MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin67 Structured version   Visualization version   GIF version

Theorem fin67 10348
Description: Every VI-finite set is VII-finite. (Contributed by Stefan O'Rear, 29-Oct-2014.) (Revised by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
fin67 (𝐴 ∈ FinVI𝐴 ∈ FinVII)

Proof of Theorem fin67
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 isfin6 10253 . 2 (𝐴 ∈ FinVI ↔ (𝐴 ≺ 2o𝐴 ≺ (𝐴 × 𝐴)))
2 2onn 8606 . . . . . 6 2o ∈ ω
3 ssid 3969 . . . . . 6 2o ⊆ 2o
4 ssnnfi 9133 . . . . . 6 ((2o ∈ ω ∧ 2o ⊆ 2o) → 2o ∈ Fin)
52, 3, 4mp2an 692 . . . . 5 2o ∈ Fin
6 sdomdom 8951 . . . . 5 (𝐴 ≺ 2o𝐴 ≼ 2o)
7 domfi 9153 . . . . 5 ((2o ∈ Fin ∧ 𝐴 ≼ 2o) → 𝐴 ∈ Fin)
85, 6, 7sylancr 587 . . . 4 (𝐴 ≺ 2o𝐴 ∈ Fin)
9 fin17 10347 . . . 4 (𝐴 ∈ Fin → 𝐴 ∈ FinVII)
108, 9syl 17 . . 3 (𝐴 ≺ 2o𝐴 ∈ FinVII)
11 sdomnen 8952 . . . . 5 (𝐴 ≺ (𝐴 × 𝐴) → ¬ 𝐴 ≈ (𝐴 × 𝐴))
12 eldifi 4094 . . . . . . . . 9 (𝑏 ∈ (On ∖ ω) → 𝑏 ∈ On)
13 ensym 8974 . . . . . . . . 9 (𝐴𝑏𝑏𝐴)
14 isnumi 9899 . . . . . . . . 9 ((𝑏 ∈ On ∧ 𝑏𝐴) → 𝐴 ∈ dom card)
1512, 13, 14syl2an 596 . . . . . . . 8 ((𝑏 ∈ (On ∖ ω) ∧ 𝐴𝑏) → 𝐴 ∈ dom card)
16 vex 3451 . . . . . . . . . . 11 𝑏 ∈ V
17 eldif 3924 . . . . . . . . . . . 12 (𝑏 ∈ (On ∖ ω) ↔ (𝑏 ∈ On ∧ ¬ 𝑏 ∈ ω))
18 ordom 7852 . . . . . . . . . . . . . 14 Ord ω
19 eloni 6342 . . . . . . . . . . . . . 14 (𝑏 ∈ On → Ord 𝑏)
20 ordtri1 6365 . . . . . . . . . . . . . 14 ((Ord ω ∧ Ord 𝑏) → (ω ⊆ 𝑏 ↔ ¬ 𝑏 ∈ ω))
2118, 19, 20sylancr 587 . . . . . . . . . . . . 13 (𝑏 ∈ On → (ω ⊆ 𝑏 ↔ ¬ 𝑏 ∈ ω))
2221biimpar 477 . . . . . . . . . . . 12 ((𝑏 ∈ On ∧ ¬ 𝑏 ∈ ω) → ω ⊆ 𝑏)
2317, 22sylbi 217 . . . . . . . . . . 11 (𝑏 ∈ (On ∖ ω) → ω ⊆ 𝑏)
24 ssdomg 8971 . . . . . . . . . . 11 (𝑏 ∈ V → (ω ⊆ 𝑏 → ω ≼ 𝑏))
2516, 23, 24mpsyl 68 . . . . . . . . . 10 (𝑏 ∈ (On ∖ ω) → ω ≼ 𝑏)
26 domen2 9084 . . . . . . . . . 10 (𝐴𝑏 → (ω ≼ 𝐴 ↔ ω ≼ 𝑏))
2725, 26imbitrrid 246 . . . . . . . . 9 (𝐴𝑏 → (𝑏 ∈ (On ∖ ω) → ω ≼ 𝐴))
2827impcom 407 . . . . . . . 8 ((𝑏 ∈ (On ∖ ω) ∧ 𝐴𝑏) → ω ≼ 𝐴)
29 infxpidm2 9970 . . . . . . . 8 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴 × 𝐴) ≈ 𝐴)
3015, 28, 29syl2anc 584 . . . . . . 7 ((𝑏 ∈ (On ∖ ω) ∧ 𝐴𝑏) → (𝐴 × 𝐴) ≈ 𝐴)
31 ensym 8974 . . . . . . 7 ((𝐴 × 𝐴) ≈ 𝐴𝐴 ≈ (𝐴 × 𝐴))
3230, 31syl 17 . . . . . 6 ((𝑏 ∈ (On ∖ ω) ∧ 𝐴𝑏) → 𝐴 ≈ (𝐴 × 𝐴))
3332rexlimiva 3126 . . . . 5 (∃𝑏 ∈ (On ∖ ω)𝐴𝑏𝐴 ≈ (𝐴 × 𝐴))
3411, 33nsyl 140 . . . 4 (𝐴 ≺ (𝐴 × 𝐴) → ¬ ∃𝑏 ∈ (On ∖ ω)𝐴𝑏)
35 relsdom 8925 . . . . . 6 Rel ≺
3635brrelex1i 5694 . . . . 5 (𝐴 ≺ (𝐴 × 𝐴) → 𝐴 ∈ V)
37 isfin7 10254 . . . . 5 (𝐴 ∈ V → (𝐴 ∈ FinVII ↔ ¬ ∃𝑏 ∈ (On ∖ ω)𝐴𝑏))
3836, 37syl 17 . . . 4 (𝐴 ≺ (𝐴 × 𝐴) → (𝐴 ∈ FinVII ↔ ¬ ∃𝑏 ∈ (On ∖ ω)𝐴𝑏))
3934, 38mpbird 257 . . 3 (𝐴 ≺ (𝐴 × 𝐴) → 𝐴 ∈ FinVII)
4010, 39jaoi 857 . 2 ((𝐴 ≺ 2o𝐴 ≺ (𝐴 × 𝐴)) → 𝐴 ∈ FinVII)
411, 40sylbi 217 1 (𝐴 ∈ FinVI𝐴 ∈ FinVII)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  wcel 2109  wrex 3053  Vcvv 3447  cdif 3911  wss 3914   class class class wbr 5107   × cxp 5636  dom cdm 5638  Ord word 6331  Oncon0 6332  ωcom 7842  2oc2o 8428  cen 8915  cdom 8916  csdm 8917  Fincfn 8918  cardccrd 9888  FinVIcfin6 10236  FinVIIcfin7 10237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-oi 9463  df-card 9892  df-fin6 10243  df-fin7 10244
This theorem is referenced by:  fin2so  37601
  Copyright terms: Public domain W3C validator