![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fin4i | Structured version Visualization version GIF version |
Description: Infer that a set is IV-infinite. (Contributed by Stefan O'Rear, 16-May-2015.) |
Ref | Expression |
---|---|
fin4i | ⊢ ((𝑋 ⊊ 𝐴 ∧ 𝑋 ≈ 𝐴) → ¬ 𝐴 ∈ FinIV) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfin4 10335 | . . 3 ⊢ (𝐴 ∈ FinIV → (𝐴 ∈ FinIV ↔ ¬ ∃𝑥(𝑥 ⊊ 𝐴 ∧ 𝑥 ≈ 𝐴))) | |
2 | 1 | ibi 267 | . 2 ⊢ (𝐴 ∈ FinIV → ¬ ∃𝑥(𝑥 ⊊ 𝐴 ∧ 𝑥 ≈ 𝐴)) |
3 | relen 8989 | . . . . 5 ⊢ Rel ≈ | |
4 | 3 | brrelex1i 5745 | . . . 4 ⊢ (𝑋 ≈ 𝐴 → 𝑋 ∈ V) |
5 | 4 | adantl 481 | . . 3 ⊢ ((𝑋 ⊊ 𝐴 ∧ 𝑋 ≈ 𝐴) → 𝑋 ∈ V) |
6 | psseq1 4100 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑥 ⊊ 𝐴 ↔ 𝑋 ⊊ 𝐴)) | |
7 | breq1 5151 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑥 ≈ 𝐴 ↔ 𝑋 ≈ 𝐴)) | |
8 | 6, 7 | anbi12d 632 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝑥 ⊊ 𝐴 ∧ 𝑥 ≈ 𝐴) ↔ (𝑋 ⊊ 𝐴 ∧ 𝑋 ≈ 𝐴))) |
9 | 8 | spcegv 3597 | . . 3 ⊢ (𝑋 ∈ V → ((𝑋 ⊊ 𝐴 ∧ 𝑋 ≈ 𝐴) → ∃𝑥(𝑥 ⊊ 𝐴 ∧ 𝑥 ≈ 𝐴))) |
10 | 5, 9 | mpcom 38 | . 2 ⊢ ((𝑋 ⊊ 𝐴 ∧ 𝑋 ≈ 𝐴) → ∃𝑥(𝑥 ⊊ 𝐴 ∧ 𝑥 ≈ 𝐴)) |
11 | 2, 10 | nsyl3 138 | 1 ⊢ ((𝑋 ⊊ 𝐴 ∧ 𝑋 ≈ 𝐴) → ¬ 𝐴 ∈ FinIV) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∃wex 1776 ∈ wcel 2106 Vcvv 3478 ⊊ wpss 3964 class class class wbr 5148 ≈ cen 8981 FinIVcfin4 10318 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-xp 5695 df-rel 5696 df-en 8985 df-fin4 10325 |
This theorem is referenced by: fin4en1 10347 ssfin4 10348 ominf4 10350 isfin4p1 10353 |
Copyright terms: Public domain | W3C validator |