| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fin12 | Structured version Visualization version GIF version | ||
| Description: Weak theorem which skips Ia but has a trivial proof, needed to prove fin1a2 10309. (Contributed by Stefan O'Rear, 8-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.) |
| Ref | Expression |
|---|---|
| fin12 | ⊢ (𝐴 ∈ Fin → 𝐴 ∈ FinII) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3440 | . . . . . . . 8 ⊢ 𝑏 ∈ V | |
| 2 | 1 | a1i 11 | . . . . . . 7 ⊢ (((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) ∧ (𝑏 ≠ ∅ ∧ [⊊] Or 𝑏)) → 𝑏 ∈ V) |
| 3 | isfin1-3 10280 | . . . . . . . . 9 ⊢ (𝐴 ∈ Fin → (𝐴 ∈ Fin ↔ ◡ [⊊] Fr 𝒫 𝐴)) | |
| 4 | 3 | ibi 267 | . . . . . . . 8 ⊢ (𝐴 ∈ Fin → ◡ [⊊] Fr 𝒫 𝐴) |
| 5 | 4 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) ∧ (𝑏 ≠ ∅ ∧ [⊊] Or 𝑏)) → ◡ [⊊] Fr 𝒫 𝐴) |
| 6 | elpwi 4558 | . . . . . . . 8 ⊢ (𝑏 ∈ 𝒫 𝒫 𝐴 → 𝑏 ⊆ 𝒫 𝐴) | |
| 7 | 6 | ad2antlr 727 | . . . . . . 7 ⊢ (((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) ∧ (𝑏 ≠ ∅ ∧ [⊊] Or 𝑏)) → 𝑏 ⊆ 𝒫 𝐴) |
| 8 | simprl 770 | . . . . . . 7 ⊢ (((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) ∧ (𝑏 ≠ ∅ ∧ [⊊] Or 𝑏)) → 𝑏 ≠ ∅) | |
| 9 | fri 5577 | . . . . . . 7 ⊢ (((𝑏 ∈ V ∧ ◡ [⊊] Fr 𝒫 𝐴) ∧ (𝑏 ⊆ 𝒫 𝐴 ∧ 𝑏 ≠ ∅)) → ∃𝑐 ∈ 𝑏 ∀𝑑 ∈ 𝑏 ¬ 𝑑◡ [⊊] 𝑐) | |
| 10 | 2, 5, 7, 8, 9 | syl22anc 838 | . . . . . 6 ⊢ (((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) ∧ (𝑏 ≠ ∅ ∧ [⊊] Or 𝑏)) → ∃𝑐 ∈ 𝑏 ∀𝑑 ∈ 𝑏 ¬ 𝑑◡ [⊊] 𝑐) |
| 11 | vex 3440 | . . . . . . . . . . 11 ⊢ 𝑑 ∈ V | |
| 12 | vex 3440 | . . . . . . . . . . 11 ⊢ 𝑐 ∈ V | |
| 13 | 11, 12 | brcnv 5825 | . . . . . . . . . 10 ⊢ (𝑑◡ [⊊] 𝑐 ↔ 𝑐 [⊊] 𝑑) |
| 14 | 11 | brrpss 7662 | . . . . . . . . . 10 ⊢ (𝑐 [⊊] 𝑑 ↔ 𝑐 ⊊ 𝑑) |
| 15 | 13, 14 | bitri 275 | . . . . . . . . 9 ⊢ (𝑑◡ [⊊] 𝑐 ↔ 𝑐 ⊊ 𝑑) |
| 16 | 15 | notbii 320 | . . . . . . . 8 ⊢ (¬ 𝑑◡ [⊊] 𝑐 ↔ ¬ 𝑐 ⊊ 𝑑) |
| 17 | 16 | ralbii 3075 | . . . . . . 7 ⊢ (∀𝑑 ∈ 𝑏 ¬ 𝑑◡ [⊊] 𝑐 ↔ ∀𝑑 ∈ 𝑏 ¬ 𝑐 ⊊ 𝑑) |
| 18 | 17 | rexbii 3076 | . . . . . 6 ⊢ (∃𝑐 ∈ 𝑏 ∀𝑑 ∈ 𝑏 ¬ 𝑑◡ [⊊] 𝑐 ↔ ∃𝑐 ∈ 𝑏 ∀𝑑 ∈ 𝑏 ¬ 𝑐 ⊊ 𝑑) |
| 19 | 10, 18 | sylib 218 | . . . . 5 ⊢ (((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) ∧ (𝑏 ≠ ∅ ∧ [⊊] Or 𝑏)) → ∃𝑐 ∈ 𝑏 ∀𝑑 ∈ 𝑏 ¬ 𝑐 ⊊ 𝑑) |
| 20 | sorpssuni 7668 | . . . . . 6 ⊢ ( [⊊] Or 𝑏 → (∃𝑐 ∈ 𝑏 ∀𝑑 ∈ 𝑏 ¬ 𝑐 ⊊ 𝑑 ↔ ∪ 𝑏 ∈ 𝑏)) | |
| 21 | 20 | ad2antll 729 | . . . . 5 ⊢ (((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) ∧ (𝑏 ≠ ∅ ∧ [⊊] Or 𝑏)) → (∃𝑐 ∈ 𝑏 ∀𝑑 ∈ 𝑏 ¬ 𝑐 ⊊ 𝑑 ↔ ∪ 𝑏 ∈ 𝑏)) |
| 22 | 19, 21 | mpbid 232 | . . . 4 ⊢ (((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) ∧ (𝑏 ≠ ∅ ∧ [⊊] Or 𝑏)) → ∪ 𝑏 ∈ 𝑏) |
| 23 | 22 | ex 412 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) → ((𝑏 ≠ ∅ ∧ [⊊] Or 𝑏) → ∪ 𝑏 ∈ 𝑏)) |
| 24 | 23 | ralrimiva 3121 | . 2 ⊢ (𝐴 ∈ Fin → ∀𝑏 ∈ 𝒫 𝒫 𝐴((𝑏 ≠ ∅ ∧ [⊊] Or 𝑏) → ∪ 𝑏 ∈ 𝑏)) |
| 25 | isfin2 10188 | . 2 ⊢ (𝐴 ∈ Fin → (𝐴 ∈ FinII ↔ ∀𝑏 ∈ 𝒫 𝒫 𝐴((𝑏 ≠ ∅ ∧ [⊊] Or 𝑏) → ∪ 𝑏 ∈ 𝑏))) | |
| 26 | 24, 25 | mpbird 257 | 1 ⊢ (𝐴 ∈ Fin → 𝐴 ∈ FinII) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 Vcvv 3436 ⊆ wss 3903 ⊊ wpss 3904 ∅c0 4284 𝒫 cpw 4551 ∪ cuni 4858 class class class wbr 5092 Or wor 5526 Fr wfr 5569 ◡ccnv 5618 [⊊] crpss 7658 Fincfn 8872 FinIIcfin2 10173 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-rpss 7659 df-om 7800 df-1o 8388 df-en 8873 df-dom 8874 df-fin 8876 df-fin2 10180 |
| This theorem is referenced by: fin1a2s 10308 fin1a2 10309 finngch 10549 |
| Copyright terms: Public domain | W3C validator |