MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin12 Structured version   Visualization version   GIF version

Theorem fin12 10453
Description: Weak theorem which skips Ia but has a trivial proof, needed to prove fin1a2 10455. (Contributed by Stefan O'Rear, 8-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
fin12 (𝐴 ∈ Fin → 𝐴 ∈ FinII)

Proof of Theorem fin12
Dummy variables 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3484 . . . . . . . 8 𝑏 ∈ V
21a1i 11 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → 𝑏 ∈ V)
3 isfin1-3 10426 . . . . . . . . 9 (𝐴 ∈ Fin → (𝐴 ∈ Fin ↔ [] Fr 𝒫 𝐴))
43ibi 267 . . . . . . . 8 (𝐴 ∈ Fin → [] Fr 𝒫 𝐴)
54ad2antrr 726 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → [] Fr 𝒫 𝐴)
6 elpwi 4607 . . . . . . . 8 (𝑏 ∈ 𝒫 𝒫 𝐴𝑏 ⊆ 𝒫 𝐴)
76ad2antlr 727 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → 𝑏 ⊆ 𝒫 𝐴)
8 simprl 771 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → 𝑏 ≠ ∅)
9 fri 5642 . . . . . . 7 (((𝑏 ∈ V ∧ [] Fr 𝒫 𝐴) ∧ (𝑏 ⊆ 𝒫 𝐴𝑏 ≠ ∅)) → ∃𝑐𝑏𝑑𝑏 ¬ 𝑑 [] 𝑐)
102, 5, 7, 8, 9syl22anc 839 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → ∃𝑐𝑏𝑑𝑏 ¬ 𝑑 [] 𝑐)
11 vex 3484 . . . . . . . . . . 11 𝑑 ∈ V
12 vex 3484 . . . . . . . . . . 11 𝑐 ∈ V
1311, 12brcnv 5893 . . . . . . . . . 10 (𝑑 [] 𝑐𝑐 [] 𝑑)
1411brrpss 7746 . . . . . . . . . 10 (𝑐 [] 𝑑𝑐𝑑)
1513, 14bitri 275 . . . . . . . . 9 (𝑑 [] 𝑐𝑐𝑑)
1615notbii 320 . . . . . . . 8 𝑑 [] 𝑐 ↔ ¬ 𝑐𝑑)
1716ralbii 3093 . . . . . . 7 (∀𝑑𝑏 ¬ 𝑑 [] 𝑐 ↔ ∀𝑑𝑏 ¬ 𝑐𝑑)
1817rexbii 3094 . . . . . 6 (∃𝑐𝑏𝑑𝑏 ¬ 𝑑 [] 𝑐 ↔ ∃𝑐𝑏𝑑𝑏 ¬ 𝑐𝑑)
1910, 18sylib 218 . . . . 5 (((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → ∃𝑐𝑏𝑑𝑏 ¬ 𝑐𝑑)
20 sorpssuni 7752 . . . . . 6 ( [] Or 𝑏 → (∃𝑐𝑏𝑑𝑏 ¬ 𝑐𝑑 𝑏𝑏))
2120ad2antll 729 . . . . 5 (((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → (∃𝑐𝑏𝑑𝑏 ¬ 𝑐𝑑 𝑏𝑏))
2219, 21mpbid 232 . . . 4 (((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → 𝑏𝑏)
2322ex 412 . . 3 ((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) → ((𝑏 ≠ ∅ ∧ [] Or 𝑏) → 𝑏𝑏))
2423ralrimiva 3146 . 2 (𝐴 ∈ Fin → ∀𝑏 ∈ 𝒫 𝒫 𝐴((𝑏 ≠ ∅ ∧ [] Or 𝑏) → 𝑏𝑏))
25 isfin2 10334 . 2 (𝐴 ∈ Fin → (𝐴 ∈ FinII ↔ ∀𝑏 ∈ 𝒫 𝒫 𝐴((𝑏 ≠ ∅ ∧ [] Or 𝑏) → 𝑏𝑏)))
2624, 25mpbird 257 1 (𝐴 ∈ Fin → 𝐴 ∈ FinII)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2108  wne 2940  wral 3061  wrex 3070  Vcvv 3480  wss 3951  wpss 3952  c0 4333  𝒫 cpw 4600   cuni 4907   class class class wbr 5143   Or wor 5591   Fr wfr 5634  ccnv 5684   [] crpss 7742  Fincfn 8985  FinIIcfin2 10319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-rpss 7743  df-om 7888  df-1o 8506  df-en 8986  df-dom 8987  df-fin 8989  df-fin2 10326
This theorem is referenced by:  fin1a2s  10454  fin1a2  10455  finngch  10695
  Copyright terms: Public domain W3C validator