Step | Hyp | Ref
| Expression |
1 | | onfin2 9227 |
. . . . 5
β’ Ο =
(On β© Fin) |
2 | | inss2 4228 |
. . . . 5
β’ (On β©
Fin) β Fin |
3 | 1, 2 | eqsstri 4015 |
. . . 4
β’ Ο
β Fin |
4 | | 2onn 8637 |
. . . 4
β’
2o β Ο |
5 | 3, 4 | sselii 3978 |
. . 3
β’
2o β Fin |
6 | | sdomdom 8972 |
. . 3
β’ (π΄ βΊ 2o β
π΄ βΌ
2o) |
7 | | domfi 9188 |
. . 3
β’
((2o β Fin β§ π΄ βΌ 2o) β π΄ β Fin) |
8 | 5, 6, 7 | sylancr 587 |
. 2
β’ (π΄ βΊ 2o β
π΄ β
Fin) |
9 | | id 22 |
. . . 4
β’ (π΄ = β
β π΄ = β
) |
10 | | 0fin 9167 |
. . . 4
β’ β
β Fin |
11 | 9, 10 | eqeltrdi 2841 |
. . 3
β’ (π΄ = β
β π΄ β Fin) |
12 | | 1onn 8635 |
. . . . 5
β’
1o β Ο |
13 | 3, 12 | sselii 3978 |
. . . 4
β’
1o β Fin |
14 | | enfi 9186 |
. . . 4
β’ (π΄ β 1o β
(π΄ β Fin β
1o β Fin)) |
15 | 13, 14 | mpbiri 257 |
. . 3
β’ (π΄ β 1o β
π΄ β
Fin) |
16 | 11, 15 | jaoi 855 |
. 2
β’ ((π΄ = β
β¨ π΄ β 1o) β
π΄ β
Fin) |
17 | | df2o3 8470 |
. . . . . 6
β’
2o = {β
, 1o} |
18 | 17 | eleq2i 2825 |
. . . . 5
β’
((cardβπ΄)
β 2o β (cardβπ΄) β {β
,
1o}) |
19 | | fvex 6901 |
. . . . . 6
β’
(cardβπ΄)
β V |
20 | 19 | elpr 4650 |
. . . . 5
β’
((cardβπ΄)
β {β
, 1o} β ((cardβπ΄) = β
β¨ (cardβπ΄) =
1o)) |
21 | 18, 20 | bitri 274 |
. . . 4
β’
((cardβπ΄)
β 2o β ((cardβπ΄) = β
β¨ (cardβπ΄) =
1o)) |
22 | 21 | a1i 11 |
. . 3
β’ (π΄ β Fin β
((cardβπ΄) β
2o β ((cardβπ΄) = β
β¨ (cardβπ΄) =
1o))) |
23 | | cardnn 9954 |
. . . . . 6
β’
(2o β Ο β (cardβ2o) =
2o) |
24 | 4, 23 | ax-mp 5 |
. . . . 5
β’
(cardβ2o) = 2o |
25 | 24 | eleq2i 2825 |
. . . 4
β’
((cardβπ΄)
β (cardβ2o) β (cardβπ΄) β 2o) |
26 | | finnum 9939 |
. . . . 5
β’ (π΄ β Fin β π΄ β dom
card) |
27 | | 2on 8476 |
. . . . . 6
β’
2o β On |
28 | | onenon 9940 |
. . . . . 6
β’
(2o β On β 2o β dom
card) |
29 | 27, 28 | ax-mp 5 |
. . . . 5
β’
2o β dom card |
30 | | cardsdom2 9979 |
. . . . 5
β’ ((π΄ β dom card β§
2o β dom card) β ((cardβπ΄) β (cardβ2o) β
π΄ βΊ
2o)) |
31 | 26, 29, 30 | sylancl 586 |
. . . 4
β’ (π΄ β Fin β
((cardβπ΄) β
(cardβ2o) β π΄ βΊ 2o)) |
32 | 25, 31 | bitr3id 284 |
. . 3
β’ (π΄ β Fin β
((cardβπ΄) β
2o β π΄
βΊ 2o)) |
33 | | cardnueq0 9955 |
. . . . 5
β’ (π΄ β dom card β
((cardβπ΄) = β
β π΄ =
β
)) |
34 | 26, 33 | syl 17 |
. . . 4
β’ (π΄ β Fin β
((cardβπ΄) = β
β π΄ =
β
)) |
35 | | cardnn 9954 |
. . . . . . 7
β’
(1o β Ο β (cardβ1o) =
1o) |
36 | 12, 35 | ax-mp 5 |
. . . . . 6
β’
(cardβ1o) = 1o |
37 | 36 | eqeq2i 2745 |
. . . . 5
β’
((cardβπ΄) =
(cardβ1o) β (cardβπ΄) = 1o) |
38 | | finnum 9939 |
. . . . . . 7
β’
(1o β Fin β 1o β dom
card) |
39 | 13, 38 | ax-mp 5 |
. . . . . 6
β’
1o β dom card |
40 | | carden2 9978 |
. . . . . 6
β’ ((π΄ β dom card β§
1o β dom card) β ((cardβπ΄) = (cardβ1o) β π΄ β
1o)) |
41 | 26, 39, 40 | sylancl 586 |
. . . . 5
β’ (π΄ β Fin β
((cardβπ΄) =
(cardβ1o) β π΄ β 1o)) |
42 | 37, 41 | bitr3id 284 |
. . . 4
β’ (π΄ β Fin β
((cardβπ΄) =
1o β π΄
β 1o)) |
43 | 34, 42 | orbi12d 917 |
. . 3
β’ (π΄ β Fin β
(((cardβπ΄) = β
β¨ (cardβπ΄) =
1o) β (π΄ =
β
β¨ π΄ β
1o))) |
44 | 22, 32, 43 | 3bitr3d 308 |
. 2
β’ (π΄ β Fin β (π΄ βΊ 2o β
(π΄ = β
β¨ π΄ β
1o))) |
45 | 8, 16, 44 | pm5.21nii 379 |
1
β’ (π΄ βΊ 2o β
(π΄ = β
β¨ π΄ β
1o)) |