| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fin12 | Structured version Visualization version GIF version | ||
| Description: Weak theorem which skips Ia but has a trivial proof, needed to prove fin1a2 10455. (Contributed by Stefan O'Rear, 8-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.) |
| Ref | Expression |
|---|---|
| fin12 | ⊢ (𝐴 ∈ Fin → 𝐴 ∈ FinII) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3484 | . . . . . . . 8 ⊢ 𝑏 ∈ V | |
| 2 | 1 | a1i 11 | . . . . . . 7 ⊢ (((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) ∧ (𝑏 ≠ ∅ ∧ [⊊] Or 𝑏)) → 𝑏 ∈ V) |
| 3 | isfin1-3 10426 | . . . . . . . . 9 ⊢ (𝐴 ∈ Fin → (𝐴 ∈ Fin ↔ ◡ [⊊] Fr 𝒫 𝐴)) | |
| 4 | 3 | ibi 267 | . . . . . . . 8 ⊢ (𝐴 ∈ Fin → ◡ [⊊] Fr 𝒫 𝐴) |
| 5 | 4 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) ∧ (𝑏 ≠ ∅ ∧ [⊊] Or 𝑏)) → ◡ [⊊] Fr 𝒫 𝐴) |
| 6 | elpwi 4607 | . . . . . . . 8 ⊢ (𝑏 ∈ 𝒫 𝒫 𝐴 → 𝑏 ⊆ 𝒫 𝐴) | |
| 7 | 6 | ad2antlr 727 | . . . . . . 7 ⊢ (((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) ∧ (𝑏 ≠ ∅ ∧ [⊊] Or 𝑏)) → 𝑏 ⊆ 𝒫 𝐴) |
| 8 | simprl 771 | . . . . . . 7 ⊢ (((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) ∧ (𝑏 ≠ ∅ ∧ [⊊] Or 𝑏)) → 𝑏 ≠ ∅) | |
| 9 | fri 5642 | . . . . . . 7 ⊢ (((𝑏 ∈ V ∧ ◡ [⊊] Fr 𝒫 𝐴) ∧ (𝑏 ⊆ 𝒫 𝐴 ∧ 𝑏 ≠ ∅)) → ∃𝑐 ∈ 𝑏 ∀𝑑 ∈ 𝑏 ¬ 𝑑◡ [⊊] 𝑐) | |
| 10 | 2, 5, 7, 8, 9 | syl22anc 839 | . . . . . 6 ⊢ (((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) ∧ (𝑏 ≠ ∅ ∧ [⊊] Or 𝑏)) → ∃𝑐 ∈ 𝑏 ∀𝑑 ∈ 𝑏 ¬ 𝑑◡ [⊊] 𝑐) |
| 11 | vex 3484 | . . . . . . . . . . 11 ⊢ 𝑑 ∈ V | |
| 12 | vex 3484 | . . . . . . . . . . 11 ⊢ 𝑐 ∈ V | |
| 13 | 11, 12 | brcnv 5893 | . . . . . . . . . 10 ⊢ (𝑑◡ [⊊] 𝑐 ↔ 𝑐 [⊊] 𝑑) |
| 14 | 11 | brrpss 7746 | . . . . . . . . . 10 ⊢ (𝑐 [⊊] 𝑑 ↔ 𝑐 ⊊ 𝑑) |
| 15 | 13, 14 | bitri 275 | . . . . . . . . 9 ⊢ (𝑑◡ [⊊] 𝑐 ↔ 𝑐 ⊊ 𝑑) |
| 16 | 15 | notbii 320 | . . . . . . . 8 ⊢ (¬ 𝑑◡ [⊊] 𝑐 ↔ ¬ 𝑐 ⊊ 𝑑) |
| 17 | 16 | ralbii 3093 | . . . . . . 7 ⊢ (∀𝑑 ∈ 𝑏 ¬ 𝑑◡ [⊊] 𝑐 ↔ ∀𝑑 ∈ 𝑏 ¬ 𝑐 ⊊ 𝑑) |
| 18 | 17 | rexbii 3094 | . . . . . 6 ⊢ (∃𝑐 ∈ 𝑏 ∀𝑑 ∈ 𝑏 ¬ 𝑑◡ [⊊] 𝑐 ↔ ∃𝑐 ∈ 𝑏 ∀𝑑 ∈ 𝑏 ¬ 𝑐 ⊊ 𝑑) |
| 19 | 10, 18 | sylib 218 | . . . . 5 ⊢ (((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) ∧ (𝑏 ≠ ∅ ∧ [⊊] Or 𝑏)) → ∃𝑐 ∈ 𝑏 ∀𝑑 ∈ 𝑏 ¬ 𝑐 ⊊ 𝑑) |
| 20 | sorpssuni 7752 | . . . . . 6 ⊢ ( [⊊] Or 𝑏 → (∃𝑐 ∈ 𝑏 ∀𝑑 ∈ 𝑏 ¬ 𝑐 ⊊ 𝑑 ↔ ∪ 𝑏 ∈ 𝑏)) | |
| 21 | 20 | ad2antll 729 | . . . . 5 ⊢ (((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) ∧ (𝑏 ≠ ∅ ∧ [⊊] Or 𝑏)) → (∃𝑐 ∈ 𝑏 ∀𝑑 ∈ 𝑏 ¬ 𝑐 ⊊ 𝑑 ↔ ∪ 𝑏 ∈ 𝑏)) |
| 22 | 19, 21 | mpbid 232 | . . . 4 ⊢ (((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) ∧ (𝑏 ≠ ∅ ∧ [⊊] Or 𝑏)) → ∪ 𝑏 ∈ 𝑏) |
| 23 | 22 | ex 412 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) → ((𝑏 ≠ ∅ ∧ [⊊] Or 𝑏) → ∪ 𝑏 ∈ 𝑏)) |
| 24 | 23 | ralrimiva 3146 | . 2 ⊢ (𝐴 ∈ Fin → ∀𝑏 ∈ 𝒫 𝒫 𝐴((𝑏 ≠ ∅ ∧ [⊊] Or 𝑏) → ∪ 𝑏 ∈ 𝑏)) |
| 25 | isfin2 10334 | . 2 ⊢ (𝐴 ∈ Fin → (𝐴 ∈ FinII ↔ ∀𝑏 ∈ 𝒫 𝒫 𝐴((𝑏 ≠ ∅ ∧ [⊊] Or 𝑏) → ∪ 𝑏 ∈ 𝑏))) | |
| 26 | 24, 25 | mpbird 257 | 1 ⊢ (𝐴 ∈ Fin → 𝐴 ∈ FinII) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ≠ wne 2940 ∀wral 3061 ∃wrex 3070 Vcvv 3480 ⊆ wss 3951 ⊊ wpss 3952 ∅c0 4333 𝒫 cpw 4600 ∪ cuni 4907 class class class wbr 5143 Or wor 5591 Fr wfr 5634 ◡ccnv 5684 [⊊] crpss 7742 Fincfn 8985 FinIIcfin2 10319 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-rpss 7743 df-om 7888 df-1o 8506 df-en 8986 df-dom 8987 df-fin 8989 df-fin2 10326 |
| This theorem is referenced by: fin1a2s 10454 fin1a2 10455 finngch 10695 |
| Copyright terms: Public domain | W3C validator |