MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin67 Structured version   Visualization version   GIF version

Theorem fin67 9895
Description: Every VI-finite set is VII-finite. (Contributed by Stefan O'Rear, 29-Oct-2014.) (Revised by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
fin67 (𝐴 ∈ FinVI𝐴 ∈ FinVII)

Proof of Theorem fin67
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 isfin6 9800 . 2 (𝐴 ∈ FinVI ↔ (𝐴 ≺ 2o𝐴 ≺ (𝐴 × 𝐴)))
2 2onn 8297 . . . . . 6 2o ∈ ω
3 ssid 3899 . . . . . 6 2o ⊆ 2o
4 ssnnfi 8768 . . . . . 6 ((2o ∈ ω ∧ 2o ⊆ 2o) → 2o ∈ Fin)
52, 3, 4mp2an 692 . . . . 5 2o ∈ Fin
6 sdomdom 8583 . . . . 5 (𝐴 ≺ 2o𝐴 ≼ 2o)
7 domfi 8817 . . . . 5 ((2o ∈ Fin ∧ 𝐴 ≼ 2o) → 𝐴 ∈ Fin)
85, 6, 7sylancr 590 . . . 4 (𝐴 ≺ 2o𝐴 ∈ Fin)
9 fin17 9894 . . . 4 (𝐴 ∈ Fin → 𝐴 ∈ FinVII)
108, 9syl 17 . . 3 (𝐴 ≺ 2o𝐴 ∈ FinVII)
11 sdomnen 8584 . . . . 5 (𝐴 ≺ (𝐴 × 𝐴) → ¬ 𝐴 ≈ (𝐴 × 𝐴))
12 eldifi 4017 . . . . . . . . 9 (𝑏 ∈ (On ∖ ω) → 𝑏 ∈ On)
13 ensym 8604 . . . . . . . . 9 (𝐴𝑏𝑏𝐴)
14 isnumi 9448 . . . . . . . . 9 ((𝑏 ∈ On ∧ 𝑏𝐴) → 𝐴 ∈ dom card)
1512, 13, 14syl2an 599 . . . . . . . 8 ((𝑏 ∈ (On ∖ ω) ∧ 𝐴𝑏) → 𝐴 ∈ dom card)
16 vex 3402 . . . . . . . . . . 11 𝑏 ∈ V
17 eldif 3853 . . . . . . . . . . . 12 (𝑏 ∈ (On ∖ ω) ↔ (𝑏 ∈ On ∧ ¬ 𝑏 ∈ ω))
18 ordom 7608 . . . . . . . . . . . . . 14 Ord ω
19 eloni 6182 . . . . . . . . . . . . . 14 (𝑏 ∈ On → Ord 𝑏)
20 ordtri1 6205 . . . . . . . . . . . . . 14 ((Ord ω ∧ Ord 𝑏) → (ω ⊆ 𝑏 ↔ ¬ 𝑏 ∈ ω))
2118, 19, 20sylancr 590 . . . . . . . . . . . . 13 (𝑏 ∈ On → (ω ⊆ 𝑏 ↔ ¬ 𝑏 ∈ ω))
2221biimpar 481 . . . . . . . . . . . 12 ((𝑏 ∈ On ∧ ¬ 𝑏 ∈ ω) → ω ⊆ 𝑏)
2317, 22sylbi 220 . . . . . . . . . . 11 (𝑏 ∈ (On ∖ ω) → ω ⊆ 𝑏)
24 ssdomg 8601 . . . . . . . . . . 11 (𝑏 ∈ V → (ω ⊆ 𝑏 → ω ≼ 𝑏))
2516, 23, 24mpsyl 68 . . . . . . . . . 10 (𝑏 ∈ (On ∖ ω) → ω ≼ 𝑏)
26 domen2 8710 . . . . . . . . . 10 (𝐴𝑏 → (ω ≼ 𝐴 ↔ ω ≼ 𝑏))
2725, 26syl5ibr 249 . . . . . . . . 9 (𝐴𝑏 → (𝑏 ∈ (On ∖ ω) → ω ≼ 𝐴))
2827impcom 411 . . . . . . . 8 ((𝑏 ∈ (On ∖ ω) ∧ 𝐴𝑏) → ω ≼ 𝐴)
29 infxpidm2 9517 . . . . . . . 8 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴 × 𝐴) ≈ 𝐴)
3015, 28, 29syl2anc 587 . . . . . . 7 ((𝑏 ∈ (On ∖ ω) ∧ 𝐴𝑏) → (𝐴 × 𝐴) ≈ 𝐴)
31 ensym 8604 . . . . . . 7 ((𝐴 × 𝐴) ≈ 𝐴𝐴 ≈ (𝐴 × 𝐴))
3230, 31syl 17 . . . . . 6 ((𝑏 ∈ (On ∖ ω) ∧ 𝐴𝑏) → 𝐴 ≈ (𝐴 × 𝐴))
3332rexlimiva 3191 . . . . 5 (∃𝑏 ∈ (On ∖ ω)𝐴𝑏𝐴 ≈ (𝐴 × 𝐴))
3411, 33nsyl 142 . . . 4 (𝐴 ≺ (𝐴 × 𝐴) → ¬ ∃𝑏 ∈ (On ∖ ω)𝐴𝑏)
35 relsdom 8562 . . . . . 6 Rel ≺
3635brrelex1i 5579 . . . . 5 (𝐴 ≺ (𝐴 × 𝐴) → 𝐴 ∈ V)
37 isfin7 9801 . . . . 5 (𝐴 ∈ V → (𝐴 ∈ FinVII ↔ ¬ ∃𝑏 ∈ (On ∖ ω)𝐴𝑏))
3836, 37syl 17 . . . 4 (𝐴 ≺ (𝐴 × 𝐴) → (𝐴 ∈ FinVII ↔ ¬ ∃𝑏 ∈ (On ∖ ω)𝐴𝑏))
3934, 38mpbird 260 . . 3 (𝐴 ≺ (𝐴 × 𝐴) → 𝐴 ∈ FinVII)
4010, 39jaoi 856 . 2 ((𝐴 ≺ 2o𝐴 ≺ (𝐴 × 𝐴)) → 𝐴 ∈ FinVII)
411, 40sylbi 220 1 (𝐴 ∈ FinVI𝐴 ∈ FinVII)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 846  wcel 2114  wrex 3054  Vcvv 3398  cdif 3840  wss 3843   class class class wbr 5030   × cxp 5523  dom cdm 5525  Ord word 6171  Oncon0 6172  ωcom 7599  2oc2o 8125  cen 8552  cdom 8553  csdm 8554  Fincfn 8555  cardccrd 9437  FinVIcfin6 9783  FinVIIcfin7 9784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-inf2 9177
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-int 4837  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-se 5484  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-isom 6348  df-riota 7127  df-om 7600  df-1st 7714  df-2nd 7715  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-1o 8131  df-2o 8132  df-er 8320  df-en 8556  df-dom 8557  df-sdom 8558  df-fin 8559  df-oi 9047  df-card 9441  df-fin6 9790  df-fin7 9791
This theorem is referenced by:  fin2so  35387
  Copyright terms: Public domain W3C validator