Proof of Theorem sdom2en01
Step | Hyp | Ref
| Expression |
1 | | onfin2 9014 |
. . . . 5
⊢ ω =
(On ∩ Fin) |
2 | | inss2 4163 |
. . . . 5
⊢ (On ∩
Fin) ⊆ Fin |
3 | 1, 2 | eqsstri 3955 |
. . . 4
⊢ ω
⊆ Fin |
4 | | 2onn 8472 |
. . . 4
⊢
2o ∈ ω |
5 | 3, 4 | sselii 3918 |
. . 3
⊢
2o ∈ Fin |
6 | | sdomdom 8768 |
. . 3
⊢ (𝐴 ≺ 2o →
𝐴 ≼
2o) |
7 | | domfi 8975 |
. . 3
⊢
((2o ∈ Fin ∧ 𝐴 ≼ 2o) → 𝐴 ∈ Fin) |
8 | 5, 6, 7 | sylancr 587 |
. 2
⊢ (𝐴 ≺ 2o →
𝐴 ∈
Fin) |
9 | | id 22 |
. . . 4
⊢ (𝐴 = ∅ → 𝐴 = ∅) |
10 | | 0fin 8954 |
. . . 4
⊢ ∅
∈ Fin |
11 | 9, 10 | eqeltrdi 2847 |
. . 3
⊢ (𝐴 = ∅ → 𝐴 ∈ Fin) |
12 | | 1onn 8470 |
. . . . 5
⊢
1o ∈ ω |
13 | 3, 12 | sselii 3918 |
. . . 4
⊢
1o ∈ Fin |
14 | | enfi 8973 |
. . . 4
⊢ (𝐴 ≈ 1o →
(𝐴 ∈ Fin ↔
1o ∈ Fin)) |
15 | 13, 14 | mpbiri 257 |
. . 3
⊢ (𝐴 ≈ 1o →
𝐴 ∈
Fin) |
16 | 11, 15 | jaoi 854 |
. 2
⊢ ((𝐴 = ∅ ∨ 𝐴 ≈ 1o) →
𝐴 ∈
Fin) |
17 | | df2o3 8305 |
. . . . . 6
⊢
2o = {∅, 1o} |
18 | 17 | eleq2i 2830 |
. . . . 5
⊢
((card‘𝐴)
∈ 2o ↔ (card‘𝐴) ∈ {∅,
1o}) |
19 | | fvex 6787 |
. . . . . 6
⊢
(card‘𝐴)
∈ V |
20 | 19 | elpr 4584 |
. . . . 5
⊢
((card‘𝐴)
∈ {∅, 1o} ↔ ((card‘𝐴) = ∅ ∨ (card‘𝐴) =
1o)) |
21 | 18, 20 | bitri 274 |
. . . 4
⊢
((card‘𝐴)
∈ 2o ↔ ((card‘𝐴) = ∅ ∨ (card‘𝐴) =
1o)) |
22 | 21 | a1i 11 |
. . 3
⊢ (𝐴 ∈ Fin →
((card‘𝐴) ∈
2o ↔ ((card‘𝐴) = ∅ ∨ (card‘𝐴) =
1o))) |
23 | | cardnn 9721 |
. . . . . 6
⊢
(2o ∈ ω → (card‘2o) =
2o) |
24 | 4, 23 | ax-mp 5 |
. . . . 5
⊢
(card‘2o) = 2o |
25 | 24 | eleq2i 2830 |
. . . 4
⊢
((card‘𝐴)
∈ (card‘2o) ↔ (card‘𝐴) ∈ 2o) |
26 | | finnum 9706 |
. . . . 5
⊢ (𝐴 ∈ Fin → 𝐴 ∈ dom
card) |
27 | | 2on 8311 |
. . . . . 6
⊢
2o ∈ On |
28 | | onenon 9707 |
. . . . . 6
⊢
(2o ∈ On → 2o ∈ dom
card) |
29 | 27, 28 | ax-mp 5 |
. . . . 5
⊢
2o ∈ dom card |
30 | | cardsdom2 9746 |
. . . . 5
⊢ ((𝐴 ∈ dom card ∧
2o ∈ dom card) → ((card‘𝐴) ∈ (card‘2o) ↔
𝐴 ≺
2o)) |
31 | 26, 29, 30 | sylancl 586 |
. . . 4
⊢ (𝐴 ∈ Fin →
((card‘𝐴) ∈
(card‘2o) ↔ 𝐴 ≺ 2o)) |
32 | 25, 31 | bitr3id 285 |
. . 3
⊢ (𝐴 ∈ Fin →
((card‘𝐴) ∈
2o ↔ 𝐴
≺ 2o)) |
33 | | cardnueq0 9722 |
. . . . 5
⊢ (𝐴 ∈ dom card →
((card‘𝐴) = ∅
↔ 𝐴 =
∅)) |
34 | 26, 33 | syl 17 |
. . . 4
⊢ (𝐴 ∈ Fin →
((card‘𝐴) = ∅
↔ 𝐴 =
∅)) |
35 | | cardnn 9721 |
. . . . . . 7
⊢
(1o ∈ ω → (card‘1o) =
1o) |
36 | 12, 35 | ax-mp 5 |
. . . . . 6
⊢
(card‘1o) = 1o |
37 | 36 | eqeq2i 2751 |
. . . . 5
⊢
((card‘𝐴) =
(card‘1o) ↔ (card‘𝐴) = 1o) |
38 | | finnum 9706 |
. . . . . . 7
⊢
(1o ∈ Fin → 1o ∈ dom
card) |
39 | 13, 38 | ax-mp 5 |
. . . . . 6
⊢
1o ∈ dom card |
40 | | carden2 9745 |
. . . . . 6
⊢ ((𝐴 ∈ dom card ∧
1o ∈ dom card) → ((card‘𝐴) = (card‘1o) ↔ 𝐴 ≈
1o)) |
41 | 26, 39, 40 | sylancl 586 |
. . . . 5
⊢ (𝐴 ∈ Fin →
((card‘𝐴) =
(card‘1o) ↔ 𝐴 ≈ 1o)) |
42 | 37, 41 | bitr3id 285 |
. . . 4
⊢ (𝐴 ∈ Fin →
((card‘𝐴) =
1o ↔ 𝐴
≈ 1o)) |
43 | 34, 42 | orbi12d 916 |
. . 3
⊢ (𝐴 ∈ Fin →
(((card‘𝐴) = ∅
∨ (card‘𝐴) =
1o) ↔ (𝐴 =
∅ ∨ 𝐴 ≈
1o))) |
44 | 22, 32, 43 | 3bitr3d 309 |
. 2
⊢ (𝐴 ∈ Fin → (𝐴 ≺ 2o ↔
(𝐴 = ∅ ∨ 𝐴 ≈
1o))) |
45 | 8, 16, 44 | pm5.21nii 380 |
1
⊢ (𝐴 ≺ 2o ↔
(𝐴 = ∅ ∨ 𝐴 ≈
1o)) |