|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > isfin4 | Structured version Visualization version GIF version | ||
| Description: Definition of a IV-finite set. (Contributed by Stefan O'Rear, 16-May-2015.) | 
| Ref | Expression | 
|---|---|
| isfin4 | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ FinIV ↔ ¬ ∃𝑦(𝑦 ⊊ 𝐴 ∧ 𝑦 ≈ 𝐴))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | psseq2 4090 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑦 ⊊ 𝑥 ↔ 𝑦 ⊊ 𝐴)) | |
| 2 | breq2 5146 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑦 ≈ 𝑥 ↔ 𝑦 ≈ 𝐴)) | |
| 3 | 1, 2 | anbi12d 632 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑦 ⊊ 𝑥 ∧ 𝑦 ≈ 𝑥) ↔ (𝑦 ⊊ 𝐴 ∧ 𝑦 ≈ 𝐴))) | 
| 4 | 3 | exbidv 1920 | . . 3 ⊢ (𝑥 = 𝐴 → (∃𝑦(𝑦 ⊊ 𝑥 ∧ 𝑦 ≈ 𝑥) ↔ ∃𝑦(𝑦 ⊊ 𝐴 ∧ 𝑦 ≈ 𝐴))) | 
| 5 | 4 | notbid 318 | . 2 ⊢ (𝑥 = 𝐴 → (¬ ∃𝑦(𝑦 ⊊ 𝑥 ∧ 𝑦 ≈ 𝑥) ↔ ¬ ∃𝑦(𝑦 ⊊ 𝐴 ∧ 𝑦 ≈ 𝐴))) | 
| 6 | df-fin4 10328 | . 2 ⊢ FinIV = {𝑥 ∣ ¬ ∃𝑦(𝑦 ⊊ 𝑥 ∧ 𝑦 ≈ 𝑥)} | |
| 7 | 5, 6 | elab2g 3679 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ FinIV ↔ ¬ ∃𝑦(𝑦 ⊊ 𝐴 ∧ 𝑦 ≈ 𝐴))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∃wex 1778 ∈ wcel 2107 ⊊ wpss 3951 class class class wbr 5142 ≈ cen 8983 FinIVcfin4 10321 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-br 5143 df-fin4 10328 | 
| This theorem is referenced by: fin4i 10339 fin4en1 10350 ssfin4 10351 infpssALT 10354 isfin4-2 10355 | 
| Copyright terms: Public domain | W3C validator |