MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfin4-2 Structured version   Visualization version   GIF version

Theorem isfin4-2 10175
Description: Alternate definition of IV-finite sets: they lack a denumerable subset. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Revised by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
isfin4-2 (𝐴𝑉 → (𝐴 ∈ FinIV ↔ ¬ ω ≼ 𝐴))

Proof of Theorem isfin4-2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isfin4 10158 . 2 (𝐴𝑉 → (𝐴 ∈ FinIV ↔ ¬ ∃𝑥(𝑥𝐴𝑥𝐴)))
2 infpssr 10169 . . . . 5 ((𝑥𝐴𝑥𝐴) → ω ≼ 𝐴)
32exlimiv 1933 . . . 4 (∃𝑥(𝑥𝐴𝑥𝐴) → ω ≼ 𝐴)
4 infpss 10078 . . . 4 (ω ≼ 𝐴 → ∃𝑥(𝑥𝐴𝑥𝐴))
53, 4impbii 208 . . 3 (∃𝑥(𝑥𝐴𝑥𝐴) ↔ ω ≼ 𝐴)
65notbii 320 . 2 (¬ ∃𝑥(𝑥𝐴𝑥𝐴) ↔ ¬ ω ≼ 𝐴)
71, 6bitrdi 287 1 (𝐴𝑉 → (𝐴 ∈ FinIV ↔ ¬ ω ≼ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wex 1781  wcel 2106  wpss 3902   class class class wbr 5096  ωcom 7784  cen 8805  cdom 8806  FinIVcfin4 10141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5233  ax-sep 5247  ax-nul 5254  ax-pow 5312  ax-pr 5376  ax-un 7654
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3731  df-csb 3847  df-dif 3904  df-un 3906  df-in 3908  df-ss 3918  df-pss 3920  df-nul 4274  df-if 4478  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4857  df-iun 4947  df-br 5097  df-opab 5159  df-mpt 5180  df-tr 5214  df-id 5522  df-eprel 5528  df-po 5536  df-so 5537  df-fr 5579  df-we 5581  df-xp 5630  df-rel 5631  df-cnv 5632  df-co 5633  df-dm 5634  df-rn 5635  df-res 5636  df-ima 5637  df-pred 6242  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6435  df-fun 6485  df-fn 6486  df-f 6487  df-f1 6488  df-fo 6489  df-f1o 6490  df-fv 6491  df-ov 7344  df-om 7785  df-2nd 7904  df-frecs 8171  df-wrecs 8202  df-recs 8276  df-rdg 8315  df-er 8573  df-en 8809  df-dom 8810  df-fin4 10148
This theorem is referenced by:  isfin4p1  10176  fin23lem41  10213  isfin32i  10226  isfin1-2  10246  fin34  10251  fin41  10305  gchinf  10518
  Copyright terms: Public domain W3C validator