MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sdom2en01 Structured version   Visualization version   GIF version

Theorem sdom2en01 9989
Description: A set with less than two elements has 0 or 1. (Contributed by Stefan O'Rear, 30-Oct-2014.)
Assertion
Ref Expression
sdom2en01 (𝐴 ≺ 2o ↔ (𝐴 = ∅ ∨ 𝐴 ≈ 1o))

Proof of Theorem sdom2en01
StepHypRef Expression
1 onfin2 8945 . . . . 5 ω = (On ∩ Fin)
2 inss2 4160 . . . . 5 (On ∩ Fin) ⊆ Fin
31, 2eqsstri 3951 . . . 4 ω ⊆ Fin
4 2onn 8433 . . . 4 2o ∈ ω
53, 4sselii 3914 . . 3 2o ∈ Fin
6 sdomdom 8723 . . 3 (𝐴 ≺ 2o𝐴 ≼ 2o)
7 domfi 8935 . . 3 ((2o ∈ Fin ∧ 𝐴 ≼ 2o) → 𝐴 ∈ Fin)
85, 6, 7sylancr 586 . 2 (𝐴 ≺ 2o𝐴 ∈ Fin)
9 id 22 . . . 4 (𝐴 = ∅ → 𝐴 = ∅)
10 0fin 8916 . . . 4 ∅ ∈ Fin
119, 10eqeltrdi 2847 . . 3 (𝐴 = ∅ → 𝐴 ∈ Fin)
12 1onn 8432 . . . . 5 1o ∈ ω
133, 12sselii 3914 . . . 4 1o ∈ Fin
14 enfi 8933 . . . 4 (𝐴 ≈ 1o → (𝐴 ∈ Fin ↔ 1o ∈ Fin))
1513, 14mpbiri 257 . . 3 (𝐴 ≈ 1o𝐴 ∈ Fin)
1611, 15jaoi 853 . 2 ((𝐴 = ∅ ∨ 𝐴 ≈ 1o) → 𝐴 ∈ Fin)
17 df2o3 8282 . . . . . 6 2o = {∅, 1o}
1817eleq2i 2830 . . . . 5 ((card‘𝐴) ∈ 2o ↔ (card‘𝐴) ∈ {∅, 1o})
19 fvex 6769 . . . . . 6 (card‘𝐴) ∈ V
2019elpr 4581 . . . . 5 ((card‘𝐴) ∈ {∅, 1o} ↔ ((card‘𝐴) = ∅ ∨ (card‘𝐴) = 1o))
2118, 20bitri 274 . . . 4 ((card‘𝐴) ∈ 2o ↔ ((card‘𝐴) = ∅ ∨ (card‘𝐴) = 1o))
2221a1i 11 . . 3 (𝐴 ∈ Fin → ((card‘𝐴) ∈ 2o ↔ ((card‘𝐴) = ∅ ∨ (card‘𝐴) = 1o)))
23 cardnn 9652 . . . . . 6 (2o ∈ ω → (card‘2o) = 2o)
244, 23ax-mp 5 . . . . 5 (card‘2o) = 2o
2524eleq2i 2830 . . . 4 ((card‘𝐴) ∈ (card‘2o) ↔ (card‘𝐴) ∈ 2o)
26 finnum 9637 . . . . 5 (𝐴 ∈ Fin → 𝐴 ∈ dom card)
27 2on 8275 . . . . . 6 2o ∈ On
28 onenon 9638 . . . . . 6 (2o ∈ On → 2o ∈ dom card)
2927, 28ax-mp 5 . . . . 5 2o ∈ dom card
30 cardsdom2 9677 . . . . 5 ((𝐴 ∈ dom card ∧ 2o ∈ dom card) → ((card‘𝐴) ∈ (card‘2o) ↔ 𝐴 ≺ 2o))
3126, 29, 30sylancl 585 . . . 4 (𝐴 ∈ Fin → ((card‘𝐴) ∈ (card‘2o) ↔ 𝐴 ≺ 2o))
3225, 31bitr3id 284 . . 3 (𝐴 ∈ Fin → ((card‘𝐴) ∈ 2o𝐴 ≺ 2o))
33 cardnueq0 9653 . . . . 5 (𝐴 ∈ dom card → ((card‘𝐴) = ∅ ↔ 𝐴 = ∅))
3426, 33syl 17 . . . 4 (𝐴 ∈ Fin → ((card‘𝐴) = ∅ ↔ 𝐴 = ∅))
35 cardnn 9652 . . . . . . 7 (1o ∈ ω → (card‘1o) = 1o)
3612, 35ax-mp 5 . . . . . 6 (card‘1o) = 1o
3736eqeq2i 2751 . . . . 5 ((card‘𝐴) = (card‘1o) ↔ (card‘𝐴) = 1o)
38 finnum 9637 . . . . . . 7 (1o ∈ Fin → 1o ∈ dom card)
3913, 38ax-mp 5 . . . . . 6 1o ∈ dom card
40 carden2 9676 . . . . . 6 ((𝐴 ∈ dom card ∧ 1o ∈ dom card) → ((card‘𝐴) = (card‘1o) ↔ 𝐴 ≈ 1o))
4126, 39, 40sylancl 585 . . . . 5 (𝐴 ∈ Fin → ((card‘𝐴) = (card‘1o) ↔ 𝐴 ≈ 1o))
4237, 41bitr3id 284 . . . 4 (𝐴 ∈ Fin → ((card‘𝐴) = 1o𝐴 ≈ 1o))
4334, 42orbi12d 915 . . 3 (𝐴 ∈ Fin → (((card‘𝐴) = ∅ ∨ (card‘𝐴) = 1o) ↔ (𝐴 = ∅ ∨ 𝐴 ≈ 1o)))
4422, 32, 433bitr3d 308 . 2 (𝐴 ∈ Fin → (𝐴 ≺ 2o ↔ (𝐴 = ∅ ∨ 𝐴 ≈ 1o)))
458, 16, 44pm5.21nii 379 1 (𝐴 ≺ 2o ↔ (𝐴 = ∅ ∨ 𝐴 ≈ 1o))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wo 843   = wceq 1539  wcel 2108  cin 3882  c0 4253  {cpr 4560   class class class wbr 5070  dom cdm 5580  Oncon0 6251  cfv 6418  ωcom 7687  1oc1o 8260  2oc2o 8261  cen 8688  cdom 8689  csdm 8690  Fincfn 8691  cardccrd 9624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-om 7688  df-1o 8267  df-2o 8268  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628
This theorem is referenced by:  fin56  10080  en2top  22043
  Copyright terms: Public domain W3C validator