![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fin12 | Structured version Visualization version GIF version |
Description: Weak theorem which skips Ia but has a trivial proof, needed to prove fin1a2 10358. (Contributed by Stefan O'Rear, 8-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.) |
Ref | Expression |
---|---|
fin12 | ⊢ (𝐴 ∈ Fin → 𝐴 ∈ FinII) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3452 | . . . . . . . 8 ⊢ 𝑏 ∈ V | |
2 | 1 | a1i 11 | . . . . . . 7 ⊢ (((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) ∧ (𝑏 ≠ ∅ ∧ [⊊] Or 𝑏)) → 𝑏 ∈ V) |
3 | isfin1-3 10329 | . . . . . . . . 9 ⊢ (𝐴 ∈ Fin → (𝐴 ∈ Fin ↔ ◡ [⊊] Fr 𝒫 𝐴)) | |
4 | 3 | ibi 267 | . . . . . . . 8 ⊢ (𝐴 ∈ Fin → ◡ [⊊] Fr 𝒫 𝐴) |
5 | 4 | ad2antrr 725 | . . . . . . 7 ⊢ (((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) ∧ (𝑏 ≠ ∅ ∧ [⊊] Or 𝑏)) → ◡ [⊊] Fr 𝒫 𝐴) |
6 | elpwi 4572 | . . . . . . . 8 ⊢ (𝑏 ∈ 𝒫 𝒫 𝐴 → 𝑏 ⊆ 𝒫 𝐴) | |
7 | 6 | ad2antlr 726 | . . . . . . 7 ⊢ (((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) ∧ (𝑏 ≠ ∅ ∧ [⊊] Or 𝑏)) → 𝑏 ⊆ 𝒫 𝐴) |
8 | simprl 770 | . . . . . . 7 ⊢ (((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) ∧ (𝑏 ≠ ∅ ∧ [⊊] Or 𝑏)) → 𝑏 ≠ ∅) | |
9 | fri 5598 | . . . . . . 7 ⊢ (((𝑏 ∈ V ∧ ◡ [⊊] Fr 𝒫 𝐴) ∧ (𝑏 ⊆ 𝒫 𝐴 ∧ 𝑏 ≠ ∅)) → ∃𝑐 ∈ 𝑏 ∀𝑑 ∈ 𝑏 ¬ 𝑑◡ [⊊] 𝑐) | |
10 | 2, 5, 7, 8, 9 | syl22anc 838 | . . . . . 6 ⊢ (((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) ∧ (𝑏 ≠ ∅ ∧ [⊊] Or 𝑏)) → ∃𝑐 ∈ 𝑏 ∀𝑑 ∈ 𝑏 ¬ 𝑑◡ [⊊] 𝑐) |
11 | vex 3452 | . . . . . . . . . . 11 ⊢ 𝑑 ∈ V | |
12 | vex 3452 | . . . . . . . . . . 11 ⊢ 𝑐 ∈ V | |
13 | 11, 12 | brcnv 5843 | . . . . . . . . . 10 ⊢ (𝑑◡ [⊊] 𝑐 ↔ 𝑐 [⊊] 𝑑) |
14 | 11 | brrpss 7668 | . . . . . . . . . 10 ⊢ (𝑐 [⊊] 𝑑 ↔ 𝑐 ⊊ 𝑑) |
15 | 13, 14 | bitri 275 | . . . . . . . . 9 ⊢ (𝑑◡ [⊊] 𝑐 ↔ 𝑐 ⊊ 𝑑) |
16 | 15 | notbii 320 | . . . . . . . 8 ⊢ (¬ 𝑑◡ [⊊] 𝑐 ↔ ¬ 𝑐 ⊊ 𝑑) |
17 | 16 | ralbii 3097 | . . . . . . 7 ⊢ (∀𝑑 ∈ 𝑏 ¬ 𝑑◡ [⊊] 𝑐 ↔ ∀𝑑 ∈ 𝑏 ¬ 𝑐 ⊊ 𝑑) |
18 | 17 | rexbii 3098 | . . . . . 6 ⊢ (∃𝑐 ∈ 𝑏 ∀𝑑 ∈ 𝑏 ¬ 𝑑◡ [⊊] 𝑐 ↔ ∃𝑐 ∈ 𝑏 ∀𝑑 ∈ 𝑏 ¬ 𝑐 ⊊ 𝑑) |
19 | 10, 18 | sylib 217 | . . . . 5 ⊢ (((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) ∧ (𝑏 ≠ ∅ ∧ [⊊] Or 𝑏)) → ∃𝑐 ∈ 𝑏 ∀𝑑 ∈ 𝑏 ¬ 𝑐 ⊊ 𝑑) |
20 | sorpssuni 7674 | . . . . . 6 ⊢ ( [⊊] Or 𝑏 → (∃𝑐 ∈ 𝑏 ∀𝑑 ∈ 𝑏 ¬ 𝑐 ⊊ 𝑑 ↔ ∪ 𝑏 ∈ 𝑏)) | |
21 | 20 | ad2antll 728 | . . . . 5 ⊢ (((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) ∧ (𝑏 ≠ ∅ ∧ [⊊] Or 𝑏)) → (∃𝑐 ∈ 𝑏 ∀𝑑 ∈ 𝑏 ¬ 𝑐 ⊊ 𝑑 ↔ ∪ 𝑏 ∈ 𝑏)) |
22 | 19, 21 | mpbid 231 | . . . 4 ⊢ (((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) ∧ (𝑏 ≠ ∅ ∧ [⊊] Or 𝑏)) → ∪ 𝑏 ∈ 𝑏) |
23 | 22 | ex 414 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) → ((𝑏 ≠ ∅ ∧ [⊊] Or 𝑏) → ∪ 𝑏 ∈ 𝑏)) |
24 | 23 | ralrimiva 3144 | . 2 ⊢ (𝐴 ∈ Fin → ∀𝑏 ∈ 𝒫 𝒫 𝐴((𝑏 ≠ ∅ ∧ [⊊] Or 𝑏) → ∪ 𝑏 ∈ 𝑏)) |
25 | isfin2 10237 | . 2 ⊢ (𝐴 ∈ Fin → (𝐴 ∈ FinII ↔ ∀𝑏 ∈ 𝒫 𝒫 𝐴((𝑏 ≠ ∅ ∧ [⊊] Or 𝑏) → ∪ 𝑏 ∈ 𝑏))) | |
26 | 24, 25 | mpbird 257 | 1 ⊢ (𝐴 ∈ Fin → 𝐴 ∈ FinII) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 ∈ wcel 2107 ≠ wne 2944 ∀wral 3065 ∃wrex 3074 Vcvv 3448 ⊆ wss 3915 ⊊ wpss 3916 ∅c0 4287 𝒫 cpw 4565 ∪ cuni 4870 class class class wbr 5110 Or wor 5549 Fr wfr 5590 ◡ccnv 5637 [⊊] crpss 7664 Fincfn 8890 FinIIcfin2 10222 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5261 ax-nul 5268 ax-pow 5325 ax-pr 5389 ax-un 7677 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-ral 3066 df-rex 3075 df-reu 3357 df-rab 3411 df-v 3450 df-sbc 3745 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-pss 3934 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-br 5111 df-opab 5173 df-mpt 5194 df-tr 5228 df-id 5536 df-eprel 5542 df-po 5550 df-so 5551 df-fr 5593 df-we 5595 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6325 df-on 6326 df-lim 6327 df-suc 6328 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-fv 6509 df-rpss 7665 df-om 7808 df-1o 8417 df-en 8891 df-fin 8894 df-fin2 10229 |
This theorem is referenced by: fin1a2s 10357 fin1a2 10358 finngch 10598 |
Copyright terms: Public domain | W3C validator |