MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin12 Structured version   Visualization version   GIF version

Theorem fin12 10299
Description: Weak theorem which skips Ia but has a trivial proof, needed to prove fin1a2 10301. (Contributed by Stefan O'Rear, 8-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
fin12 (𝐴 ∈ Fin → 𝐴 ∈ FinII)

Proof of Theorem fin12
Dummy variables 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3440 . . . . . . . 8 𝑏 ∈ V
21a1i 11 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → 𝑏 ∈ V)
3 isfin1-3 10272 . . . . . . . . 9 (𝐴 ∈ Fin → (𝐴 ∈ Fin ↔ [] Fr 𝒫 𝐴))
43ibi 267 . . . . . . . 8 (𝐴 ∈ Fin → [] Fr 𝒫 𝐴)
54ad2antrr 726 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → [] Fr 𝒫 𝐴)
6 elpwi 4552 . . . . . . . 8 (𝑏 ∈ 𝒫 𝒫 𝐴𝑏 ⊆ 𝒫 𝐴)
76ad2antlr 727 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → 𝑏 ⊆ 𝒫 𝐴)
8 simprl 770 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → 𝑏 ≠ ∅)
9 fri 5569 . . . . . . 7 (((𝑏 ∈ V ∧ [] Fr 𝒫 𝐴) ∧ (𝑏 ⊆ 𝒫 𝐴𝑏 ≠ ∅)) → ∃𝑐𝑏𝑑𝑏 ¬ 𝑑 [] 𝑐)
102, 5, 7, 8, 9syl22anc 838 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → ∃𝑐𝑏𝑑𝑏 ¬ 𝑑 [] 𝑐)
11 vex 3440 . . . . . . . . . . 11 𝑑 ∈ V
12 vex 3440 . . . . . . . . . . 11 𝑐 ∈ V
1311, 12brcnv 5817 . . . . . . . . . 10 (𝑑 [] 𝑐𝑐 [] 𝑑)
1411brrpss 7654 . . . . . . . . . 10 (𝑐 [] 𝑑𝑐𝑑)
1513, 14bitri 275 . . . . . . . . 9 (𝑑 [] 𝑐𝑐𝑑)
1615notbii 320 . . . . . . . 8 𝑑 [] 𝑐 ↔ ¬ 𝑐𝑑)
1716ralbii 3078 . . . . . . 7 (∀𝑑𝑏 ¬ 𝑑 [] 𝑐 ↔ ∀𝑑𝑏 ¬ 𝑐𝑑)
1817rexbii 3079 . . . . . 6 (∃𝑐𝑏𝑑𝑏 ¬ 𝑑 [] 𝑐 ↔ ∃𝑐𝑏𝑑𝑏 ¬ 𝑐𝑑)
1910, 18sylib 218 . . . . 5 (((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → ∃𝑐𝑏𝑑𝑏 ¬ 𝑐𝑑)
20 sorpssuni 7660 . . . . . 6 ( [] Or 𝑏 → (∃𝑐𝑏𝑑𝑏 ¬ 𝑐𝑑 𝑏𝑏))
2120ad2antll 729 . . . . 5 (((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → (∃𝑐𝑏𝑑𝑏 ¬ 𝑐𝑑 𝑏𝑏))
2219, 21mpbid 232 . . . 4 (((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → 𝑏𝑏)
2322ex 412 . . 3 ((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) → ((𝑏 ≠ ∅ ∧ [] Or 𝑏) → 𝑏𝑏))
2423ralrimiva 3124 . 2 (𝐴 ∈ Fin → ∀𝑏 ∈ 𝒫 𝒫 𝐴((𝑏 ≠ ∅ ∧ [] Or 𝑏) → 𝑏𝑏))
25 isfin2 10180 . 2 (𝐴 ∈ Fin → (𝐴 ∈ FinII ↔ ∀𝑏 ∈ 𝒫 𝒫 𝐴((𝑏 ≠ ∅ ∧ [] Or 𝑏) → 𝑏𝑏)))
2624, 25mpbird 257 1 (𝐴 ∈ Fin → 𝐴 ∈ FinII)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2111  wne 2928  wral 3047  wrex 3056  Vcvv 3436  wss 3897  wpss 3898  c0 4278  𝒫 cpw 4545   cuni 4854   class class class wbr 5086   Or wor 5518   Fr wfr 5561  ccnv 5610   [] crpss 7650  Fincfn 8864  FinIIcfin2 10165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-rpss 7651  df-om 7792  df-1o 8380  df-en 8865  df-dom 8866  df-fin 8868  df-fin2 10172
This theorem is referenced by:  fin1a2s  10300  fin1a2  10301  finngch  10541
  Copyright terms: Public domain W3C validator