![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isfin4 | Structured version Visualization version GIF version |
Description: Definition of a IV-finite set. (Contributed by Stefan O'Rear, 16-May-2015.) |
Ref | Expression |
---|---|
isfin4 | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ FinIV ↔ ¬ ∃𝑦(𝑦 ⊊ 𝐴 ∧ 𝑦 ≈ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psseq2 3890 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑦 ⊊ 𝑥 ↔ 𝑦 ⊊ 𝐴)) | |
2 | breq2 4845 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑦 ≈ 𝑥 ↔ 𝑦 ≈ 𝐴)) | |
3 | 1, 2 | anbi12d 625 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑦 ⊊ 𝑥 ∧ 𝑦 ≈ 𝑥) ↔ (𝑦 ⊊ 𝐴 ∧ 𝑦 ≈ 𝐴))) |
4 | 3 | exbidv 2017 | . . 3 ⊢ (𝑥 = 𝐴 → (∃𝑦(𝑦 ⊊ 𝑥 ∧ 𝑦 ≈ 𝑥) ↔ ∃𝑦(𝑦 ⊊ 𝐴 ∧ 𝑦 ≈ 𝐴))) |
5 | 4 | notbid 310 | . 2 ⊢ (𝑥 = 𝐴 → (¬ ∃𝑦(𝑦 ⊊ 𝑥 ∧ 𝑦 ≈ 𝑥) ↔ ¬ ∃𝑦(𝑦 ⊊ 𝐴 ∧ 𝑦 ≈ 𝐴))) |
6 | df-fin4 9395 | . 2 ⊢ FinIV = {𝑥 ∣ ¬ ∃𝑦(𝑦 ⊊ 𝑥 ∧ 𝑦 ≈ 𝑥)} | |
7 | 5, 6 | elab2g 3543 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ FinIV ↔ ¬ ∃𝑦(𝑦 ⊊ 𝐴 ∧ 𝑦 ≈ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 ∃wex 1875 ∈ wcel 2157 ⊊ wpss 3768 class class class wbr 4841 ≈ cen 8190 FinIVcfin4 9388 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-rab 3096 df-v 3385 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-pss 3783 df-nul 4114 df-if 4276 df-sn 4367 df-pr 4369 df-op 4373 df-br 4842 df-fin4 9395 |
This theorem is referenced by: fin4i 9406 fin4en1 9417 ssfin4 9418 infpssALT 9421 isfin4-2 9422 |
Copyright terms: Public domain | W3C validator |