MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sdom2en01 Structured version   Visualization version   GIF version

Theorem sdom2en01 10293
Description: A set with less than two elements has 0 or 1. (Contributed by Stefan O'Rear, 30-Oct-2014.)
Assertion
Ref Expression
sdom2en01 (𝐴 β‰Ί 2o ↔ (𝐴 = βˆ… ∨ 𝐴 β‰ˆ 1o))

Proof of Theorem sdom2en01
StepHypRef Expression
1 onfin2 9227 . . . . 5 Ο‰ = (On ∩ Fin)
2 inss2 4228 . . . . 5 (On ∩ Fin) βŠ† Fin
31, 2eqsstri 4015 . . . 4 Ο‰ βŠ† Fin
4 2onn 8637 . . . 4 2o ∈ Ο‰
53, 4sselii 3978 . . 3 2o ∈ Fin
6 sdomdom 8972 . . 3 (𝐴 β‰Ί 2o β†’ 𝐴 β‰Ό 2o)
7 domfi 9188 . . 3 ((2o ∈ Fin ∧ 𝐴 β‰Ό 2o) β†’ 𝐴 ∈ Fin)
85, 6, 7sylancr 587 . 2 (𝐴 β‰Ί 2o β†’ 𝐴 ∈ Fin)
9 id 22 . . . 4 (𝐴 = βˆ… β†’ 𝐴 = βˆ…)
10 0fin 9167 . . . 4 βˆ… ∈ Fin
119, 10eqeltrdi 2841 . . 3 (𝐴 = βˆ… β†’ 𝐴 ∈ Fin)
12 1onn 8635 . . . . 5 1o ∈ Ο‰
133, 12sselii 3978 . . . 4 1o ∈ Fin
14 enfi 9186 . . . 4 (𝐴 β‰ˆ 1o β†’ (𝐴 ∈ Fin ↔ 1o ∈ Fin))
1513, 14mpbiri 257 . . 3 (𝐴 β‰ˆ 1o β†’ 𝐴 ∈ Fin)
1611, 15jaoi 855 . 2 ((𝐴 = βˆ… ∨ 𝐴 β‰ˆ 1o) β†’ 𝐴 ∈ Fin)
17 df2o3 8470 . . . . . 6 2o = {βˆ…, 1o}
1817eleq2i 2825 . . . . 5 ((cardβ€˜π΄) ∈ 2o ↔ (cardβ€˜π΄) ∈ {βˆ…, 1o})
19 fvex 6901 . . . . . 6 (cardβ€˜π΄) ∈ V
2019elpr 4650 . . . . 5 ((cardβ€˜π΄) ∈ {βˆ…, 1o} ↔ ((cardβ€˜π΄) = βˆ… ∨ (cardβ€˜π΄) = 1o))
2118, 20bitri 274 . . . 4 ((cardβ€˜π΄) ∈ 2o ↔ ((cardβ€˜π΄) = βˆ… ∨ (cardβ€˜π΄) = 1o))
2221a1i 11 . . 3 (𝐴 ∈ Fin β†’ ((cardβ€˜π΄) ∈ 2o ↔ ((cardβ€˜π΄) = βˆ… ∨ (cardβ€˜π΄) = 1o)))
23 cardnn 9954 . . . . . 6 (2o ∈ Ο‰ β†’ (cardβ€˜2o) = 2o)
244, 23ax-mp 5 . . . . 5 (cardβ€˜2o) = 2o
2524eleq2i 2825 . . . 4 ((cardβ€˜π΄) ∈ (cardβ€˜2o) ↔ (cardβ€˜π΄) ∈ 2o)
26 finnum 9939 . . . . 5 (𝐴 ∈ Fin β†’ 𝐴 ∈ dom card)
27 2on 8476 . . . . . 6 2o ∈ On
28 onenon 9940 . . . . . 6 (2o ∈ On β†’ 2o ∈ dom card)
2927, 28ax-mp 5 . . . . 5 2o ∈ dom card
30 cardsdom2 9979 . . . . 5 ((𝐴 ∈ dom card ∧ 2o ∈ dom card) β†’ ((cardβ€˜π΄) ∈ (cardβ€˜2o) ↔ 𝐴 β‰Ί 2o))
3126, 29, 30sylancl 586 . . . 4 (𝐴 ∈ Fin β†’ ((cardβ€˜π΄) ∈ (cardβ€˜2o) ↔ 𝐴 β‰Ί 2o))
3225, 31bitr3id 284 . . 3 (𝐴 ∈ Fin β†’ ((cardβ€˜π΄) ∈ 2o ↔ 𝐴 β‰Ί 2o))
33 cardnueq0 9955 . . . . 5 (𝐴 ∈ dom card β†’ ((cardβ€˜π΄) = βˆ… ↔ 𝐴 = βˆ…))
3426, 33syl 17 . . . 4 (𝐴 ∈ Fin β†’ ((cardβ€˜π΄) = βˆ… ↔ 𝐴 = βˆ…))
35 cardnn 9954 . . . . . . 7 (1o ∈ Ο‰ β†’ (cardβ€˜1o) = 1o)
3612, 35ax-mp 5 . . . . . 6 (cardβ€˜1o) = 1o
3736eqeq2i 2745 . . . . 5 ((cardβ€˜π΄) = (cardβ€˜1o) ↔ (cardβ€˜π΄) = 1o)
38 finnum 9939 . . . . . . 7 (1o ∈ Fin β†’ 1o ∈ dom card)
3913, 38ax-mp 5 . . . . . 6 1o ∈ dom card
40 carden2 9978 . . . . . 6 ((𝐴 ∈ dom card ∧ 1o ∈ dom card) β†’ ((cardβ€˜π΄) = (cardβ€˜1o) ↔ 𝐴 β‰ˆ 1o))
4126, 39, 40sylancl 586 . . . . 5 (𝐴 ∈ Fin β†’ ((cardβ€˜π΄) = (cardβ€˜1o) ↔ 𝐴 β‰ˆ 1o))
4237, 41bitr3id 284 . . . 4 (𝐴 ∈ Fin β†’ ((cardβ€˜π΄) = 1o ↔ 𝐴 β‰ˆ 1o))
4334, 42orbi12d 917 . . 3 (𝐴 ∈ Fin β†’ (((cardβ€˜π΄) = βˆ… ∨ (cardβ€˜π΄) = 1o) ↔ (𝐴 = βˆ… ∨ 𝐴 β‰ˆ 1o)))
4422, 32, 433bitr3d 308 . 2 (𝐴 ∈ Fin β†’ (𝐴 β‰Ί 2o ↔ (𝐴 = βˆ… ∨ 𝐴 β‰ˆ 1o)))
458, 16, 44pm5.21nii 379 1 (𝐴 β‰Ί 2o ↔ (𝐴 = βˆ… ∨ 𝐴 β‰ˆ 1o))
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   ∨ wo 845   = wceq 1541   ∈ wcel 2106   ∩ cin 3946  βˆ…c0 4321  {cpr 4629   class class class wbr 5147  dom cdm 5675  Oncon0 6361  β€˜cfv 6540  Ο‰com 7851  1oc1o 8455  2oc2o 8456   β‰ˆ cen 8932   β‰Ό cdom 8933   β‰Ί csdm 8934  Fincfn 8935  cardccrd 9926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-om 7852  df-1o 8462  df-2o 8463  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-card 9930
This theorem is referenced by:  fin56  10384  en2top  22479
  Copyright terms: Public domain W3C validator