MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfin4-2 Structured version   Visualization version   GIF version

Theorem isfin4-2 10351
Description: Alternate definition of IV-finite sets: they lack a denumerable subset. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Revised by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
isfin4-2 (𝐴𝑉 → (𝐴 ∈ FinIV ↔ ¬ ω ≼ 𝐴))

Proof of Theorem isfin4-2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isfin4 10334 . 2 (𝐴𝑉 → (𝐴 ∈ FinIV ↔ ¬ ∃𝑥(𝑥𝐴𝑥𝐴)))
2 infpssr 10345 . . . . 5 ((𝑥𝐴𝑥𝐴) → ω ≼ 𝐴)
32exlimiv 1927 . . . 4 (∃𝑥(𝑥𝐴𝑥𝐴) → ω ≼ 𝐴)
4 infpss 10253 . . . 4 (ω ≼ 𝐴 → ∃𝑥(𝑥𝐴𝑥𝐴))
53, 4impbii 209 . . 3 (∃𝑥(𝑥𝐴𝑥𝐴) ↔ ω ≼ 𝐴)
65notbii 320 . 2 (¬ ∃𝑥(𝑥𝐴𝑥𝐴) ↔ ¬ ω ≼ 𝐴)
71, 6bitrdi 287 1 (𝐴𝑉 → (𝐴 ∈ FinIV ↔ ¬ ω ≼ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wex 1775  wcel 2105  wpss 3963   class class class wbr 5147  ωcom 7886  cen 8980  cdom 8981  FinIVcfin4 10317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-ov 7433  df-om 7887  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-fin4 10324
This theorem is referenced by:  isfin4p1  10352  fin23lem41  10389  isfin32i  10402  isfin1-2  10422  fin34  10427  fin41  10481  gchinf  10694
  Copyright terms: Public domain W3C validator