![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fin4i | Structured version Visualization version GIF version |
Description: Infer that a set is IV-infinite. (Contributed by Stefan O'Rear, 16-May-2015.) |
Ref | Expression |
---|---|
fin4i | ⊢ ((𝑋 ⊊ 𝐴 ∧ 𝑋 ≈ 𝐴) → ¬ 𝐴 ∈ FinIV) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfin4 10292 | . . 3 ⊢ (𝐴 ∈ FinIV → (𝐴 ∈ FinIV ↔ ¬ ∃𝑥(𝑥 ⊊ 𝐴 ∧ 𝑥 ≈ 𝐴))) | |
2 | 1 | ibi 267 | . 2 ⊢ (𝐴 ∈ FinIV → ¬ ∃𝑥(𝑥 ⊊ 𝐴 ∧ 𝑥 ≈ 𝐴)) |
3 | relen 8944 | . . . . 5 ⊢ Rel ≈ | |
4 | 3 | brrelex1i 5733 | . . . 4 ⊢ (𝑋 ≈ 𝐴 → 𝑋 ∈ V) |
5 | 4 | adantl 483 | . . 3 ⊢ ((𝑋 ⊊ 𝐴 ∧ 𝑋 ≈ 𝐴) → 𝑋 ∈ V) |
6 | psseq1 4088 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑥 ⊊ 𝐴 ↔ 𝑋 ⊊ 𝐴)) | |
7 | breq1 5152 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑥 ≈ 𝐴 ↔ 𝑋 ≈ 𝐴)) | |
8 | 6, 7 | anbi12d 632 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝑥 ⊊ 𝐴 ∧ 𝑥 ≈ 𝐴) ↔ (𝑋 ⊊ 𝐴 ∧ 𝑋 ≈ 𝐴))) |
9 | 8 | spcegv 3588 | . . 3 ⊢ (𝑋 ∈ V → ((𝑋 ⊊ 𝐴 ∧ 𝑋 ≈ 𝐴) → ∃𝑥(𝑥 ⊊ 𝐴 ∧ 𝑥 ≈ 𝐴))) |
10 | 5, 9 | mpcom 38 | . 2 ⊢ ((𝑋 ⊊ 𝐴 ∧ 𝑋 ≈ 𝐴) → ∃𝑥(𝑥 ⊊ 𝐴 ∧ 𝑥 ≈ 𝐴)) |
11 | 2, 10 | nsyl3 138 | 1 ⊢ ((𝑋 ⊊ 𝐴 ∧ 𝑋 ≈ 𝐴) → ¬ 𝐴 ∈ FinIV) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 = wceq 1542 ∃wex 1782 ∈ wcel 2107 Vcvv 3475 ⊊ wpss 3950 class class class wbr 5149 ≈ cen 8936 FinIVcfin4 10275 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-xp 5683 df-rel 5684 df-en 8940 df-fin4 10282 |
This theorem is referenced by: fin4en1 10304 ssfin4 10305 ominf4 10307 isfin4p1 10310 |
Copyright terms: Public domain | W3C validator |