Proof of Theorem sdom2en01
| Step | Hyp | Ref
| Expression |
| 1 | | onfin2 9268 |
. . . . 5
⊢ ω =
(On ∩ Fin) |
| 2 | | inss2 4238 |
. . . . 5
⊢ (On ∩
Fin) ⊆ Fin |
| 3 | 1, 2 | eqsstri 4030 |
. . . 4
⊢ ω
⊆ Fin |
| 4 | | 2onn 8680 |
. . . 4
⊢
2o ∈ ω |
| 5 | 3, 4 | sselii 3980 |
. . 3
⊢
2o ∈ Fin |
| 6 | | sdomdom 9020 |
. . 3
⊢ (𝐴 ≺ 2o →
𝐴 ≼
2o) |
| 7 | | domfi 9229 |
. . 3
⊢
((2o ∈ Fin ∧ 𝐴 ≼ 2o) → 𝐴 ∈ Fin) |
| 8 | 5, 6, 7 | sylancr 587 |
. 2
⊢ (𝐴 ≺ 2o →
𝐴 ∈
Fin) |
| 9 | | id 22 |
. . . 4
⊢ (𝐴 = ∅ → 𝐴 = ∅) |
| 10 | | 0fi 9082 |
. . . 4
⊢ ∅
∈ Fin |
| 11 | 9, 10 | eqeltrdi 2849 |
. . 3
⊢ (𝐴 = ∅ → 𝐴 ∈ Fin) |
| 12 | | 1onn 8678 |
. . . . 5
⊢
1o ∈ ω |
| 13 | 3, 12 | sselii 3980 |
. . . 4
⊢
1o ∈ Fin |
| 14 | | enfi 9227 |
. . . 4
⊢ (𝐴 ≈ 1o →
(𝐴 ∈ Fin ↔
1o ∈ Fin)) |
| 15 | 13, 14 | mpbiri 258 |
. . 3
⊢ (𝐴 ≈ 1o →
𝐴 ∈
Fin) |
| 16 | 11, 15 | jaoi 858 |
. 2
⊢ ((𝐴 = ∅ ∨ 𝐴 ≈ 1o) →
𝐴 ∈
Fin) |
| 17 | | df2o3 8514 |
. . . . . 6
⊢
2o = {∅, 1o} |
| 18 | 17 | eleq2i 2833 |
. . . . 5
⊢
((card‘𝐴)
∈ 2o ↔ (card‘𝐴) ∈ {∅,
1o}) |
| 19 | | fvex 6919 |
. . . . . 6
⊢
(card‘𝐴)
∈ V |
| 20 | 19 | elpr 4650 |
. . . . 5
⊢
((card‘𝐴)
∈ {∅, 1o} ↔ ((card‘𝐴) = ∅ ∨ (card‘𝐴) =
1o)) |
| 21 | 18, 20 | bitri 275 |
. . . 4
⊢
((card‘𝐴)
∈ 2o ↔ ((card‘𝐴) = ∅ ∨ (card‘𝐴) =
1o)) |
| 22 | 21 | a1i 11 |
. . 3
⊢ (𝐴 ∈ Fin →
((card‘𝐴) ∈
2o ↔ ((card‘𝐴) = ∅ ∨ (card‘𝐴) =
1o))) |
| 23 | | cardnn 10003 |
. . . . . 6
⊢
(2o ∈ ω → (card‘2o) =
2o) |
| 24 | 4, 23 | ax-mp 5 |
. . . . 5
⊢
(card‘2o) = 2o |
| 25 | 24 | eleq2i 2833 |
. . . 4
⊢
((card‘𝐴)
∈ (card‘2o) ↔ (card‘𝐴) ∈ 2o) |
| 26 | | finnum 9988 |
. . . . 5
⊢ (𝐴 ∈ Fin → 𝐴 ∈ dom
card) |
| 27 | | 2on 8520 |
. . . . . 6
⊢
2o ∈ On |
| 28 | | onenon 9989 |
. . . . . 6
⊢
(2o ∈ On → 2o ∈ dom
card) |
| 29 | 27, 28 | ax-mp 5 |
. . . . 5
⊢
2o ∈ dom card |
| 30 | | cardsdom2 10028 |
. . . . 5
⊢ ((𝐴 ∈ dom card ∧
2o ∈ dom card) → ((card‘𝐴) ∈ (card‘2o) ↔
𝐴 ≺
2o)) |
| 31 | 26, 29, 30 | sylancl 586 |
. . . 4
⊢ (𝐴 ∈ Fin →
((card‘𝐴) ∈
(card‘2o) ↔ 𝐴 ≺ 2o)) |
| 32 | 25, 31 | bitr3id 285 |
. . 3
⊢ (𝐴 ∈ Fin →
((card‘𝐴) ∈
2o ↔ 𝐴
≺ 2o)) |
| 33 | | cardnueq0 10004 |
. . . . 5
⊢ (𝐴 ∈ dom card →
((card‘𝐴) = ∅
↔ 𝐴 =
∅)) |
| 34 | 26, 33 | syl 17 |
. . . 4
⊢ (𝐴 ∈ Fin →
((card‘𝐴) = ∅
↔ 𝐴 =
∅)) |
| 35 | | cardnn 10003 |
. . . . . . 7
⊢
(1o ∈ ω → (card‘1o) =
1o) |
| 36 | 12, 35 | ax-mp 5 |
. . . . . 6
⊢
(card‘1o) = 1o |
| 37 | 36 | eqeq2i 2750 |
. . . . 5
⊢
((card‘𝐴) =
(card‘1o) ↔ (card‘𝐴) = 1o) |
| 38 | | finnum 9988 |
. . . . . . 7
⊢
(1o ∈ Fin → 1o ∈ dom
card) |
| 39 | 13, 38 | ax-mp 5 |
. . . . . 6
⊢
1o ∈ dom card |
| 40 | | carden2 10027 |
. . . . . 6
⊢ ((𝐴 ∈ dom card ∧
1o ∈ dom card) → ((card‘𝐴) = (card‘1o) ↔ 𝐴 ≈
1o)) |
| 41 | 26, 39, 40 | sylancl 586 |
. . . . 5
⊢ (𝐴 ∈ Fin →
((card‘𝐴) =
(card‘1o) ↔ 𝐴 ≈ 1o)) |
| 42 | 37, 41 | bitr3id 285 |
. . . 4
⊢ (𝐴 ∈ Fin →
((card‘𝐴) =
1o ↔ 𝐴
≈ 1o)) |
| 43 | 34, 42 | orbi12d 919 |
. . 3
⊢ (𝐴 ∈ Fin →
(((card‘𝐴) = ∅
∨ (card‘𝐴) =
1o) ↔ (𝐴 =
∅ ∨ 𝐴 ≈
1o))) |
| 44 | 22, 32, 43 | 3bitr3d 309 |
. 2
⊢ (𝐴 ∈ Fin → (𝐴 ≺ 2o ↔
(𝐴 = ∅ ∨ 𝐴 ≈
1o))) |
| 45 | 8, 16, 44 | pm5.21nii 378 |
1
⊢ (𝐴 ≺ 2o ↔
(𝐴 = ∅ ∨ 𝐴 ≈
1o)) |