MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sdom2en01 Structured version   Visualization version   GIF version

Theorem sdom2en01 9713
Description: A set with less than two elements has 0 or 1. (Contributed by Stefan O'Rear, 30-Oct-2014.)
Assertion
Ref Expression
sdom2en01 (𝐴 ≺ 2o ↔ (𝐴 = ∅ ∨ 𝐴 ≈ 1o))

Proof of Theorem sdom2en01
StepHypRef Expression
1 onfin2 8695 . . . . 5 ω = (On ∩ Fin)
2 inss2 4156 . . . . 5 (On ∩ Fin) ⊆ Fin
31, 2eqsstri 3949 . . . 4 ω ⊆ Fin
4 2onn 8249 . . . 4 2o ∈ ω
53, 4sselii 3912 . . 3 2o ∈ Fin
6 sdomdom 8520 . . 3 (𝐴 ≺ 2o𝐴 ≼ 2o)
7 domfi 8723 . . 3 ((2o ∈ Fin ∧ 𝐴 ≼ 2o) → 𝐴 ∈ Fin)
85, 6, 7sylancr 590 . 2 (𝐴 ≺ 2o𝐴 ∈ Fin)
9 id 22 . . . 4 (𝐴 = ∅ → 𝐴 = ∅)
10 0fin 8730 . . . 4 ∅ ∈ Fin
119, 10eqeltrdi 2898 . . 3 (𝐴 = ∅ → 𝐴 ∈ Fin)
12 1onn 8248 . . . . 5 1o ∈ ω
133, 12sselii 3912 . . . 4 1o ∈ Fin
14 enfi 8718 . . . 4 (𝐴 ≈ 1o → (𝐴 ∈ Fin ↔ 1o ∈ Fin))
1513, 14mpbiri 261 . . 3 (𝐴 ≈ 1o𝐴 ∈ Fin)
1611, 15jaoi 854 . 2 ((𝐴 = ∅ ∨ 𝐴 ≈ 1o) → 𝐴 ∈ Fin)
17 df2o3 8100 . . . . . 6 2o = {∅, 1o}
1817eleq2i 2881 . . . . 5 ((card‘𝐴) ∈ 2o ↔ (card‘𝐴) ∈ {∅, 1o})
19 fvex 6658 . . . . . 6 (card‘𝐴) ∈ V
2019elpr 4548 . . . . 5 ((card‘𝐴) ∈ {∅, 1o} ↔ ((card‘𝐴) = ∅ ∨ (card‘𝐴) = 1o))
2118, 20bitri 278 . . . 4 ((card‘𝐴) ∈ 2o ↔ ((card‘𝐴) = ∅ ∨ (card‘𝐴) = 1o))
2221a1i 11 . . 3 (𝐴 ∈ Fin → ((card‘𝐴) ∈ 2o ↔ ((card‘𝐴) = ∅ ∨ (card‘𝐴) = 1o)))
23 cardnn 9376 . . . . . 6 (2o ∈ ω → (card‘2o) = 2o)
244, 23ax-mp 5 . . . . 5 (card‘2o) = 2o
2524eleq2i 2881 . . . 4 ((card‘𝐴) ∈ (card‘2o) ↔ (card‘𝐴) ∈ 2o)
26 finnum 9361 . . . . 5 (𝐴 ∈ Fin → 𝐴 ∈ dom card)
27 2on 8094 . . . . . 6 2o ∈ On
28 onenon 9362 . . . . . 6 (2o ∈ On → 2o ∈ dom card)
2927, 28ax-mp 5 . . . . 5 2o ∈ dom card
30 cardsdom2 9401 . . . . 5 ((𝐴 ∈ dom card ∧ 2o ∈ dom card) → ((card‘𝐴) ∈ (card‘2o) ↔ 𝐴 ≺ 2o))
3126, 29, 30sylancl 589 . . . 4 (𝐴 ∈ Fin → ((card‘𝐴) ∈ (card‘2o) ↔ 𝐴 ≺ 2o))
3225, 31bitr3id 288 . . 3 (𝐴 ∈ Fin → ((card‘𝐴) ∈ 2o𝐴 ≺ 2o))
33 cardnueq0 9377 . . . . 5 (𝐴 ∈ dom card → ((card‘𝐴) = ∅ ↔ 𝐴 = ∅))
3426, 33syl 17 . . . 4 (𝐴 ∈ Fin → ((card‘𝐴) = ∅ ↔ 𝐴 = ∅))
35 cardnn 9376 . . . . . . 7 (1o ∈ ω → (card‘1o) = 1o)
3612, 35ax-mp 5 . . . . . 6 (card‘1o) = 1o
3736eqeq2i 2811 . . . . 5 ((card‘𝐴) = (card‘1o) ↔ (card‘𝐴) = 1o)
38 finnum 9361 . . . . . . 7 (1o ∈ Fin → 1o ∈ dom card)
3913, 38ax-mp 5 . . . . . 6 1o ∈ dom card
40 carden2 9400 . . . . . 6 ((𝐴 ∈ dom card ∧ 1o ∈ dom card) → ((card‘𝐴) = (card‘1o) ↔ 𝐴 ≈ 1o))
4126, 39, 40sylancl 589 . . . . 5 (𝐴 ∈ Fin → ((card‘𝐴) = (card‘1o) ↔ 𝐴 ≈ 1o))
4237, 41bitr3id 288 . . . 4 (𝐴 ∈ Fin → ((card‘𝐴) = 1o𝐴 ≈ 1o))
4334, 42orbi12d 916 . . 3 (𝐴 ∈ Fin → (((card‘𝐴) = ∅ ∨ (card‘𝐴) = 1o) ↔ (𝐴 = ∅ ∨ 𝐴 ≈ 1o)))
4422, 32, 433bitr3d 312 . 2 (𝐴 ∈ Fin → (𝐴 ≺ 2o ↔ (𝐴 = ∅ ∨ 𝐴 ≈ 1o)))
458, 16, 44pm5.21nii 383 1 (𝐴 ≺ 2o ↔ (𝐴 = ∅ ∨ 𝐴 ≈ 1o))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wo 844   = wceq 1538  wcel 2111  cin 3880  c0 4243  {cpr 4527   class class class wbr 5030  dom cdm 5519  Oncon0 6159  cfv 6324  ωcom 7560  1oc1o 8078  2oc2o 8079  cen 8489  cdom 8490  csdm 8491  Fincfn 8492  cardccrd 9348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-om 7561  df-1o 8085  df-2o 8086  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-card 9352
This theorem is referenced by:  fin56  9804  en2top  21590
  Copyright terms: Public domain W3C validator