![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isfin4 | Structured version Visualization version GIF version |
Description: Definition of a IV-finite set. (Contributed by Stefan O'Rear, 16-May-2015.) |
Ref | Expression |
---|---|
isfin4 | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ FinIV ↔ ¬ ∃𝑦(𝑦 ⊊ 𝐴 ∧ 𝑦 ≈ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psseq2 4088 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑦 ⊊ 𝑥 ↔ 𝑦 ⊊ 𝐴)) | |
2 | breq2 5156 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑦 ≈ 𝑥 ↔ 𝑦 ≈ 𝐴)) | |
3 | 1, 2 | anbi12d 630 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑦 ⊊ 𝑥 ∧ 𝑦 ≈ 𝑥) ↔ (𝑦 ⊊ 𝐴 ∧ 𝑦 ≈ 𝐴))) |
4 | 3 | exbidv 1916 | . . 3 ⊢ (𝑥 = 𝐴 → (∃𝑦(𝑦 ⊊ 𝑥 ∧ 𝑦 ≈ 𝑥) ↔ ∃𝑦(𝑦 ⊊ 𝐴 ∧ 𝑦 ≈ 𝐴))) |
5 | 4 | notbid 317 | . 2 ⊢ (𝑥 = 𝐴 → (¬ ∃𝑦(𝑦 ⊊ 𝑥 ∧ 𝑦 ≈ 𝑥) ↔ ¬ ∃𝑦(𝑦 ⊊ 𝐴 ∧ 𝑦 ≈ 𝐴))) |
6 | df-fin4 10318 | . 2 ⊢ FinIV = {𝑥 ∣ ¬ ∃𝑦(𝑦 ⊊ 𝑥 ∧ 𝑦 ≈ 𝑥)} | |
7 | 5, 6 | elab2g 3671 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ FinIV ↔ ¬ ∃𝑦(𝑦 ⊊ 𝐴 ∧ 𝑦 ≈ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∃wex 1773 ∈ wcel 2098 ⊊ wpss 3950 class class class wbr 5152 ≈ cen 8967 FinIVcfin4 10311 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2938 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-br 5153 df-fin4 10318 |
This theorem is referenced by: fin4i 10329 fin4en1 10340 ssfin4 10341 infpssALT 10344 isfin4-2 10345 |
Copyright terms: Public domain | W3C validator |