![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isfin4 | Structured version Visualization version GIF version |
Description: Definition of a IV-finite set. (Contributed by Stefan O'Rear, 16-May-2015.) |
Ref | Expression |
---|---|
isfin4 | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ FinIV ↔ ¬ ∃𝑦(𝑦 ⊊ 𝐴 ∧ 𝑦 ≈ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psseq2 4088 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑦 ⊊ 𝑥 ↔ 𝑦 ⊊ 𝐴)) | |
2 | breq2 5152 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑦 ≈ 𝑥 ↔ 𝑦 ≈ 𝐴)) | |
3 | 1, 2 | anbi12d 630 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑦 ⊊ 𝑥 ∧ 𝑦 ≈ 𝑥) ↔ (𝑦 ⊊ 𝐴 ∧ 𝑦 ≈ 𝐴))) |
4 | 3 | exbidv 1923 | . . 3 ⊢ (𝑥 = 𝐴 → (∃𝑦(𝑦 ⊊ 𝑥 ∧ 𝑦 ≈ 𝑥) ↔ ∃𝑦(𝑦 ⊊ 𝐴 ∧ 𝑦 ≈ 𝐴))) |
5 | 4 | notbid 318 | . 2 ⊢ (𝑥 = 𝐴 → (¬ ∃𝑦(𝑦 ⊊ 𝑥 ∧ 𝑦 ≈ 𝑥) ↔ ¬ ∃𝑦(𝑦 ⊊ 𝐴 ∧ 𝑦 ≈ 𝐴))) |
6 | df-fin4 10285 | . 2 ⊢ FinIV = {𝑥 ∣ ¬ ∃𝑦(𝑦 ⊊ 𝑥 ∧ 𝑦 ≈ 𝑥)} | |
7 | 5, 6 | elab2g 3670 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ FinIV ↔ ¬ ∃𝑦(𝑦 ⊊ 𝐴 ∧ 𝑦 ≈ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ∃wex 1780 ∈ wcel 2105 ⊊ wpss 3949 class class class wbr 5148 ≈ cen 8939 FinIVcfin4 10278 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ne 2940 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-fin4 10285 |
This theorem is referenced by: fin4i 10296 fin4en1 10307 ssfin4 10308 infpssALT 10311 isfin4-2 10312 |
Copyright terms: Public domain | W3C validator |