MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sdom2en01 Structured version   Visualization version   GIF version

Theorem sdom2en01 10342
Description: A set with less than two elements has 0 or 1. (Contributed by Stefan O'Rear, 30-Oct-2014.)
Assertion
Ref Expression
sdom2en01 (𝐴 ≺ 2o ↔ (𝐴 = ∅ ∨ 𝐴 ≈ 1o))

Proof of Theorem sdom2en01
StepHypRef Expression
1 onfin2 9268 . . . . 5 ω = (On ∩ Fin)
2 inss2 4238 . . . . 5 (On ∩ Fin) ⊆ Fin
31, 2eqsstri 4030 . . . 4 ω ⊆ Fin
4 2onn 8680 . . . 4 2o ∈ ω
53, 4sselii 3980 . . 3 2o ∈ Fin
6 sdomdom 9020 . . 3 (𝐴 ≺ 2o𝐴 ≼ 2o)
7 domfi 9229 . . 3 ((2o ∈ Fin ∧ 𝐴 ≼ 2o) → 𝐴 ∈ Fin)
85, 6, 7sylancr 587 . 2 (𝐴 ≺ 2o𝐴 ∈ Fin)
9 id 22 . . . 4 (𝐴 = ∅ → 𝐴 = ∅)
10 0fi 9082 . . . 4 ∅ ∈ Fin
119, 10eqeltrdi 2849 . . 3 (𝐴 = ∅ → 𝐴 ∈ Fin)
12 1onn 8678 . . . . 5 1o ∈ ω
133, 12sselii 3980 . . . 4 1o ∈ Fin
14 enfi 9227 . . . 4 (𝐴 ≈ 1o → (𝐴 ∈ Fin ↔ 1o ∈ Fin))
1513, 14mpbiri 258 . . 3 (𝐴 ≈ 1o𝐴 ∈ Fin)
1611, 15jaoi 858 . 2 ((𝐴 = ∅ ∨ 𝐴 ≈ 1o) → 𝐴 ∈ Fin)
17 df2o3 8514 . . . . . 6 2o = {∅, 1o}
1817eleq2i 2833 . . . . 5 ((card‘𝐴) ∈ 2o ↔ (card‘𝐴) ∈ {∅, 1o})
19 fvex 6919 . . . . . 6 (card‘𝐴) ∈ V
2019elpr 4650 . . . . 5 ((card‘𝐴) ∈ {∅, 1o} ↔ ((card‘𝐴) = ∅ ∨ (card‘𝐴) = 1o))
2118, 20bitri 275 . . . 4 ((card‘𝐴) ∈ 2o ↔ ((card‘𝐴) = ∅ ∨ (card‘𝐴) = 1o))
2221a1i 11 . . 3 (𝐴 ∈ Fin → ((card‘𝐴) ∈ 2o ↔ ((card‘𝐴) = ∅ ∨ (card‘𝐴) = 1o)))
23 cardnn 10003 . . . . . 6 (2o ∈ ω → (card‘2o) = 2o)
244, 23ax-mp 5 . . . . 5 (card‘2o) = 2o
2524eleq2i 2833 . . . 4 ((card‘𝐴) ∈ (card‘2o) ↔ (card‘𝐴) ∈ 2o)
26 finnum 9988 . . . . 5 (𝐴 ∈ Fin → 𝐴 ∈ dom card)
27 2on 8520 . . . . . 6 2o ∈ On
28 onenon 9989 . . . . . 6 (2o ∈ On → 2o ∈ dom card)
2927, 28ax-mp 5 . . . . 5 2o ∈ dom card
30 cardsdom2 10028 . . . . 5 ((𝐴 ∈ dom card ∧ 2o ∈ dom card) → ((card‘𝐴) ∈ (card‘2o) ↔ 𝐴 ≺ 2o))
3126, 29, 30sylancl 586 . . . 4 (𝐴 ∈ Fin → ((card‘𝐴) ∈ (card‘2o) ↔ 𝐴 ≺ 2o))
3225, 31bitr3id 285 . . 3 (𝐴 ∈ Fin → ((card‘𝐴) ∈ 2o𝐴 ≺ 2o))
33 cardnueq0 10004 . . . . 5 (𝐴 ∈ dom card → ((card‘𝐴) = ∅ ↔ 𝐴 = ∅))
3426, 33syl 17 . . . 4 (𝐴 ∈ Fin → ((card‘𝐴) = ∅ ↔ 𝐴 = ∅))
35 cardnn 10003 . . . . . . 7 (1o ∈ ω → (card‘1o) = 1o)
3612, 35ax-mp 5 . . . . . 6 (card‘1o) = 1o
3736eqeq2i 2750 . . . . 5 ((card‘𝐴) = (card‘1o) ↔ (card‘𝐴) = 1o)
38 finnum 9988 . . . . . . 7 (1o ∈ Fin → 1o ∈ dom card)
3913, 38ax-mp 5 . . . . . 6 1o ∈ dom card
40 carden2 10027 . . . . . 6 ((𝐴 ∈ dom card ∧ 1o ∈ dom card) → ((card‘𝐴) = (card‘1o) ↔ 𝐴 ≈ 1o))
4126, 39, 40sylancl 586 . . . . 5 (𝐴 ∈ Fin → ((card‘𝐴) = (card‘1o) ↔ 𝐴 ≈ 1o))
4237, 41bitr3id 285 . . . 4 (𝐴 ∈ Fin → ((card‘𝐴) = 1o𝐴 ≈ 1o))
4334, 42orbi12d 919 . . 3 (𝐴 ∈ Fin → (((card‘𝐴) = ∅ ∨ (card‘𝐴) = 1o) ↔ (𝐴 = ∅ ∨ 𝐴 ≈ 1o)))
4422, 32, 433bitr3d 309 . 2 (𝐴 ∈ Fin → (𝐴 ≺ 2o ↔ (𝐴 = ∅ ∨ 𝐴 ≈ 1o)))
458, 16, 44pm5.21nii 378 1 (𝐴 ≺ 2o ↔ (𝐴 = ∅ ∨ 𝐴 ≈ 1o))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wo 848   = wceq 1540  wcel 2108  cin 3950  c0 4333  {cpr 4628   class class class wbr 5143  dom cdm 5685  Oncon0 6384  cfv 6561  ωcom 7887  1oc1o 8499  2oc2o 8500  cen 8982  cdom 8983  csdm 8984  Fincfn 8985  cardccrd 9975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-om 7888  df-1o 8506  df-2o 8507  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-card 9979
This theorem is referenced by:  fin56  10433  en2top  22992
  Copyright terms: Public domain W3C validator