MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin4i Structured version   Visualization version   GIF version

Theorem fin4i 10290
Description: Infer that a set is IV-infinite. (Contributed by Stefan O'Rear, 16-May-2015.)
Assertion
Ref Expression
fin4i ((𝑋𝐴𝑋𝐴) → ¬ 𝐴 ∈ FinIV)

Proof of Theorem fin4i
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isfin4 10289 . . 3 (𝐴 ∈ FinIV → (𝐴 ∈ FinIV ↔ ¬ ∃𝑥(𝑥𝐴𝑥𝐴)))
21ibi 267 . 2 (𝐴 ∈ FinIV → ¬ ∃𝑥(𝑥𝐴𝑥𝐴))
3 relen 8941 . . . . 5 Rel ≈
43brrelex1i 5723 . . . 4 (𝑋𝐴𝑋 ∈ V)
54adantl 481 . . 3 ((𝑋𝐴𝑋𝐴) → 𝑋 ∈ V)
6 psseq1 4080 . . . . 5 (𝑥 = 𝑋 → (𝑥𝐴𝑋𝐴))
7 breq1 5142 . . . . 5 (𝑥 = 𝑋 → (𝑥𝐴𝑋𝐴))
86, 7anbi12d 630 . . . 4 (𝑥 = 𝑋 → ((𝑥𝐴𝑥𝐴) ↔ (𝑋𝐴𝑋𝐴)))
98spcegv 3579 . . 3 (𝑋 ∈ V → ((𝑋𝐴𝑋𝐴) → ∃𝑥(𝑥𝐴𝑥𝐴)))
105, 9mpcom 38 . 2 ((𝑋𝐴𝑋𝐴) → ∃𝑥(𝑥𝐴𝑥𝐴))
112, 10nsyl3 138 1 ((𝑋𝐴𝑋𝐴) → ¬ 𝐴 ∈ FinIV)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1533  wex 1773  wcel 2098  Vcvv 3466  wpss 3942   class class class wbr 5139  cen 8933  FinIVcfin4 10272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pr 5418
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-br 5140  df-opab 5202  df-xp 5673  df-rel 5674  df-en 8937  df-fin4 10279
This theorem is referenced by:  fin4en1  10301  ssfin4  10302  ominf4  10304  isfin4p1  10307
  Copyright terms: Public domain W3C validator