MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin12 Structured version   Visualization version   GIF version

Theorem fin12 10408
Description: Weak theorem which skips Ia but has a trivial proof, needed to prove fin1a2 10410. (Contributed by Stefan O'Rear, 8-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
fin12 (𝐴 ∈ Fin → 𝐴 ∈ FinII)

Proof of Theorem fin12
Dummy variables 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3479 . . . . . . . 8 𝑏 ∈ V
21a1i 11 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → 𝑏 ∈ V)
3 isfin1-3 10381 . . . . . . . . 9 (𝐴 ∈ Fin → (𝐴 ∈ Fin ↔ [] Fr 𝒫 𝐴))
43ibi 267 . . . . . . . 8 (𝐴 ∈ Fin → [] Fr 𝒫 𝐴)
54ad2antrr 725 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → [] Fr 𝒫 𝐴)
6 elpwi 4610 . . . . . . . 8 (𝑏 ∈ 𝒫 𝒫 𝐴𝑏 ⊆ 𝒫 𝐴)
76ad2antlr 726 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → 𝑏 ⊆ 𝒫 𝐴)
8 simprl 770 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → 𝑏 ≠ ∅)
9 fri 5637 . . . . . . 7 (((𝑏 ∈ V ∧ [] Fr 𝒫 𝐴) ∧ (𝑏 ⊆ 𝒫 𝐴𝑏 ≠ ∅)) → ∃𝑐𝑏𝑑𝑏 ¬ 𝑑 [] 𝑐)
102, 5, 7, 8, 9syl22anc 838 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → ∃𝑐𝑏𝑑𝑏 ¬ 𝑑 [] 𝑐)
11 vex 3479 . . . . . . . . . . 11 𝑑 ∈ V
12 vex 3479 . . . . . . . . . . 11 𝑐 ∈ V
1311, 12brcnv 5883 . . . . . . . . . 10 (𝑑 [] 𝑐𝑐 [] 𝑑)
1411brrpss 7716 . . . . . . . . . 10 (𝑐 [] 𝑑𝑐𝑑)
1513, 14bitri 275 . . . . . . . . 9 (𝑑 [] 𝑐𝑐𝑑)
1615notbii 320 . . . . . . . 8 𝑑 [] 𝑐 ↔ ¬ 𝑐𝑑)
1716ralbii 3094 . . . . . . 7 (∀𝑑𝑏 ¬ 𝑑 [] 𝑐 ↔ ∀𝑑𝑏 ¬ 𝑐𝑑)
1817rexbii 3095 . . . . . 6 (∃𝑐𝑏𝑑𝑏 ¬ 𝑑 [] 𝑐 ↔ ∃𝑐𝑏𝑑𝑏 ¬ 𝑐𝑑)
1910, 18sylib 217 . . . . 5 (((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → ∃𝑐𝑏𝑑𝑏 ¬ 𝑐𝑑)
20 sorpssuni 7722 . . . . . 6 ( [] Or 𝑏 → (∃𝑐𝑏𝑑𝑏 ¬ 𝑐𝑑 𝑏𝑏))
2120ad2antll 728 . . . . 5 (((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → (∃𝑐𝑏𝑑𝑏 ¬ 𝑐𝑑 𝑏𝑏))
2219, 21mpbid 231 . . . 4 (((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → 𝑏𝑏)
2322ex 414 . . 3 ((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) → ((𝑏 ≠ ∅ ∧ [] Or 𝑏) → 𝑏𝑏))
2423ralrimiva 3147 . 2 (𝐴 ∈ Fin → ∀𝑏 ∈ 𝒫 𝒫 𝐴((𝑏 ≠ ∅ ∧ [] Or 𝑏) → 𝑏𝑏))
25 isfin2 10289 . 2 (𝐴 ∈ Fin → (𝐴 ∈ FinII ↔ ∀𝑏 ∈ 𝒫 𝒫 𝐴((𝑏 ≠ ∅ ∧ [] Or 𝑏) → 𝑏𝑏)))
2624, 25mpbird 257 1 (𝐴 ∈ Fin → 𝐴 ∈ FinII)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wcel 2107  wne 2941  wral 3062  wrex 3071  Vcvv 3475  wss 3949  wpss 3950  c0 4323  𝒫 cpw 4603   cuni 4909   class class class wbr 5149   Or wor 5588   Fr wfr 5629  ccnv 5676   [] crpss 7712  Fincfn 8939  FinIIcfin2 10274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-rpss 7713  df-om 7856  df-1o 8466  df-en 8940  df-fin 8943  df-fin2 10281
This theorem is referenced by:  fin1a2s  10409  fin1a2  10410  finngch  10650
  Copyright terms: Public domain W3C validator