MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfin4 Structured version   Visualization version   GIF version

Theorem isfin4 10053
Description: Definition of a IV-finite set. (Contributed by Stefan O'Rear, 16-May-2015.)
Assertion
Ref Expression
isfin4 (𝐴𝑉 → (𝐴 ∈ FinIV ↔ ¬ ∃𝑦(𝑦𝐴𝑦𝐴)))
Distinct variable group:   𝑦,𝐴
Allowed substitution hint:   𝑉(𝑦)

Proof of Theorem isfin4
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 psseq2 4023 . . . . 5 (𝑥 = 𝐴 → (𝑦𝑥𝑦𝐴))
2 breq2 5078 . . . . 5 (𝑥 = 𝐴 → (𝑦𝑥𝑦𝐴))
31, 2anbi12d 631 . . . 4 (𝑥 = 𝐴 → ((𝑦𝑥𝑦𝑥) ↔ (𝑦𝐴𝑦𝐴)))
43exbidv 1924 . . 3 (𝑥 = 𝐴 → (∃𝑦(𝑦𝑥𝑦𝑥) ↔ ∃𝑦(𝑦𝐴𝑦𝐴)))
54notbid 318 . 2 (𝑥 = 𝐴 → (¬ ∃𝑦(𝑦𝑥𝑦𝑥) ↔ ¬ ∃𝑦(𝑦𝐴𝑦𝐴)))
6 df-fin4 10043 . 2 FinIV = {𝑥 ∣ ¬ ∃𝑦(𝑦𝑥𝑦𝑥)}
75, 6elab2g 3611 1 (𝐴𝑉 → (𝐴 ∈ FinIV ↔ ¬ ∃𝑦(𝑦𝐴𝑦𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wex 1782  wcel 2106  wpss 3888   class class class wbr 5074  cen 8730  FinIVcfin4 10036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-fin4 10043
This theorem is referenced by:  fin4i  10054  fin4en1  10065  ssfin4  10066  infpssALT  10069  isfin4-2  10070
  Copyright terms: Public domain W3C validator