| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fin12 | Structured version Visualization version GIF version | ||
| Description: Weak theorem which skips Ia but has a trivial proof, needed to prove fin1a2 10429. (Contributed by Stefan O'Rear, 8-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.) |
| Ref | Expression |
|---|---|
| fin12 | ⊢ (𝐴 ∈ Fin → 𝐴 ∈ FinII) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3463 | . . . . . . . 8 ⊢ 𝑏 ∈ V | |
| 2 | 1 | a1i 11 | . . . . . . 7 ⊢ (((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) ∧ (𝑏 ≠ ∅ ∧ [⊊] Or 𝑏)) → 𝑏 ∈ V) |
| 3 | isfin1-3 10400 | . . . . . . . . 9 ⊢ (𝐴 ∈ Fin → (𝐴 ∈ Fin ↔ ◡ [⊊] Fr 𝒫 𝐴)) | |
| 4 | 3 | ibi 267 | . . . . . . . 8 ⊢ (𝐴 ∈ Fin → ◡ [⊊] Fr 𝒫 𝐴) |
| 5 | 4 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) ∧ (𝑏 ≠ ∅ ∧ [⊊] Or 𝑏)) → ◡ [⊊] Fr 𝒫 𝐴) |
| 6 | elpwi 4582 | . . . . . . . 8 ⊢ (𝑏 ∈ 𝒫 𝒫 𝐴 → 𝑏 ⊆ 𝒫 𝐴) | |
| 7 | 6 | ad2antlr 727 | . . . . . . 7 ⊢ (((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) ∧ (𝑏 ≠ ∅ ∧ [⊊] Or 𝑏)) → 𝑏 ⊆ 𝒫 𝐴) |
| 8 | simprl 770 | . . . . . . 7 ⊢ (((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) ∧ (𝑏 ≠ ∅ ∧ [⊊] Or 𝑏)) → 𝑏 ≠ ∅) | |
| 9 | fri 5611 | . . . . . . 7 ⊢ (((𝑏 ∈ V ∧ ◡ [⊊] Fr 𝒫 𝐴) ∧ (𝑏 ⊆ 𝒫 𝐴 ∧ 𝑏 ≠ ∅)) → ∃𝑐 ∈ 𝑏 ∀𝑑 ∈ 𝑏 ¬ 𝑑◡ [⊊] 𝑐) | |
| 10 | 2, 5, 7, 8, 9 | syl22anc 838 | . . . . . 6 ⊢ (((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) ∧ (𝑏 ≠ ∅ ∧ [⊊] Or 𝑏)) → ∃𝑐 ∈ 𝑏 ∀𝑑 ∈ 𝑏 ¬ 𝑑◡ [⊊] 𝑐) |
| 11 | vex 3463 | . . . . . . . . . . 11 ⊢ 𝑑 ∈ V | |
| 12 | vex 3463 | . . . . . . . . . . 11 ⊢ 𝑐 ∈ V | |
| 13 | 11, 12 | brcnv 5862 | . . . . . . . . . 10 ⊢ (𝑑◡ [⊊] 𝑐 ↔ 𝑐 [⊊] 𝑑) |
| 14 | 11 | brrpss 7720 | . . . . . . . . . 10 ⊢ (𝑐 [⊊] 𝑑 ↔ 𝑐 ⊊ 𝑑) |
| 15 | 13, 14 | bitri 275 | . . . . . . . . 9 ⊢ (𝑑◡ [⊊] 𝑐 ↔ 𝑐 ⊊ 𝑑) |
| 16 | 15 | notbii 320 | . . . . . . . 8 ⊢ (¬ 𝑑◡ [⊊] 𝑐 ↔ ¬ 𝑐 ⊊ 𝑑) |
| 17 | 16 | ralbii 3082 | . . . . . . 7 ⊢ (∀𝑑 ∈ 𝑏 ¬ 𝑑◡ [⊊] 𝑐 ↔ ∀𝑑 ∈ 𝑏 ¬ 𝑐 ⊊ 𝑑) |
| 18 | 17 | rexbii 3083 | . . . . . 6 ⊢ (∃𝑐 ∈ 𝑏 ∀𝑑 ∈ 𝑏 ¬ 𝑑◡ [⊊] 𝑐 ↔ ∃𝑐 ∈ 𝑏 ∀𝑑 ∈ 𝑏 ¬ 𝑐 ⊊ 𝑑) |
| 19 | 10, 18 | sylib 218 | . . . . 5 ⊢ (((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) ∧ (𝑏 ≠ ∅ ∧ [⊊] Or 𝑏)) → ∃𝑐 ∈ 𝑏 ∀𝑑 ∈ 𝑏 ¬ 𝑐 ⊊ 𝑑) |
| 20 | sorpssuni 7726 | . . . . . 6 ⊢ ( [⊊] Or 𝑏 → (∃𝑐 ∈ 𝑏 ∀𝑑 ∈ 𝑏 ¬ 𝑐 ⊊ 𝑑 ↔ ∪ 𝑏 ∈ 𝑏)) | |
| 21 | 20 | ad2antll 729 | . . . . 5 ⊢ (((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) ∧ (𝑏 ≠ ∅ ∧ [⊊] Or 𝑏)) → (∃𝑐 ∈ 𝑏 ∀𝑑 ∈ 𝑏 ¬ 𝑐 ⊊ 𝑑 ↔ ∪ 𝑏 ∈ 𝑏)) |
| 22 | 19, 21 | mpbid 232 | . . . 4 ⊢ (((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) ∧ (𝑏 ≠ ∅ ∧ [⊊] Or 𝑏)) → ∪ 𝑏 ∈ 𝑏) |
| 23 | 22 | ex 412 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) → ((𝑏 ≠ ∅ ∧ [⊊] Or 𝑏) → ∪ 𝑏 ∈ 𝑏)) |
| 24 | 23 | ralrimiva 3132 | . 2 ⊢ (𝐴 ∈ Fin → ∀𝑏 ∈ 𝒫 𝒫 𝐴((𝑏 ≠ ∅ ∧ [⊊] Or 𝑏) → ∪ 𝑏 ∈ 𝑏)) |
| 25 | isfin2 10308 | . 2 ⊢ (𝐴 ∈ Fin → (𝐴 ∈ FinII ↔ ∀𝑏 ∈ 𝒫 𝒫 𝐴((𝑏 ≠ ∅ ∧ [⊊] Or 𝑏) → ∪ 𝑏 ∈ 𝑏))) | |
| 26 | 24, 25 | mpbird 257 | 1 ⊢ (𝐴 ∈ Fin → 𝐴 ∈ FinII) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ≠ wne 2932 ∀wral 3051 ∃wrex 3060 Vcvv 3459 ⊆ wss 3926 ⊊ wpss 3927 ∅c0 4308 𝒫 cpw 4575 ∪ cuni 4883 class class class wbr 5119 Or wor 5560 Fr wfr 5603 ◡ccnv 5653 [⊊] crpss 7716 Fincfn 8959 FinIIcfin2 10293 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-rpss 7717 df-om 7862 df-1o 8480 df-en 8960 df-dom 8961 df-fin 8963 df-fin2 10300 |
| This theorem is referenced by: fin1a2s 10428 fin1a2 10429 finngch 10669 |
| Copyright terms: Public domain | W3C validator |