| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fin2i | Structured version Visualization version GIF version | ||
| Description: Property of a II-finite set. (Contributed by Stefan O'Rear, 16-May-2015.) |
| Ref | Expression |
|---|---|
| fin2i | ⊢ (((𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝒫 𝐴) ∧ (𝐵 ≠ ∅ ∧ [⊊] Or 𝐵)) → ∪ 𝐵 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neeq1 2990 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑦 ≠ ∅ ↔ 𝐵 ≠ ∅)) | |
| 2 | soeq2 5546 | . . . . 5 ⊢ (𝑦 = 𝐵 → ( [⊊] Or 𝑦 ↔ [⊊] Or 𝐵)) | |
| 3 | 1, 2 | anbi12d 632 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝑦 ≠ ∅ ∧ [⊊] Or 𝑦) ↔ (𝐵 ≠ ∅ ∧ [⊊] Or 𝐵))) |
| 4 | unieq 4870 | . . . . 5 ⊢ (𝑦 = 𝐵 → ∪ 𝑦 = ∪ 𝐵) | |
| 5 | id 22 | . . . . 5 ⊢ (𝑦 = 𝐵 → 𝑦 = 𝐵) | |
| 6 | 4, 5 | eleq12d 2825 | . . . 4 ⊢ (𝑦 = 𝐵 → (∪ 𝑦 ∈ 𝑦 ↔ ∪ 𝐵 ∈ 𝐵)) |
| 7 | 3, 6 | imbi12d 344 | . . 3 ⊢ (𝑦 = 𝐵 → (((𝑦 ≠ ∅ ∧ [⊊] Or 𝑦) → ∪ 𝑦 ∈ 𝑦) ↔ ((𝐵 ≠ ∅ ∧ [⊊] Or 𝐵) → ∪ 𝐵 ∈ 𝐵))) |
| 8 | isfin2 10185 | . . . . 5 ⊢ (𝐴 ∈ FinII → (𝐴 ∈ FinII ↔ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [⊊] Or 𝑦) → ∪ 𝑦 ∈ 𝑦))) | |
| 9 | 8 | ibi 267 | . . . 4 ⊢ (𝐴 ∈ FinII → ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [⊊] Or 𝑦) → ∪ 𝑦 ∈ 𝑦)) |
| 10 | 9 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝒫 𝐴) → ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [⊊] Or 𝑦) → ∪ 𝑦 ∈ 𝑦)) |
| 11 | pwexg 5316 | . . . . 5 ⊢ (𝐴 ∈ FinII → 𝒫 𝐴 ∈ V) | |
| 12 | elpw2g 5271 | . . . . 5 ⊢ (𝒫 𝐴 ∈ V → (𝐵 ∈ 𝒫 𝒫 𝐴 ↔ 𝐵 ⊆ 𝒫 𝐴)) | |
| 13 | 11, 12 | syl 17 | . . . 4 ⊢ (𝐴 ∈ FinII → (𝐵 ∈ 𝒫 𝒫 𝐴 ↔ 𝐵 ⊆ 𝒫 𝐴)) |
| 14 | 13 | biimpar 477 | . . 3 ⊢ ((𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝒫 𝐴) → 𝐵 ∈ 𝒫 𝒫 𝐴) |
| 15 | 7, 10, 14 | rspcdva 3578 | . 2 ⊢ ((𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝒫 𝐴) → ((𝐵 ≠ ∅ ∧ [⊊] Or 𝐵) → ∪ 𝐵 ∈ 𝐵)) |
| 16 | 15 | imp 406 | 1 ⊢ (((𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝒫 𝐴) ∧ (𝐵 ≠ ∅ ∧ [⊊] Or 𝐵)) → ∪ 𝐵 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 Vcvv 3436 ⊆ wss 3902 ∅c0 4283 𝒫 cpw 4550 ∪ cuni 4859 Or wor 5523 [⊊] crpss 7655 FinIIcfin2 10170 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-pow 5303 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-in 3909 df-ss 3919 df-pw 4552 df-uni 4860 df-po 5524 df-so 5525 df-fin2 10177 |
| This theorem is referenced by: fin2i2 10209 ssfin2 10211 enfin2i 10212 fin1a2lem13 10303 |
| Copyright terms: Public domain | W3C validator |