MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin4i Structured version   Visualization version   GIF version

Theorem fin4i 10251
Description: Infer that a set is IV-infinite. (Contributed by Stefan O'Rear, 16-May-2015.)
Assertion
Ref Expression
fin4i ((𝑋𝐴𝑋𝐴) → ¬ 𝐴 ∈ FinIV)

Proof of Theorem fin4i
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isfin4 10250 . . 3 (𝐴 ∈ FinIV → (𝐴 ∈ FinIV ↔ ¬ ∃𝑥(𝑥𝐴𝑥𝐴)))
21ibi 267 . 2 (𝐴 ∈ FinIV → ¬ ∃𝑥(𝑥𝐴𝑥𝐴))
3 relen 8923 . . . . 5 Rel ≈
43brrelex1i 5694 . . . 4 (𝑋𝐴𝑋 ∈ V)
54adantl 481 . . 3 ((𝑋𝐴𝑋𝐴) → 𝑋 ∈ V)
6 psseq1 4053 . . . . 5 (𝑥 = 𝑋 → (𝑥𝐴𝑋𝐴))
7 breq1 5110 . . . . 5 (𝑥 = 𝑋 → (𝑥𝐴𝑋𝐴))
86, 7anbi12d 632 . . . 4 (𝑥 = 𝑋 → ((𝑥𝐴𝑥𝐴) ↔ (𝑋𝐴𝑋𝐴)))
98spcegv 3563 . . 3 (𝑋 ∈ V → ((𝑋𝐴𝑋𝐴) → ∃𝑥(𝑥𝐴𝑥𝐴)))
105, 9mpcom 38 . 2 ((𝑋𝐴𝑋𝐴) → ∃𝑥(𝑥𝐴𝑥𝐴))
112, 10nsyl3 138 1 ((𝑋𝐴𝑋𝐴) → ¬ 𝐴 ∈ FinIV)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  Vcvv 3447  wpss 3915   class class class wbr 5107  cen 8915  FinIVcfin4 10233
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-en 8919  df-fin4 10240
This theorem is referenced by:  fin4en1  10262  ssfin4  10263  ominf4  10265  isfin4p1  10268
  Copyright terms: Public domain W3C validator