MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin2i Structured version   Visualization version   GIF version

Theorem fin2i 9706
Description: Property of a II-finite set. (Contributed by Stefan O'Rear, 16-May-2015.)
Assertion
Ref Expression
fin2i (((𝐴 ∈ FinII𝐵 ⊆ 𝒫 𝐴) ∧ (𝐵 ≠ ∅ ∧ [] Or 𝐵)) → 𝐵𝐵)

Proof of Theorem fin2i
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 neeq1 3049 . . . . 5 (𝑦 = 𝐵 → (𝑦 ≠ ∅ ↔ 𝐵 ≠ ∅))
2 soeq2 5459 . . . . 5 (𝑦 = 𝐵 → ( [] Or 𝑦 ↔ [] Or 𝐵))
31, 2anbi12d 633 . . . 4 (𝑦 = 𝐵 → ((𝑦 ≠ ∅ ∧ [] Or 𝑦) ↔ (𝐵 ≠ ∅ ∧ [] Or 𝐵)))
4 unieq 4811 . . . . 5 (𝑦 = 𝐵 𝑦 = 𝐵)
5 id 22 . . . . 5 (𝑦 = 𝐵𝑦 = 𝐵)
64, 5eleq12d 2884 . . . 4 (𝑦 = 𝐵 → ( 𝑦𝑦 𝐵𝐵))
73, 6imbi12d 348 . . 3 (𝑦 = 𝐵 → (((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) ↔ ((𝐵 ≠ ∅ ∧ [] Or 𝐵) → 𝐵𝐵)))
8 isfin2 9705 . . . . 5 (𝐴 ∈ FinII → (𝐴 ∈ FinII ↔ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦)))
98ibi 270 . . . 4 (𝐴 ∈ FinII → ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦))
109adantr 484 . . 3 ((𝐴 ∈ FinII𝐵 ⊆ 𝒫 𝐴) → ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦))
11 pwexg 5244 . . . . 5 (𝐴 ∈ FinII → 𝒫 𝐴 ∈ V)
12 elpw2g 5211 . . . . 5 (𝒫 𝐴 ∈ V → (𝐵 ∈ 𝒫 𝒫 𝐴𝐵 ⊆ 𝒫 𝐴))
1311, 12syl 17 . . . 4 (𝐴 ∈ FinII → (𝐵 ∈ 𝒫 𝒫 𝐴𝐵 ⊆ 𝒫 𝐴))
1413biimpar 481 . . 3 ((𝐴 ∈ FinII𝐵 ⊆ 𝒫 𝐴) → 𝐵 ∈ 𝒫 𝒫 𝐴)
157, 10, 14rspcdva 3573 . 2 ((𝐴 ∈ FinII𝐵 ⊆ 𝒫 𝐴) → ((𝐵 ≠ ∅ ∧ [] Or 𝐵) → 𝐵𝐵))
1615imp 410 1 (((𝐴 ∈ FinII𝐵 ⊆ 𝒫 𝐴) ∧ (𝐵 ≠ ∅ ∧ [] Or 𝐵)) → 𝐵𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2987  wral 3106  Vcvv 3441  wss 3881  c0 4243  𝒫 cpw 4497   cuni 4800   Or wor 5437   [] crpss 7428  FinIIcfin2 9690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-pow 5231
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-ne 2988  df-ral 3111  df-rab 3115  df-v 3443  df-in 3888  df-ss 3898  df-pw 4499  df-uni 4801  df-po 5438  df-so 5439  df-fin2 9697
This theorem is referenced by:  fin2i2  9729  ssfin2  9731  enfin2i  9732  fin1a2lem13  9823
  Copyright terms: Public domain W3C validator