| Step | Hyp | Ref
| Expression |
| 1 | | bren 8995 |
. . 3
⊢ (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) |
| 2 | | elpwi 4607 |
. . . . . . 7
⊢ (𝑥 ∈ 𝒫 𝒫
𝐵 → 𝑥 ⊆ 𝒫 𝐵) |
| 3 | | imauni 7266 |
. . . . . . . . . . 11
⊢ (𝑓 “ ∪ {𝑦
∈ 𝒫 𝐴 ∣
(𝑓 “ 𝑦) ∈ 𝑥}) = ∪
𝑧 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓 “ 𝑦) ∈ 𝑥} (𝑓 “ 𝑧) |
| 4 | | vex 3484 |
. . . . . . . . . . . . 13
⊢ 𝑓 ∈ V |
| 5 | 4 | imaex 7936 |
. . . . . . . . . . . 12
⊢ (𝑓 “ 𝑧) ∈ V |
| 6 | 5 | dfiun2 5033 |
. . . . . . . . . . 11
⊢ ∪ 𝑧 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓 “ 𝑦) ∈ 𝑥} (𝑓 “ 𝑧) = ∪ {𝑤 ∣ ∃𝑧 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓 “ 𝑦) ∈ 𝑥}𝑤 = (𝑓 “ 𝑧)} |
| 7 | 3, 6 | eqtri 2765 |
. . . . . . . . . 10
⊢ (𝑓 “ ∪ {𝑦
∈ 𝒫 𝐴 ∣
(𝑓 “ 𝑦) ∈ 𝑥}) = ∪ {𝑤 ∣ ∃𝑧 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓 “ 𝑦) ∈ 𝑥}𝑤 = (𝑓 “ 𝑧)} |
| 8 | | imaeq2 6074 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑧 → (𝑓 “ 𝑦) = (𝑓 “ 𝑧)) |
| 9 | 8 | eleq1d 2826 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑧 → ((𝑓 “ 𝑦) ∈ 𝑥 ↔ (𝑓 “ 𝑧) ∈ 𝑥)) |
| 10 | 9 | rexrab 3702 |
. . . . . . . . . . . . 13
⊢
(∃𝑧 ∈
{𝑦 ∈ 𝒫 𝐴 ∣ (𝑓 “ 𝑦) ∈ 𝑥}𝑤 = (𝑓 “ 𝑧) ↔ ∃𝑧 ∈ 𝒫 𝐴((𝑓 “ 𝑧) ∈ 𝑥 ∧ 𝑤 = (𝑓 “ 𝑧))) |
| 11 | | eleq1 2829 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 = (𝑓 “ 𝑧) → (𝑤 ∈ 𝑥 ↔ (𝑓 “ 𝑧) ∈ 𝑥)) |
| 12 | 11 | biimparc 479 |
. . . . . . . . . . . . . . 15
⊢ (((𝑓 “ 𝑧) ∈ 𝑥 ∧ 𝑤 = (𝑓 “ 𝑧)) → 𝑤 ∈ 𝑥) |
| 13 | 12 | rexlimivw 3151 |
. . . . . . . . . . . . . 14
⊢
(∃𝑧 ∈
𝒫 𝐴((𝑓 “ 𝑧) ∈ 𝑥 ∧ 𝑤 = (𝑓 “ 𝑧)) → 𝑤 ∈ 𝑥) |
| 14 | | cnvimass 6100 |
. . . . . . . . . . . . . . . . . 18
⊢ (◡𝑓 “ 𝑤) ⊆ dom 𝑓 |
| 15 | | f1odm 6852 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓:𝐴–1-1-onto→𝐵 → dom 𝑓 = 𝐴) |
| 16 | 15 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) ∧ 𝑤 ∈ 𝑥) → dom 𝑓 = 𝐴) |
| 17 | 14, 16 | sseqtrid 4026 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) ∧ 𝑤 ∈ 𝑥) → (◡𝑓 “ 𝑤) ⊆ 𝐴) |
| 18 | 4 | cnvex 7947 |
. . . . . . . . . . . . . . . . . . 19
⊢ ◡𝑓 ∈ V |
| 19 | 18 | imaex 7936 |
. . . . . . . . . . . . . . . . . 18
⊢ (◡𝑓 “ 𝑤) ∈ V |
| 20 | 19 | elpw 4604 |
. . . . . . . . . . . . . . . . 17
⊢ ((◡𝑓 “ 𝑤) ∈ 𝒫 𝐴 ↔ (◡𝑓 “ 𝑤) ⊆ 𝐴) |
| 21 | 17, 20 | sylibr 234 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) ∧ 𝑤 ∈ 𝑥) → (◡𝑓 “ 𝑤) ∈ 𝒫 𝐴) |
| 22 | | f1ofo 6855 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓:𝐴–onto→𝐵) |
| 23 | 22 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) ∧ 𝑤 ∈ 𝑥) → 𝑓:𝐴–onto→𝐵) |
| 24 | | simprl 771 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) → 𝑥 ⊆ 𝒫 𝐵) |
| 25 | 24 | sselda 3983 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) ∧ 𝑤 ∈ 𝑥) → 𝑤 ∈ 𝒫 𝐵) |
| 26 | 25 | elpwid 4609 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) ∧ 𝑤 ∈ 𝑥) → 𝑤 ⊆ 𝐵) |
| 27 | | foimacnv 6865 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓:𝐴–onto→𝐵 ∧ 𝑤 ⊆ 𝐵) → (𝑓 “ (◡𝑓 “ 𝑤)) = 𝑤) |
| 28 | 23, 26, 27 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) ∧ 𝑤 ∈ 𝑥) → (𝑓 “ (◡𝑓 “ 𝑤)) = 𝑤) |
| 29 | 28 | eqcomd 2743 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) ∧ 𝑤 ∈ 𝑥) → 𝑤 = (𝑓 “ (◡𝑓 “ 𝑤))) |
| 30 | | simpr 484 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) ∧ 𝑤 ∈ 𝑥) → 𝑤 ∈ 𝑥) |
| 31 | 29, 30 | eqeltrrd 2842 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) ∧ 𝑤 ∈ 𝑥) → (𝑓 “ (◡𝑓 “ 𝑤)) ∈ 𝑥) |
| 32 | | imaeq2 6074 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 = (◡𝑓 “ 𝑤) → (𝑓 “ 𝑧) = (𝑓 “ (◡𝑓 “ 𝑤))) |
| 33 | 32 | eleq1d 2826 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = (◡𝑓 “ 𝑤) → ((𝑓 “ 𝑧) ∈ 𝑥 ↔ (𝑓 “ (◡𝑓 “ 𝑤)) ∈ 𝑥)) |
| 34 | 32 | eqeq2d 2748 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = (◡𝑓 “ 𝑤) → (𝑤 = (𝑓 “ 𝑧) ↔ 𝑤 = (𝑓 “ (◡𝑓 “ 𝑤)))) |
| 35 | 33, 34 | anbi12d 632 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = (◡𝑓 “ 𝑤) → (((𝑓 “ 𝑧) ∈ 𝑥 ∧ 𝑤 = (𝑓 “ 𝑧)) ↔ ((𝑓 “ (◡𝑓 “ 𝑤)) ∈ 𝑥 ∧ 𝑤 = (𝑓 “ (◡𝑓 “ 𝑤))))) |
| 36 | 35 | rspcev 3622 |
. . . . . . . . . . . . . . . 16
⊢ (((◡𝑓 “ 𝑤) ∈ 𝒫 𝐴 ∧ ((𝑓 “ (◡𝑓 “ 𝑤)) ∈ 𝑥 ∧ 𝑤 = (𝑓 “ (◡𝑓 “ 𝑤)))) → ∃𝑧 ∈ 𝒫 𝐴((𝑓 “ 𝑧) ∈ 𝑥 ∧ 𝑤 = (𝑓 “ 𝑧))) |
| 37 | 21, 31, 29, 36 | syl12anc 837 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) ∧ 𝑤 ∈ 𝑥) → ∃𝑧 ∈ 𝒫 𝐴((𝑓 “ 𝑧) ∈ 𝑥 ∧ 𝑤 = (𝑓 “ 𝑧))) |
| 38 | 37 | ex 412 |
. . . . . . . . . . . . . 14
⊢ (((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) → (𝑤 ∈ 𝑥 → ∃𝑧 ∈ 𝒫 𝐴((𝑓 “ 𝑧) ∈ 𝑥 ∧ 𝑤 = (𝑓 “ 𝑧)))) |
| 39 | 13, 38 | impbid2 226 |
. . . . . . . . . . . . 13
⊢ (((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) → (∃𝑧 ∈ 𝒫 𝐴((𝑓 “ 𝑧) ∈ 𝑥 ∧ 𝑤 = (𝑓 “ 𝑧)) ↔ 𝑤 ∈ 𝑥)) |
| 40 | 10, 39 | bitrid 283 |
. . . . . . . . . . . 12
⊢ (((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) → (∃𝑧 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓 “ 𝑦) ∈ 𝑥}𝑤 = (𝑓 “ 𝑧) ↔ 𝑤 ∈ 𝑥)) |
| 41 | 40 | eqabcdv 2876 |
. . . . . . . . . . 11
⊢ (((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) → {𝑤 ∣ ∃𝑧 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓 “ 𝑦) ∈ 𝑥}𝑤 = (𝑓 “ 𝑧)} = 𝑥) |
| 42 | 41 | unieqd 4920 |
. . . . . . . . . 10
⊢ (((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) → ∪ {𝑤
∣ ∃𝑧 ∈
{𝑦 ∈ 𝒫 𝐴 ∣ (𝑓 “ 𝑦) ∈ 𝑥}𝑤 = (𝑓 “ 𝑧)} = ∪ 𝑥) |
| 43 | 7, 42 | eqtrid 2789 |
. . . . . . . . 9
⊢ (((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) → (𝑓 “ ∪ {𝑦
∈ 𝒫 𝐴 ∣
(𝑓 “ 𝑦) ∈ 𝑥}) = ∪ 𝑥) |
| 44 | | simplr 769 |
. . . . . . . . . . 11
⊢ (((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) → 𝐴 ∈
FinII) |
| 45 | | ssrab2 4080 |
. . . . . . . . . . . 12
⊢ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓 “ 𝑦) ∈ 𝑥} ⊆ 𝒫 𝐴 |
| 46 | 45 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) → {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓 “ 𝑦) ∈ 𝑥} ⊆ 𝒫 𝐴) |
| 47 | | simprrl 781 |
. . . . . . . . . . . . . 14
⊢ (((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) → 𝑥 ≠ ∅) |
| 48 | | n0 4353 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ≠ ∅ ↔
∃𝑤 𝑤 ∈ 𝑥) |
| 49 | 47, 48 | sylib 218 |
. . . . . . . . . . . . 13
⊢ (((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) → ∃𝑤 𝑤 ∈ 𝑥) |
| 50 | | imaeq2 6074 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = (◡𝑓 “ 𝑤) → (𝑓 “ 𝑦) = (𝑓 “ (◡𝑓 “ 𝑤))) |
| 51 | 50 | eleq1d 2826 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = (◡𝑓 “ 𝑤) → ((𝑓 “ 𝑦) ∈ 𝑥 ↔ (𝑓 “ (◡𝑓 “ 𝑤)) ∈ 𝑥)) |
| 52 | 51 | rspcev 3622 |
. . . . . . . . . . . . . 14
⊢ (((◡𝑓 “ 𝑤) ∈ 𝒫 𝐴 ∧ (𝑓 “ (◡𝑓 “ 𝑤)) ∈ 𝑥) → ∃𝑦 ∈ 𝒫 𝐴(𝑓 “ 𝑦) ∈ 𝑥) |
| 53 | 21, 31, 52 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) ∧ 𝑤 ∈ 𝑥) → ∃𝑦 ∈ 𝒫 𝐴(𝑓 “ 𝑦) ∈ 𝑥) |
| 54 | 49, 53 | exlimddv 1935 |
. . . . . . . . . . . 12
⊢ (((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) → ∃𝑦 ∈ 𝒫 𝐴(𝑓 “ 𝑦) ∈ 𝑥) |
| 55 | | rabn0 4389 |
. . . . . . . . . . . 12
⊢ ({𝑦 ∈ 𝒫 𝐴 ∣ (𝑓 “ 𝑦) ∈ 𝑥} ≠ ∅ ↔ ∃𝑦 ∈ 𝒫 𝐴(𝑓 “ 𝑦) ∈ 𝑥) |
| 56 | 54, 55 | sylibr 234 |
. . . . . . . . . . 11
⊢ (((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) → {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓 “ 𝑦) ∈ 𝑥} ≠ ∅) |
| 57 | 9 | elrab 3692 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓 “ 𝑦) ∈ 𝑥} ↔ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑓 “ 𝑧) ∈ 𝑥)) |
| 58 | | imaeq2 6074 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑤 → (𝑓 “ 𝑦) = (𝑓 “ 𝑤)) |
| 59 | 58 | eleq1d 2826 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑤 → ((𝑓 “ 𝑦) ∈ 𝑥 ↔ (𝑓 “ 𝑤) ∈ 𝑥)) |
| 60 | 59 | elrab 3692 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓 “ 𝑦) ∈ 𝑥} ↔ (𝑤 ∈ 𝒫 𝐴 ∧ (𝑓 “ 𝑤) ∈ 𝑥)) |
| 61 | 57, 60 | anbi12i 628 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓 “ 𝑦) ∈ 𝑥} ∧ 𝑤 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓 “ 𝑦) ∈ 𝑥}) ↔ ((𝑧 ∈ 𝒫 𝐴 ∧ (𝑓 “ 𝑧) ∈ 𝑥) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ (𝑓 “ 𝑤) ∈ 𝑥))) |
| 62 | | simprrr 782 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) →
[⊊] Or 𝑥) |
| 63 | 62 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) ∧ ((𝑧 ∈ 𝒫 𝐴 ∧ (𝑓 “ 𝑧) ∈ 𝑥) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ (𝑓 “ 𝑤) ∈ 𝑥))) → [⊊] Or 𝑥) |
| 64 | | simprlr 780 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) ∧ ((𝑧 ∈ 𝒫 𝐴 ∧ (𝑓 “ 𝑧) ∈ 𝑥) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ (𝑓 “ 𝑤) ∈ 𝑥))) → (𝑓 “ 𝑧) ∈ 𝑥) |
| 65 | | simprrr 782 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) ∧ ((𝑧 ∈ 𝒫 𝐴 ∧ (𝑓 “ 𝑧) ∈ 𝑥) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ (𝑓 “ 𝑤) ∈ 𝑥))) → (𝑓 “ 𝑤) ∈ 𝑥) |
| 66 | | sorpssi 7749 |
. . . . . . . . . . . . . . . 16
⊢ ((
[⊊] Or 𝑥
∧ ((𝑓 “ 𝑧) ∈ 𝑥 ∧ (𝑓 “ 𝑤) ∈ 𝑥)) → ((𝑓 “ 𝑧) ⊆ (𝑓 “ 𝑤) ∨ (𝑓 “ 𝑤) ⊆ (𝑓 “ 𝑧))) |
| 67 | 63, 64, 65, 66 | syl12anc 837 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) ∧ ((𝑧 ∈ 𝒫 𝐴 ∧ (𝑓 “ 𝑧) ∈ 𝑥) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ (𝑓 “ 𝑤) ∈ 𝑥))) → ((𝑓 “ 𝑧) ⊆ (𝑓 “ 𝑤) ∨ (𝑓 “ 𝑤) ⊆ (𝑓 “ 𝑧))) |
| 68 | | f1of1 6847 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓:𝐴–1-1→𝐵) |
| 69 | 68 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) ∧ ((𝑧 ∈ 𝒫 𝐴 ∧ (𝑓 “ 𝑧) ∈ 𝑥) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ (𝑓 “ 𝑤) ∈ 𝑥))) → 𝑓:𝐴–1-1→𝐵) |
| 70 | | simprll 779 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) ∧ ((𝑧 ∈ 𝒫 𝐴 ∧ (𝑓 “ 𝑧) ∈ 𝑥) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ (𝑓 “ 𝑤) ∈ 𝑥))) → 𝑧 ∈ 𝒫 𝐴) |
| 71 | 70 | elpwid 4609 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) ∧ ((𝑧 ∈ 𝒫 𝐴 ∧ (𝑓 “ 𝑧) ∈ 𝑥) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ (𝑓 “ 𝑤) ∈ 𝑥))) → 𝑧 ⊆ 𝐴) |
| 72 | | simprrl 781 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) ∧ ((𝑧 ∈ 𝒫 𝐴 ∧ (𝑓 “ 𝑧) ∈ 𝑥) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ (𝑓 “ 𝑤) ∈ 𝑥))) → 𝑤 ∈ 𝒫 𝐴) |
| 73 | 72 | elpwid 4609 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) ∧ ((𝑧 ∈ 𝒫 𝐴 ∧ (𝑓 “ 𝑧) ∈ 𝑥) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ (𝑓 “ 𝑤) ∈ 𝑥))) → 𝑤 ⊆ 𝐴) |
| 74 | | f1imass 7284 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓:𝐴–1-1→𝐵 ∧ (𝑧 ⊆ 𝐴 ∧ 𝑤 ⊆ 𝐴)) → ((𝑓 “ 𝑧) ⊆ (𝑓 “ 𝑤) ↔ 𝑧 ⊆ 𝑤)) |
| 75 | 69, 71, 73, 74 | syl12anc 837 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) ∧ ((𝑧 ∈ 𝒫 𝐴 ∧ (𝑓 “ 𝑧) ∈ 𝑥) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ (𝑓 “ 𝑤) ∈ 𝑥))) → ((𝑓 “ 𝑧) ⊆ (𝑓 “ 𝑤) ↔ 𝑧 ⊆ 𝑤)) |
| 76 | | f1imass 7284 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓:𝐴–1-1→𝐵 ∧ (𝑤 ⊆ 𝐴 ∧ 𝑧 ⊆ 𝐴)) → ((𝑓 “ 𝑤) ⊆ (𝑓 “ 𝑧) ↔ 𝑤 ⊆ 𝑧)) |
| 77 | 69, 73, 71, 76 | syl12anc 837 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) ∧ ((𝑧 ∈ 𝒫 𝐴 ∧ (𝑓 “ 𝑧) ∈ 𝑥) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ (𝑓 “ 𝑤) ∈ 𝑥))) → ((𝑓 “ 𝑤) ⊆ (𝑓 “ 𝑧) ↔ 𝑤 ⊆ 𝑧)) |
| 78 | 75, 77 | orbi12d 919 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) ∧ ((𝑧 ∈ 𝒫 𝐴 ∧ (𝑓 “ 𝑧) ∈ 𝑥) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ (𝑓 “ 𝑤) ∈ 𝑥))) → (((𝑓 “ 𝑧) ⊆ (𝑓 “ 𝑤) ∨ (𝑓 “ 𝑤) ⊆ (𝑓 “ 𝑧)) ↔ (𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧))) |
| 79 | 67, 78 | mpbid 232 |
. . . . . . . . . . . . . 14
⊢ ((((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) ∧ ((𝑧 ∈ 𝒫 𝐴 ∧ (𝑓 “ 𝑧) ∈ 𝑥) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ (𝑓 “ 𝑤) ∈ 𝑥))) → (𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧)) |
| 80 | 61, 79 | sylan2b 594 |
. . . . . . . . . . . . 13
⊢ ((((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) ∧ (𝑧 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓 “ 𝑦) ∈ 𝑥} ∧ 𝑤 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓 “ 𝑦) ∈ 𝑥})) → (𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧)) |
| 81 | 80 | ralrimivva 3202 |
. . . . . . . . . . . 12
⊢ (((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) → ∀𝑧 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓 “ 𝑦) ∈ 𝑥}∀𝑤 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓 “ 𝑦) ∈ 𝑥} (𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧)) |
| 82 | | sorpss 7748 |
. . . . . . . . . . . 12
⊢ (
[⊊] Or {𝑦
∈ 𝒫 𝐴 ∣
(𝑓 “ 𝑦) ∈ 𝑥} ↔ ∀𝑧 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓 “ 𝑦) ∈ 𝑥}∀𝑤 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓 “ 𝑦) ∈ 𝑥} (𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧)) |
| 83 | 81, 82 | sylibr 234 |
. . . . . . . . . . 11
⊢ (((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) →
[⊊] Or {𝑦
∈ 𝒫 𝐴 ∣
(𝑓 “ 𝑦) ∈ 𝑥}) |
| 84 | | fin2i 10335 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ FinII ∧
{𝑦 ∈ 𝒫 𝐴 ∣ (𝑓 “ 𝑦) ∈ 𝑥} ⊆ 𝒫 𝐴) ∧ ({𝑦 ∈ 𝒫 𝐴 ∣ (𝑓 “ 𝑦) ∈ 𝑥} ≠ ∅ ∧ [⊊] Or
{𝑦 ∈ 𝒫 𝐴 ∣ (𝑓 “ 𝑦) ∈ 𝑥})) → ∪
{𝑦 ∈ 𝒫 𝐴 ∣ (𝑓 “ 𝑦) ∈ 𝑥} ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓 “ 𝑦) ∈ 𝑥}) |
| 85 | 44, 46, 56, 83, 84 | syl22anc 839 |
. . . . . . . . . 10
⊢ (((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) → ∪ {𝑦
∈ 𝒫 𝐴 ∣
(𝑓 “ 𝑦) ∈ 𝑥} ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓 “ 𝑦) ∈ 𝑥}) |
| 86 | | imaeq2 6074 |
. . . . . . . . . . . . 13
⊢ (𝑧 = ∪
{𝑦 ∈ 𝒫 𝐴 ∣ (𝑓 “ 𝑦) ∈ 𝑥} → (𝑓 “ 𝑧) = (𝑓 “ ∪ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓 “ 𝑦) ∈ 𝑥})) |
| 87 | 86 | eleq1d 2826 |
. . . . . . . . . . . 12
⊢ (𝑧 = ∪
{𝑦 ∈ 𝒫 𝐴 ∣ (𝑓 “ 𝑦) ∈ 𝑥} → ((𝑓 “ 𝑧) ∈ 𝑥 ↔ (𝑓 “ ∪ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓 “ 𝑦) ∈ 𝑥}) ∈ 𝑥)) |
| 88 | 9 | cbvrabv 3447 |
. . . . . . . . . . . 12
⊢ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓 “ 𝑦) ∈ 𝑥} = {𝑧 ∈ 𝒫 𝐴 ∣ (𝑓 “ 𝑧) ∈ 𝑥} |
| 89 | 87, 88 | elrab2 3695 |
. . . . . . . . . . 11
⊢ (∪ {𝑦
∈ 𝒫 𝐴 ∣
(𝑓 “ 𝑦) ∈ 𝑥} ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓 “ 𝑦) ∈ 𝑥} ↔ (∪ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓 “ 𝑦) ∈ 𝑥} ∈ 𝒫 𝐴 ∧ (𝑓 “ ∪ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓 “ 𝑦) ∈ 𝑥}) ∈ 𝑥)) |
| 90 | 89 | simprbi 496 |
. . . . . . . . . 10
⊢ (∪ {𝑦
∈ 𝒫 𝐴 ∣
(𝑓 “ 𝑦) ∈ 𝑥} ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓 “ 𝑦) ∈ 𝑥} → (𝑓 “ ∪ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑓 “ 𝑦) ∈ 𝑥}) ∈ 𝑥) |
| 91 | 85, 90 | syl 17 |
. . . . . . . . 9
⊢ (((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) → (𝑓 “ ∪ {𝑦
∈ 𝒫 𝐴 ∣
(𝑓 “ 𝑦) ∈ 𝑥}) ∈ 𝑥) |
| 92 | 43, 91 | eqeltrrd 2842 |
. . . . . . . 8
⊢ (((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ (𝑥 ⊆ 𝒫 𝐵 ∧ (𝑥 ≠ ∅ ∧ [⊊] Or
𝑥))) → ∪ 𝑥
∈ 𝑥) |
| 93 | 92 | expr 456 |
. . . . . . 7
⊢ (((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ 𝑥 ⊆ 𝒫 𝐵) → ((𝑥 ≠ ∅ ∧ [⊊] Or
𝑥) → ∪ 𝑥
∈ 𝑥)) |
| 94 | 2, 93 | sylan2 593 |
. . . . . 6
⊢ (((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) ∧ 𝑥 ∈ 𝒫 𝒫
𝐵) → ((𝑥 ≠ ∅ ∧
[⊊] Or 𝑥)
→ ∪ 𝑥 ∈ 𝑥)) |
| 95 | 94 | ralrimiva 3146 |
. . . . 5
⊢ ((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ FinII) →
∀𝑥 ∈ 𝒫
𝒫 𝐵((𝑥 ≠ ∅ ∧
[⊊] Or 𝑥)
→ ∪ 𝑥 ∈ 𝑥)) |
| 96 | 95 | ex 412 |
. . . 4
⊢ (𝑓:𝐴–1-1-onto→𝐵 → (𝐴 ∈ FinII →
∀𝑥 ∈ 𝒫
𝒫 𝐵((𝑥 ≠ ∅ ∧
[⊊] Or 𝑥)
→ ∪ 𝑥 ∈ 𝑥))) |
| 97 | 96 | exlimiv 1930 |
. . 3
⊢
(∃𝑓 𝑓:𝐴–1-1-onto→𝐵 → (𝐴 ∈ FinII →
∀𝑥 ∈ 𝒫
𝒫 𝐵((𝑥 ≠ ∅ ∧
[⊊] Or 𝑥)
→ ∪ 𝑥 ∈ 𝑥))) |
| 98 | 1, 97 | sylbi 217 |
. 2
⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ FinII →
∀𝑥 ∈ 𝒫
𝒫 𝐵((𝑥 ≠ ∅ ∧
[⊊] Or 𝑥)
→ ∪ 𝑥 ∈ 𝑥))) |
| 99 | | relen 8990 |
. . . 4
⊢ Rel
≈ |
| 100 | 99 | brrelex2i 5742 |
. . 3
⊢ (𝐴 ≈ 𝐵 → 𝐵 ∈ V) |
| 101 | | isfin2 10334 |
. . 3
⊢ (𝐵 ∈ V → (𝐵 ∈ FinII ↔
∀𝑥 ∈ 𝒫
𝒫 𝐵((𝑥 ≠ ∅ ∧
[⊊] Or 𝑥)
→ ∪ 𝑥 ∈ 𝑥))) |
| 102 | 100, 101 | syl 17 |
. 2
⊢ (𝐴 ≈ 𝐵 → (𝐵 ∈ FinII ↔
∀𝑥 ∈ 𝒫
𝒫 𝐵((𝑥 ≠ ∅ ∧
[⊊] Or 𝑥)
→ ∪ 𝑥 ∈ 𝑥))) |
| 103 | 98, 102 | sylibrd 259 |
1
⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ FinII → 𝐵 ∈
FinII)) |