MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin67 Structured version   Visualization version   GIF version

Theorem fin67 10432
Description: Every VI-finite set is VII-finite. (Contributed by Stefan O'Rear, 29-Oct-2014.) (Revised by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
fin67 (𝐴 ∈ FinVI𝐴 ∈ FinVII)

Proof of Theorem fin67
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 isfin6 10337 . 2 (𝐴 ∈ FinVI ↔ (𝐴 ≺ 2o𝐴 ≺ (𝐴 × 𝐴)))
2 2onn 8678 . . . . . 6 2o ∈ ω
3 ssid 4017 . . . . . 6 2o ⊆ 2o
4 ssnnfi 9207 . . . . . 6 ((2o ∈ ω ∧ 2o ⊆ 2o) → 2o ∈ Fin)
52, 3, 4mp2an 692 . . . . 5 2o ∈ Fin
6 sdomdom 9018 . . . . 5 (𝐴 ≺ 2o𝐴 ≼ 2o)
7 domfi 9226 . . . . 5 ((2o ∈ Fin ∧ 𝐴 ≼ 2o) → 𝐴 ∈ Fin)
85, 6, 7sylancr 587 . . . 4 (𝐴 ≺ 2o𝐴 ∈ Fin)
9 fin17 10431 . . . 4 (𝐴 ∈ Fin → 𝐴 ∈ FinVII)
108, 9syl 17 . . 3 (𝐴 ≺ 2o𝐴 ∈ FinVII)
11 sdomnen 9019 . . . . 5 (𝐴 ≺ (𝐴 × 𝐴) → ¬ 𝐴 ≈ (𝐴 × 𝐴))
12 eldifi 4140 . . . . . . . . 9 (𝑏 ∈ (On ∖ ω) → 𝑏 ∈ On)
13 ensym 9041 . . . . . . . . 9 (𝐴𝑏𝑏𝐴)
14 isnumi 9983 . . . . . . . . 9 ((𝑏 ∈ On ∧ 𝑏𝐴) → 𝐴 ∈ dom card)
1512, 13, 14syl2an 596 . . . . . . . 8 ((𝑏 ∈ (On ∖ ω) ∧ 𝐴𝑏) → 𝐴 ∈ dom card)
16 vex 3481 . . . . . . . . . . 11 𝑏 ∈ V
17 eldif 3972 . . . . . . . . . . . 12 (𝑏 ∈ (On ∖ ω) ↔ (𝑏 ∈ On ∧ ¬ 𝑏 ∈ ω))
18 ordom 7896 . . . . . . . . . . . . . 14 Ord ω
19 eloni 6395 . . . . . . . . . . . . . 14 (𝑏 ∈ On → Ord 𝑏)
20 ordtri1 6418 . . . . . . . . . . . . . 14 ((Ord ω ∧ Ord 𝑏) → (ω ⊆ 𝑏 ↔ ¬ 𝑏 ∈ ω))
2118, 19, 20sylancr 587 . . . . . . . . . . . . 13 (𝑏 ∈ On → (ω ⊆ 𝑏 ↔ ¬ 𝑏 ∈ ω))
2221biimpar 477 . . . . . . . . . . . 12 ((𝑏 ∈ On ∧ ¬ 𝑏 ∈ ω) → ω ⊆ 𝑏)
2317, 22sylbi 217 . . . . . . . . . . 11 (𝑏 ∈ (On ∖ ω) → ω ⊆ 𝑏)
24 ssdomg 9038 . . . . . . . . . . 11 (𝑏 ∈ V → (ω ⊆ 𝑏 → ω ≼ 𝑏))
2516, 23, 24mpsyl 68 . . . . . . . . . 10 (𝑏 ∈ (On ∖ ω) → ω ≼ 𝑏)
26 domen2 9158 . . . . . . . . . 10 (𝐴𝑏 → (ω ≼ 𝐴 ↔ ω ≼ 𝑏))
2725, 26imbitrrid 246 . . . . . . . . 9 (𝐴𝑏 → (𝑏 ∈ (On ∖ ω) → ω ≼ 𝐴))
2827impcom 407 . . . . . . . 8 ((𝑏 ∈ (On ∖ ω) ∧ 𝐴𝑏) → ω ≼ 𝐴)
29 infxpidm2 10054 . . . . . . . 8 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴 × 𝐴) ≈ 𝐴)
3015, 28, 29syl2anc 584 . . . . . . 7 ((𝑏 ∈ (On ∖ ω) ∧ 𝐴𝑏) → (𝐴 × 𝐴) ≈ 𝐴)
31 ensym 9041 . . . . . . 7 ((𝐴 × 𝐴) ≈ 𝐴𝐴 ≈ (𝐴 × 𝐴))
3230, 31syl 17 . . . . . 6 ((𝑏 ∈ (On ∖ ω) ∧ 𝐴𝑏) → 𝐴 ≈ (𝐴 × 𝐴))
3332rexlimiva 3144 . . . . 5 (∃𝑏 ∈ (On ∖ ω)𝐴𝑏𝐴 ≈ (𝐴 × 𝐴))
3411, 33nsyl 140 . . . 4 (𝐴 ≺ (𝐴 × 𝐴) → ¬ ∃𝑏 ∈ (On ∖ ω)𝐴𝑏)
35 relsdom 8990 . . . . . 6 Rel ≺
3635brrelex1i 5744 . . . . 5 (𝐴 ≺ (𝐴 × 𝐴) → 𝐴 ∈ V)
37 isfin7 10338 . . . . 5 (𝐴 ∈ V → (𝐴 ∈ FinVII ↔ ¬ ∃𝑏 ∈ (On ∖ ω)𝐴𝑏))
3836, 37syl 17 . . . 4 (𝐴 ≺ (𝐴 × 𝐴) → (𝐴 ∈ FinVII ↔ ¬ ∃𝑏 ∈ (On ∖ ω)𝐴𝑏))
3934, 38mpbird 257 . . 3 (𝐴 ≺ (𝐴 × 𝐴) → 𝐴 ∈ FinVII)
4010, 39jaoi 857 . 2 ((𝐴 ≺ 2o𝐴 ≺ (𝐴 × 𝐴)) → 𝐴 ∈ FinVII)
411, 40sylbi 217 1 (𝐴 ∈ FinVI𝐴 ∈ FinVII)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  wcel 2105  wrex 3067  Vcvv 3477  cdif 3959  wss 3962   class class class wbr 5147   × cxp 5686  dom cdm 5688  Ord word 6384  Oncon0 6385  ωcom 7886  2oc2o 8498  cen 8980  cdom 8981  csdm 8982  Fincfn 8983  cardccrd 9972  FinVIcfin6 10320  FinVIIcfin7 10321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-oi 9547  df-card 9976  df-fin6 10327  df-fin7 10328
This theorem is referenced by:  fin2so  37593
  Copyright terms: Public domain W3C validator