MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sdom2en01 Structured version   Visualization version   GIF version

Theorem sdom2en01 10371
Description: A set with less than two elements has 0 or 1. (Contributed by Stefan O'Rear, 30-Oct-2014.)
Assertion
Ref Expression
sdom2en01 (𝐴 ≺ 2o ↔ (𝐴 = ∅ ∨ 𝐴 ≈ 1o))

Proof of Theorem sdom2en01
StepHypRef Expression
1 onfin2 9294 . . . . 5 ω = (On ∩ Fin)
2 inss2 4259 . . . . 5 (On ∩ Fin) ⊆ Fin
31, 2eqsstri 4043 . . . 4 ω ⊆ Fin
4 2onn 8698 . . . 4 2o ∈ ω
53, 4sselii 4005 . . 3 2o ∈ Fin
6 sdomdom 9040 . . 3 (𝐴 ≺ 2o𝐴 ≼ 2o)
7 domfi 9255 . . 3 ((2o ∈ Fin ∧ 𝐴 ≼ 2o) → 𝐴 ∈ Fin)
85, 6, 7sylancr 586 . 2 (𝐴 ≺ 2o𝐴 ∈ Fin)
9 id 22 . . . 4 (𝐴 = ∅ → 𝐴 = ∅)
10 0fi 9108 . . . 4 ∅ ∈ Fin
119, 10eqeltrdi 2852 . . 3 (𝐴 = ∅ → 𝐴 ∈ Fin)
12 1onn 8696 . . . . 5 1o ∈ ω
133, 12sselii 4005 . . . 4 1o ∈ Fin
14 enfi 9253 . . . 4 (𝐴 ≈ 1o → (𝐴 ∈ Fin ↔ 1o ∈ Fin))
1513, 14mpbiri 258 . . 3 (𝐴 ≈ 1o𝐴 ∈ Fin)
1611, 15jaoi 856 . 2 ((𝐴 = ∅ ∨ 𝐴 ≈ 1o) → 𝐴 ∈ Fin)
17 df2o3 8530 . . . . . 6 2o = {∅, 1o}
1817eleq2i 2836 . . . . 5 ((card‘𝐴) ∈ 2o ↔ (card‘𝐴) ∈ {∅, 1o})
19 fvex 6933 . . . . . 6 (card‘𝐴) ∈ V
2019elpr 4672 . . . . 5 ((card‘𝐴) ∈ {∅, 1o} ↔ ((card‘𝐴) = ∅ ∨ (card‘𝐴) = 1o))
2118, 20bitri 275 . . . 4 ((card‘𝐴) ∈ 2o ↔ ((card‘𝐴) = ∅ ∨ (card‘𝐴) = 1o))
2221a1i 11 . . 3 (𝐴 ∈ Fin → ((card‘𝐴) ∈ 2o ↔ ((card‘𝐴) = ∅ ∨ (card‘𝐴) = 1o)))
23 cardnn 10032 . . . . . 6 (2o ∈ ω → (card‘2o) = 2o)
244, 23ax-mp 5 . . . . 5 (card‘2o) = 2o
2524eleq2i 2836 . . . 4 ((card‘𝐴) ∈ (card‘2o) ↔ (card‘𝐴) ∈ 2o)
26 finnum 10017 . . . . 5 (𝐴 ∈ Fin → 𝐴 ∈ dom card)
27 2on 8536 . . . . . 6 2o ∈ On
28 onenon 10018 . . . . . 6 (2o ∈ On → 2o ∈ dom card)
2927, 28ax-mp 5 . . . . 5 2o ∈ dom card
30 cardsdom2 10057 . . . . 5 ((𝐴 ∈ dom card ∧ 2o ∈ dom card) → ((card‘𝐴) ∈ (card‘2o) ↔ 𝐴 ≺ 2o))
3126, 29, 30sylancl 585 . . . 4 (𝐴 ∈ Fin → ((card‘𝐴) ∈ (card‘2o) ↔ 𝐴 ≺ 2o))
3225, 31bitr3id 285 . . 3 (𝐴 ∈ Fin → ((card‘𝐴) ∈ 2o𝐴 ≺ 2o))
33 cardnueq0 10033 . . . . 5 (𝐴 ∈ dom card → ((card‘𝐴) = ∅ ↔ 𝐴 = ∅))
3426, 33syl 17 . . . 4 (𝐴 ∈ Fin → ((card‘𝐴) = ∅ ↔ 𝐴 = ∅))
35 cardnn 10032 . . . . . . 7 (1o ∈ ω → (card‘1o) = 1o)
3612, 35ax-mp 5 . . . . . 6 (card‘1o) = 1o
3736eqeq2i 2753 . . . . 5 ((card‘𝐴) = (card‘1o) ↔ (card‘𝐴) = 1o)
38 finnum 10017 . . . . . . 7 (1o ∈ Fin → 1o ∈ dom card)
3913, 38ax-mp 5 . . . . . 6 1o ∈ dom card
40 carden2 10056 . . . . . 6 ((𝐴 ∈ dom card ∧ 1o ∈ dom card) → ((card‘𝐴) = (card‘1o) ↔ 𝐴 ≈ 1o))
4126, 39, 40sylancl 585 . . . . 5 (𝐴 ∈ Fin → ((card‘𝐴) = (card‘1o) ↔ 𝐴 ≈ 1o))
4237, 41bitr3id 285 . . . 4 (𝐴 ∈ Fin → ((card‘𝐴) = 1o𝐴 ≈ 1o))
4334, 42orbi12d 917 . . 3 (𝐴 ∈ Fin → (((card‘𝐴) = ∅ ∨ (card‘𝐴) = 1o) ↔ (𝐴 = ∅ ∨ 𝐴 ≈ 1o)))
4422, 32, 433bitr3d 309 . 2 (𝐴 ∈ Fin → (𝐴 ≺ 2o ↔ (𝐴 = ∅ ∨ 𝐴 ≈ 1o)))
458, 16, 44pm5.21nii 378 1 (𝐴 ≺ 2o ↔ (𝐴 = ∅ ∨ 𝐴 ≈ 1o))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wo 846   = wceq 1537  wcel 2108  cin 3975  c0 4352  {cpr 4650   class class class wbr 5166  dom cdm 5700  Oncon0 6395  cfv 6573  ωcom 7903  1oc1o 8515  2oc2o 8516  cen 9000  cdom 9001  csdm 9002  Fincfn 9003  cardccrd 10004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-om 7904  df-1o 8522  df-2o 8523  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008
This theorem is referenced by:  fin56  10462  en2top  23013
  Copyright terms: Public domain W3C validator