MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin4i Structured version   Visualization version   GIF version

Theorem fin4i 10054
Description: Infer that a set is IV-infinite. (Contributed by Stefan O'Rear, 16-May-2015.)
Assertion
Ref Expression
fin4i ((𝑋𝐴𝑋𝐴) → ¬ 𝐴 ∈ FinIV)

Proof of Theorem fin4i
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isfin4 10053 . . 3 (𝐴 ∈ FinIV → (𝐴 ∈ FinIV ↔ ¬ ∃𝑥(𝑥𝐴𝑥𝐴)))
21ibi 266 . 2 (𝐴 ∈ FinIV → ¬ ∃𝑥(𝑥𝐴𝑥𝐴))
3 relen 8738 . . . . 5 Rel ≈
43brrelex1i 5643 . . . 4 (𝑋𝐴𝑋 ∈ V)
54adantl 482 . . 3 ((𝑋𝐴𝑋𝐴) → 𝑋 ∈ V)
6 psseq1 4022 . . . . 5 (𝑥 = 𝑋 → (𝑥𝐴𝑋𝐴))
7 breq1 5077 . . . . 5 (𝑥 = 𝑋 → (𝑥𝐴𝑋𝐴))
86, 7anbi12d 631 . . . 4 (𝑥 = 𝑋 → ((𝑥𝐴𝑥𝐴) ↔ (𝑋𝐴𝑋𝐴)))
98spcegv 3536 . . 3 (𝑋 ∈ V → ((𝑋𝐴𝑋𝐴) → ∃𝑥(𝑥𝐴𝑥𝐴)))
105, 9mpcom 38 . 2 ((𝑋𝐴𝑋𝐴) → ∃𝑥(𝑥𝐴𝑥𝐴))
112, 10nsyl3 138 1 ((𝑋𝐴𝑋𝐴) → ¬ 𝐴 ∈ FinIV)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wex 1782  wcel 2106  Vcvv 3432  wpss 3888   class class class wbr 5074  cen 8730  FinIVcfin4 10036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-en 8734  df-fin4 10043
This theorem is referenced by:  fin4en1  10065  ssfin4  10066  ominf4  10068  isfin4p1  10071
  Copyright terms: Public domain W3C validator