑓𝑧) ∈ 𝑥))
58 imaeq2 6085 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑤 → (𝑓𝑦) = (𝑓𝑤))
5958eleq1d 2829 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑤 → ((𝑓𝑦) ∈ 𝑥 ↔ (𝑓𝑤) ∈ 𝑥))
6059elrab 3708 . . . . . . . . . . . . . . 15 (𝑤 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓𝑦) ∈ 𝑥} ↔ (𝑤 ∈ 𝒫 𝐴 ∧ (𝑓𝑤) ∈ 𝑥))
6157, 60anbi12i 627 . . . . . . . . . . . . . 14 ((𝑧 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓𝑦) ∈ 𝑥} ∧ 𝑤 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓𝑦) ∈ 𝑥}) ↔ ((𝑧 ∈ 𝒫 𝐴 ∧ (𝑓𝑧) ∈ 𝑥) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ (𝑓𝑤) ∈ 𝑥)))
62 simprrr 781 . . . . . . . . . . . . . . . . 17 (((𝑓:𝐴1-1-onto𝐵𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [] Or 𝑥))) → [] Or 𝑥)
6362adantr 480 . . . . . . . . . . . . . . . 16 ((((𝑓:𝐴1-1-onto𝐵𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [] Or 𝑥))) ∧ ((𝑧 ∈ 𝒫 𝐴 ∧ (𝑓𝑧) ∈ 𝑥) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ (𝑓𝑤) ∈ 𝑥))) → [] Or 𝑥)
64 simprlr 779 . . . . . . . . . . . . . . . 16 ((((𝑓:𝐴1-1-onto𝐵𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [] Or 𝑥))) ∧ ((𝑧 ∈ 𝒫 𝐴 ∧ (𝑓𝑧) ∈ 𝑥) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ (𝑓𝑤) ∈ 𝑥))) → (𝑓𝑧) ∈ 𝑥)
65 simprrr 781 . . . . . . . . . . . . . . . 16 ((((𝑓:𝐴1-1-onto𝐵𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [] Or 𝑥))) ∧ ((𝑧 ∈ 𝒫 𝐴 ∧ (𝑓𝑧) ∈ 𝑥) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ (𝑓𝑤) ∈ 𝑥))) → (𝑓𝑤) ∈ 𝑥)
66 sorpssi 7764 . . . . . . . . . . . . . . . 16 (( [] Or 𝑥 ∧ ((𝑓𝑧) ∈ 𝑥 ∧ (𝑓𝑤) ∈ 𝑥)) → ((𝑓𝑧) ⊆ (𝑓𝑤) ∨ (𝑓𝑤) ⊆ (𝑓𝑧)))
6763, 64, 65, 66syl12anc 836 . . . . . . . . . . . . . . 15 ((((𝑓:𝐴1-1-onto𝐵𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [] Or 𝑥))) ∧ ((𝑧 ∈ 𝒫 𝐴 ∧ (𝑓𝑧) ∈ 𝑥) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ (𝑓𝑤) ∈ 𝑥))) → ((𝑓𝑧) ⊆ (𝑓𝑤) ∨ (𝑓𝑤) ⊆ (𝑓𝑧)))
68 f1of1 6861 . . . . . . . . . . . . . . . . . 18 (𝑓:𝐴1-1-onto𝐵𝑓:𝐴1-1𝐵)
6968ad3antrrr 729 . . . . . . . . . . . . . . . . 17 ((((𝑓:𝐴1-1-onto𝐵𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [] Or 𝑥))) ∧ ((𝑧 ∈ 𝒫 𝐴 ∧ (𝑓𝑧) ∈ 𝑥) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ (𝑓𝑤) ∈ 𝑥))) → 𝑓:𝐴1-1𝐵)
70 simprll 778 . . . . . . . . . . . . . . . . . 18 ((((𝑓:𝐴1-1-onto𝐵𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [] Or 𝑥))) ∧ ((𝑧 ∈ 𝒫 𝐴 ∧ (𝑓𝑧) ∈ 𝑥) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ (𝑓𝑤) ∈ 𝑥))) → 𝑧 ∈ 𝒫 𝐴)
7170elpwid 4631 . . . . . . . . . . . . . . . . 17 ((((𝑓:𝐴1-1-onto𝐵𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [] Or 𝑥))) ∧ ((𝑧 ∈ 𝒫 𝐴 ∧ (𝑓𝑧) ∈ 𝑥) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ (𝑓𝑤) ∈ 𝑥))) → 𝑧𝐴)
72 simprrl 780 . . . . . . . . . . . . . . . . . 18 ((((𝑓:𝐴1-1-onto𝐵𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [] Or 𝑥))) ∧ ((𝑧 ∈ 𝒫 𝐴 ∧ (𝑓𝑧) ∈ 𝑥) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ (𝑓𝑤) ∈ 𝑥))) → 𝑤 ∈ 𝒫 𝐴)
7372elpwid 4631 . . . . . . . . . . . . . . . . 17 ((((𝑓:𝐴1-1-onto𝐵𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [] Or 𝑥))) ∧ ((𝑧 ∈ 𝒫 𝐴 ∧ (𝑓𝑧) ∈ 𝑥) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ (𝑓𝑤) ∈ 𝑥))) → 𝑤𝐴)
74 f1imass 7301 . . . . . . . . . . . . . . . . 17 ((𝑓:𝐴1-1𝐵 ∧ (𝑧𝐴𝑤𝐴)) → ((𝑓𝑧) ⊆ (𝑓𝑤) ↔ 𝑧𝑤))
7569, 71, 73, 74syl12anc 836 . . . . . . . . . . . . . . . 16 ((((𝑓:𝐴1-1-onto𝐵𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [] Or 𝑥))) ∧ ((𝑧 ∈ 𝒫 𝐴 ∧ (𝑓𝑧) ∈ 𝑥) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ (𝑓𝑤) ∈ 𝑥))) → ((𝑓𝑧) ⊆ (𝑓𝑤) ↔ 𝑧𝑤))
76 f1imass 7301 . . . . . . . . . . . . . . . . 17 ((𝑓:𝐴1-1𝐵 ∧ (𝑤𝐴𝑧𝐴)) → ((𝑓𝑤) ⊆ (𝑓𝑧) ↔ 𝑤𝑧))
7769, 73, 71, 76syl12anc 836 . . . . . . . . . . . . . . . 16 ((((𝑓:𝐴1-1-onto𝐵𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [] Or 𝑥))) ∧ ((𝑧 ∈ 𝒫 𝐴 ∧ (𝑓𝑧) ∈ 𝑥) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ (𝑓𝑤) ∈ 𝑥))) → ((𝑓𝑤) ⊆ (𝑓𝑧) ↔ 𝑤𝑧))
7875, 77orbi12d 917 . . . . . . . . . . . . . . 15 ((((𝑓:𝐴1-1-onto𝐵𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [] Or 𝑥))) ∧ ((𝑧 ∈ 𝒫 𝐴 ∧ (𝑓𝑧) ∈ 𝑥) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ (𝑓𝑤) ∈ 𝑥))) → (((𝑓𝑧) ⊆ (𝑓𝑤) ∨ (𝑓𝑤) ⊆ (𝑓𝑧)) ↔ (𝑧𝑤𝑤𝑧)))
7967, 78mpbid 232 . . . . . . . . . . . . . 14 ((((𝑓:𝐴1-1-onto𝐵𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [] Or 𝑥))) ∧ ((𝑧 ∈ 𝒫 𝐴 ∧ (𝑓𝑧) ∈ 𝑥) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ (𝑓𝑤) ∈ 𝑥))) → (𝑧𝑤𝑤𝑧))
8061, 79sylan2b 593 . . . . . . . . . . . . 13 ((((𝑓:𝐴1-1-onto𝐵𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [] Or 𝑥))) ∧ (𝑧 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓𝑦) ∈ 𝑥} ∧ 𝑤 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓𝑦) ∈ 𝑥})) → (𝑧𝑤𝑤𝑧))
8180ralrimivva 3208 . . . . . . . . . . . 12 (((𝑓:𝐴1-1-onto𝐵𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [] Or 𝑥))) → ∀𝑧 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓𝑦) ∈ 𝑥}∀𝑤 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓𝑦) ∈ 𝑥} (𝑧𝑤𝑤𝑧))
82 sorpss 7763 . . . . . . . . . . . 12 ( [] Or {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓𝑦) ∈ 𝑥} ↔ ∀𝑧 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓𝑦) ∈ 𝑥}∀𝑤 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓𝑦) ∈ 𝑥} (𝑧𝑤𝑤𝑧))
8381, 82sylibr 234 . . . . . . . . . . 11 (((𝑓:𝐴1-1-onto𝐵𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [] Or 𝑥))) → [] Or {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓𝑦) ∈ 𝑥})
84 fin2i 10364 . . . . . . . . . . 11 (((𝐴 ∈ FinII ∧ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓𝑦) ∈ 𝑥} ⊆ 𝒫 𝐴) ∧ ({𝑦 ∈ 𝒫 𝐴 ∣ (𝑓𝑦) ∈ 𝑥} ≠ ∅ ∧ [] Or {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓𝑦) ∈ 𝑥})) → {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓𝑦) ∈ 𝑥} ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓𝑦) ∈ 𝑥})
8544, 46, 56, 83, 84syl22anc 838 . . . . . . . . . 10 (((𝑓:𝐴1-1-onto𝐵𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [] Or 𝑥))) → {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓𝑦) ∈ 𝑥} ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓𝑦) ∈ 𝑥})
86 imaeq2 6085 . . . . . . . . . . . . 13 (𝑧 = {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓𝑦) ∈ 𝑥} → (𝑓𝑧) = (𝑓 {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓𝑦) ∈ 𝑥}))
8786eleq1d 2829 . . . . . . . . . . . 12 (𝑧 = {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓𝑦) ∈ 𝑥} → ((𝑓𝑧) ∈ 𝑥 ↔ (𝑓 {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓𝑦) ∈ 𝑥}) ∈ 𝑥))
889cbvrabv 3454 . . . . . . . . . . . 12 {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓𝑦) ∈ 𝑥} = {𝑧 ∈ 𝒫 𝐴 ∣ (𝑓𝑧) ∈ 𝑥}
8987, 88elrab2 3711 . . . . . . . . . . 11 ( {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓𝑦) ∈ 𝑥} ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓𝑦) ∈ 𝑥} ↔ ( {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓𝑦) ∈ 𝑥} ∈ 𝒫 𝐴 ∧ (𝑓 {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓𝑦) ∈ 𝑥}) ∈ 𝑥))
9089simprbi 496 . . . . . . . . . 10 ( {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓𝑦) ∈ 𝑥} ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓𝑦) ∈ 𝑥} → (𝑓 {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓𝑦) ∈ 𝑥}) ∈ 𝑥)
9185, 90syl 17 . . . . . . . . 9 (((𝑓:𝐴1-1-onto𝐵𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [] Or 𝑥))) → (𝑓 {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓𝑦) ∈ 𝑥}) ∈ 𝑥)
9243, 91eqeltrrd 2845 . . . . . . . 8 (((𝑓:𝐴1-1-onto𝐵𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [] Or 𝑥))) → 𝑥𝑥)
9392expr 456 . . . . . . 7 (((𝑓:𝐴1-1-onto𝐵𝐴 ∈ FinII) ∧ 𝑥 ⊆ 𝒫 𝐵) → ((𝑥 ≠ ∅ ∧ [] Or 𝑥) → 𝑥𝑥))
942, 93sylan2 592 . . . . . 6 (((𝑓:𝐴1-1-onto𝐵𝐴 ∈ FinII) ∧ 𝑥 ∈ 𝒫 𝒫 𝐵) → ((𝑥 ≠ ∅ ∧ [] Or 𝑥) → 𝑥𝑥))
9594ralrimiva 3152 . . . . 5 ((𝑓:𝐴1-1-onto𝐵𝐴 ∈ FinII) → ∀𝑥 ∈ 𝒫 𝒫 𝐵((𝑥 ≠ ∅ ∧ [] Or 𝑥) → 𝑥𝑥))
9695ex 412 . . . 4 (𝑓:𝐴1-1-onto𝐵 → (𝐴 ∈ FinII → ∀𝑥 ∈ 𝒫 𝒫 𝐵((𝑥 ≠ ∅ ∧ [] Or 𝑥) → 𝑥𝑥)))
9796exlimiv 1929 . . 3 (∃𝑓 𝑓:𝐴1-1-onto𝐵 → (𝐴 ∈ FinII → ∀𝑥 ∈ 𝒫 𝒫 𝐵((𝑥 ≠ ∅ ∧ [] Or 𝑥) → 𝑥𝑥)))
981, 97sylbi 217 . 2 (𝐴𝐵 → (𝐴 ∈ FinII → ∀𝑥 ∈ 𝒫 𝒫 𝐵((𝑥 ≠ ∅ ∧ [] Or 𝑥) → 𝑥𝑥)))
99 relen 9008 . . . 4 Rel ≈
10099brrelex2i 5757 . . 3 (𝐴𝐵𝐵 ∈ V)
101 isfin2 10363 . . 3 (𝐵 ∈ V → (𝐵 ∈ FinII ↔ ∀𝑥 ∈ 𝒫 𝒫 𝐵((𝑥 ≠ ∅ ∧ [] Or 𝑥) → 𝑥𝑥)))
102100, 101syl 17 . 2 (𝐴𝐵 → (𝐵 ∈ FinII ↔ ∀𝑥 ∈ 𝒫 𝒫 𝐵((𝑥 ≠ ∅ ∧ [] Or 𝑥) → 𝑥𝑥)))
10398, 102sylibrd 259 1 (𝐴𝐵 → (𝐴 ∈ FinII𝐵 ∈ FinII))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wex 1777  wcel 2108  {cab 2717  wne 2946  wral 3067  wrex 3076  {crab 3443  Vcvv 3488  wss 3976  c0 4352  𝒫 cpw 4622   cuni 4931   ciun 5015   class class class wbr 5166   Or wor 5606  ccnv 5699  dom cdm 5700  cima 5703  1-1wf1 6570  ontowfo 6571  1-1-ontowf1o 6572   [] crpss 7757  cen 9000  FinIIcfin2 10348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-rpss 7758  df-en 9004  df-fin2 10355
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator