![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isfin4 | Structured version Visualization version GIF version |
Description: Definition of a IV-finite set. (Contributed by Stefan O'Rear, 16-May-2015.) |
Ref | Expression |
---|---|
isfin4 | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ FinIV ↔ ¬ ∃𝑦(𝑦 ⊊ 𝐴 ∧ 𝑦 ≈ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psseq2 4046 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑦 ⊊ 𝑥 ↔ 𝑦 ⊊ 𝐴)) | |
2 | breq2 5107 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑦 ≈ 𝑥 ↔ 𝑦 ≈ 𝐴)) | |
3 | 1, 2 | anbi12d 631 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑦 ⊊ 𝑥 ∧ 𝑦 ≈ 𝑥) ↔ (𝑦 ⊊ 𝐴 ∧ 𝑦 ≈ 𝐴))) |
4 | 3 | exbidv 1924 | . . 3 ⊢ (𝑥 = 𝐴 → (∃𝑦(𝑦 ⊊ 𝑥 ∧ 𝑦 ≈ 𝑥) ↔ ∃𝑦(𝑦 ⊊ 𝐴 ∧ 𝑦 ≈ 𝐴))) |
5 | 4 | notbid 317 | . 2 ⊢ (𝑥 = 𝐴 → (¬ ∃𝑦(𝑦 ⊊ 𝑥 ∧ 𝑦 ≈ 𝑥) ↔ ¬ ∃𝑦(𝑦 ⊊ 𝐴 ∧ 𝑦 ≈ 𝐴))) |
6 | df-fin4 10181 | . 2 ⊢ FinIV = {𝑥 ∣ ¬ ∃𝑦(𝑦 ⊊ 𝑥 ∧ 𝑦 ≈ 𝑥)} | |
7 | 5, 6 | elab2g 3630 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ FinIV ↔ ¬ ∃𝑦(𝑦 ⊊ 𝐴 ∧ 𝑦 ≈ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∃wex 1781 ∈ wcel 2106 ⊊ wpss 3909 class class class wbr 5103 ≈ cen 8838 FinIVcfin4 10174 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-ne 2942 df-rab 3406 df-v 3445 df-dif 3911 df-un 3913 df-in 3915 df-ss 3925 df-pss 3927 df-nul 4281 df-if 4485 df-sn 4585 df-pr 4587 df-op 4591 df-br 5104 df-fin4 10181 |
This theorem is referenced by: fin4i 10192 fin4en1 10203 ssfin4 10204 infpssALT 10207 isfin4-2 10208 |
Copyright terms: Public domain | W3C validator |