MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin2i Structured version   Visualization version   GIF version

Theorem fin2i 10364
Description: Property of a II-finite set. (Contributed by Stefan O'Rear, 16-May-2015.)
Assertion
Ref Expression
fin2i (((𝐴 ∈ FinII𝐵 ⊆ 𝒫 𝐴) ∧ (𝐵 ≠ ∅ ∧ [] Or 𝐵)) → 𝐵𝐵)

Proof of Theorem fin2i
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 neeq1 3009 . . . . 5 (𝑦 = 𝐵 → (𝑦 ≠ ∅ ↔ 𝐵 ≠ ∅))
2 soeq2 5630 . . . . 5 (𝑦 = 𝐵 → ( [] Or 𝑦 ↔ [] Or 𝐵))
31, 2anbi12d 631 . . . 4 (𝑦 = 𝐵 → ((𝑦 ≠ ∅ ∧ [] Or 𝑦) ↔ (𝐵 ≠ ∅ ∧ [] Or 𝐵)))
4 unieq 4942 . . . . 5 (𝑦 = 𝐵 𝑦 = 𝐵)
5 id 22 . . . . 5 (𝑦 = 𝐵𝑦 = 𝐵)
64, 5eleq12d 2838 . . . 4 (𝑦 = 𝐵 → ( 𝑦𝑦 𝐵𝐵))
73, 6imbi12d 344 . . 3 (𝑦 = 𝐵 → (((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) ↔ ((𝐵 ≠ ∅ ∧ [] Or 𝐵) → 𝐵𝐵)))
8 isfin2 10363 . . . . 5 (𝐴 ∈ FinII → (𝐴 ∈ FinII ↔ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦)))
98ibi 267 . . . 4 (𝐴 ∈ FinII → ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦))
109adantr 480 . . 3 ((𝐴 ∈ FinII𝐵 ⊆ 𝒫 𝐴) → ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦))
11 pwexg 5396 . . . . 5 (𝐴 ∈ FinII → 𝒫 𝐴 ∈ V)
12 elpw2g 5351 . . . . 5 (𝒫 𝐴 ∈ V → (𝐵 ∈ 𝒫 𝒫 𝐴𝐵 ⊆ 𝒫 𝐴))
1311, 12syl 17 . . . 4 (𝐴 ∈ FinII → (𝐵 ∈ 𝒫 𝒫 𝐴𝐵 ⊆ 𝒫 𝐴))
1413biimpar 477 . . 3 ((𝐴 ∈ FinII𝐵 ⊆ 𝒫 𝐴) → 𝐵 ∈ 𝒫 𝒫 𝐴)
157, 10, 14rspcdva 3636 . 2 ((𝐴 ∈ FinII𝐵 ⊆ 𝒫 𝐴) → ((𝐵 ≠ ∅ ∧ [] Or 𝐵) → 𝐵𝐵))
1615imp 406 1 (((𝐴 ∈ FinII𝐵 ⊆ 𝒫 𝐴) ∧ (𝐵 ≠ ∅ ∧ [] Or 𝐵)) → 𝐵𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  wral 3067  Vcvv 3488  wss 3976  c0 4352  𝒫 cpw 4622   cuni 4931   Or wor 5606   [] crpss 7757  FinIIcfin2 10348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-pow 5383
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-in 3983  df-ss 3993  df-pw 4624  df-uni 4932  df-po 5607  df-so 5608  df-fin2 10355
This theorem is referenced by:  fin2i2  10387  ssfin2  10389  enfin2i  10390  fin1a2lem13  10481
  Copyright terms: Public domain W3C validator