MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin2i Structured version   Visualization version   GIF version

Theorem fin2i 10186
Description: Property of a II-finite set. (Contributed by Stefan O'Rear, 16-May-2015.)
Assertion
Ref Expression
fin2i (((𝐴 ∈ FinII𝐵 ⊆ 𝒫 𝐴) ∧ (𝐵 ≠ ∅ ∧ [] Or 𝐵)) → 𝐵𝐵)

Proof of Theorem fin2i
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 neeq1 2990 . . . . 5 (𝑦 = 𝐵 → (𝑦 ≠ ∅ ↔ 𝐵 ≠ ∅))
2 soeq2 5546 . . . . 5 (𝑦 = 𝐵 → ( [] Or 𝑦 ↔ [] Or 𝐵))
31, 2anbi12d 632 . . . 4 (𝑦 = 𝐵 → ((𝑦 ≠ ∅ ∧ [] Or 𝑦) ↔ (𝐵 ≠ ∅ ∧ [] Or 𝐵)))
4 unieq 4870 . . . . 5 (𝑦 = 𝐵 𝑦 = 𝐵)
5 id 22 . . . . 5 (𝑦 = 𝐵𝑦 = 𝐵)
64, 5eleq12d 2825 . . . 4 (𝑦 = 𝐵 → ( 𝑦𝑦 𝐵𝐵))
73, 6imbi12d 344 . . 3 (𝑦 = 𝐵 → (((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) ↔ ((𝐵 ≠ ∅ ∧ [] Or 𝐵) → 𝐵𝐵)))
8 isfin2 10185 . . . . 5 (𝐴 ∈ FinII → (𝐴 ∈ FinII ↔ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦)))
98ibi 267 . . . 4 (𝐴 ∈ FinII → ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦))
109adantr 480 . . 3 ((𝐴 ∈ FinII𝐵 ⊆ 𝒫 𝐴) → ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦))
11 pwexg 5316 . . . . 5 (𝐴 ∈ FinII → 𝒫 𝐴 ∈ V)
12 elpw2g 5271 . . . . 5 (𝒫 𝐴 ∈ V → (𝐵 ∈ 𝒫 𝒫 𝐴𝐵 ⊆ 𝒫 𝐴))
1311, 12syl 17 . . . 4 (𝐴 ∈ FinII → (𝐵 ∈ 𝒫 𝒫 𝐴𝐵 ⊆ 𝒫 𝐴))
1413biimpar 477 . . 3 ((𝐴 ∈ FinII𝐵 ⊆ 𝒫 𝐴) → 𝐵 ∈ 𝒫 𝒫 𝐴)
157, 10, 14rspcdva 3578 . 2 ((𝐴 ∈ FinII𝐵 ⊆ 𝒫 𝐴) → ((𝐵 ≠ ∅ ∧ [] Or 𝐵) → 𝐵𝐵))
1615imp 406 1 (((𝐴 ∈ FinII𝐵 ⊆ 𝒫 𝐴) ∧ (𝐵 ≠ ∅ ∧ [] Or 𝐵)) → 𝐵𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  Vcvv 3436  wss 3902  c0 4283  𝒫 cpw 4550   cuni 4859   Or wor 5523   [] crpss 7655  FinIIcfin2 10170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-pow 5303
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-in 3909  df-ss 3919  df-pw 4552  df-uni 4860  df-po 5524  df-so 5525  df-fin2 10177
This theorem is referenced by:  fin2i2  10209  ssfin2  10211  enfin2i  10212  fin1a2lem13  10303
  Copyright terms: Public domain W3C validator