Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fin4i | Structured version Visualization version GIF version |
Description: Infer that a set is IV-infinite. (Contributed by Stefan O'Rear, 16-May-2015.) |
Ref | Expression |
---|---|
fin4i | ⊢ ((𝑋 ⊊ 𝐴 ∧ 𝑋 ≈ 𝐴) → ¬ 𝐴 ∈ FinIV) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfin4 10053 | . . 3 ⊢ (𝐴 ∈ FinIV → (𝐴 ∈ FinIV ↔ ¬ ∃𝑥(𝑥 ⊊ 𝐴 ∧ 𝑥 ≈ 𝐴))) | |
2 | 1 | ibi 266 | . 2 ⊢ (𝐴 ∈ FinIV → ¬ ∃𝑥(𝑥 ⊊ 𝐴 ∧ 𝑥 ≈ 𝐴)) |
3 | relen 8738 | . . . . 5 ⊢ Rel ≈ | |
4 | 3 | brrelex1i 5643 | . . . 4 ⊢ (𝑋 ≈ 𝐴 → 𝑋 ∈ V) |
5 | 4 | adantl 482 | . . 3 ⊢ ((𝑋 ⊊ 𝐴 ∧ 𝑋 ≈ 𝐴) → 𝑋 ∈ V) |
6 | psseq1 4022 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑥 ⊊ 𝐴 ↔ 𝑋 ⊊ 𝐴)) | |
7 | breq1 5077 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑥 ≈ 𝐴 ↔ 𝑋 ≈ 𝐴)) | |
8 | 6, 7 | anbi12d 631 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝑥 ⊊ 𝐴 ∧ 𝑥 ≈ 𝐴) ↔ (𝑋 ⊊ 𝐴 ∧ 𝑋 ≈ 𝐴))) |
9 | 8 | spcegv 3536 | . . 3 ⊢ (𝑋 ∈ V → ((𝑋 ⊊ 𝐴 ∧ 𝑋 ≈ 𝐴) → ∃𝑥(𝑥 ⊊ 𝐴 ∧ 𝑥 ≈ 𝐴))) |
10 | 5, 9 | mpcom 38 | . 2 ⊢ ((𝑋 ⊊ 𝐴 ∧ 𝑋 ≈ 𝐴) → ∃𝑥(𝑥 ⊊ 𝐴 ∧ 𝑥 ≈ 𝐴)) |
11 | 2, 10 | nsyl3 138 | 1 ⊢ ((𝑋 ⊊ 𝐴 ∧ 𝑋 ≈ 𝐴) → ¬ 𝐴 ∈ FinIV) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1539 ∃wex 1782 ∈ wcel 2106 Vcvv 3432 ⊊ wpss 3888 class class class wbr 5074 ≈ cen 8730 FinIVcfin4 10036 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-en 8734 df-fin4 10043 |
This theorem is referenced by: fin4en1 10065 ssfin4 10066 ominf4 10068 isfin4p1 10071 |
Copyright terms: Public domain | W3C validator |