Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fin2i | Structured version Visualization version GIF version |
Description: Property of a II-finite set. (Contributed by Stefan O'Rear, 16-May-2015.) |
Ref | Expression |
---|---|
fin2i | ⊢ (((𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝒫 𝐴) ∧ (𝐵 ≠ ∅ ∧ [⊊] Or 𝐵)) → ∪ 𝐵 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeq1 3006 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑦 ≠ ∅ ↔ 𝐵 ≠ ∅)) | |
2 | soeq2 5525 | . . . . 5 ⊢ (𝑦 = 𝐵 → ( [⊊] Or 𝑦 ↔ [⊊] Or 𝐵)) | |
3 | 1, 2 | anbi12d 631 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝑦 ≠ ∅ ∧ [⊊] Or 𝑦) ↔ (𝐵 ≠ ∅ ∧ [⊊] Or 𝐵))) |
4 | unieq 4850 | . . . . 5 ⊢ (𝑦 = 𝐵 → ∪ 𝑦 = ∪ 𝐵) | |
5 | id 22 | . . . . 5 ⊢ (𝑦 = 𝐵 → 𝑦 = 𝐵) | |
6 | 4, 5 | eleq12d 2833 | . . . 4 ⊢ (𝑦 = 𝐵 → (∪ 𝑦 ∈ 𝑦 ↔ ∪ 𝐵 ∈ 𝐵)) |
7 | 3, 6 | imbi12d 345 | . . 3 ⊢ (𝑦 = 𝐵 → (((𝑦 ≠ ∅ ∧ [⊊] Or 𝑦) → ∪ 𝑦 ∈ 𝑦) ↔ ((𝐵 ≠ ∅ ∧ [⊊] Or 𝐵) → ∪ 𝐵 ∈ 𝐵))) |
8 | isfin2 10050 | . . . . 5 ⊢ (𝐴 ∈ FinII → (𝐴 ∈ FinII ↔ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [⊊] Or 𝑦) → ∪ 𝑦 ∈ 𝑦))) | |
9 | 8 | ibi 266 | . . . 4 ⊢ (𝐴 ∈ FinII → ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [⊊] Or 𝑦) → ∪ 𝑦 ∈ 𝑦)) |
10 | 9 | adantr 481 | . . 3 ⊢ ((𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝒫 𝐴) → ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [⊊] Or 𝑦) → ∪ 𝑦 ∈ 𝑦)) |
11 | pwexg 5301 | . . . . 5 ⊢ (𝐴 ∈ FinII → 𝒫 𝐴 ∈ V) | |
12 | elpw2g 5268 | . . . . 5 ⊢ (𝒫 𝐴 ∈ V → (𝐵 ∈ 𝒫 𝒫 𝐴 ↔ 𝐵 ⊆ 𝒫 𝐴)) | |
13 | 11, 12 | syl 17 | . . . 4 ⊢ (𝐴 ∈ FinII → (𝐵 ∈ 𝒫 𝒫 𝐴 ↔ 𝐵 ⊆ 𝒫 𝐴)) |
14 | 13 | biimpar 478 | . . 3 ⊢ ((𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝒫 𝐴) → 𝐵 ∈ 𝒫 𝒫 𝐴) |
15 | 7, 10, 14 | rspcdva 3562 | . 2 ⊢ ((𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝒫 𝐴) → ((𝐵 ≠ ∅ ∧ [⊊] Or 𝐵) → ∪ 𝐵 ∈ 𝐵)) |
16 | 15 | imp 407 | 1 ⊢ (((𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝒫 𝐴) ∧ (𝐵 ≠ ∅ ∧ [⊊] Or 𝐵)) → ∪ 𝐵 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∀wral 3064 Vcvv 3432 ⊆ wss 3887 ∅c0 4256 𝒫 cpw 4533 ∪ cuni 4839 Or wor 5502 [⊊] crpss 7575 FinIIcfin2 10035 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-pow 5288 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rab 3073 df-v 3434 df-in 3894 df-ss 3904 df-pw 4535 df-uni 4840 df-po 5503 df-so 5504 df-fin2 10042 |
This theorem is referenced by: fin2i2 10074 ssfin2 10076 enfin2i 10077 fin1a2lem13 10168 |
Copyright terms: Public domain | W3C validator |