MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin67 Structured version   Visualization version   GIF version

Theorem fin67 10464
Description: Every VI-finite set is VII-finite. (Contributed by Stefan O'Rear, 29-Oct-2014.) (Revised by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
fin67 (𝐴 ∈ FinVI𝐴 ∈ FinVII)

Proof of Theorem fin67
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 isfin6 10369 . 2 (𝐴 ∈ FinVI ↔ (𝐴 ≺ 2o𝐴 ≺ (𝐴 × 𝐴)))
2 2onn 8698 . . . . . 6 2o ∈ ω
3 ssid 4031 . . . . . 6 2o ⊆ 2o
4 ssnnfi 9235 . . . . . 6 ((2o ∈ ω ∧ 2o ⊆ 2o) → 2o ∈ Fin)
52, 3, 4mp2an 691 . . . . 5 2o ∈ Fin
6 sdomdom 9040 . . . . 5 (𝐴 ≺ 2o𝐴 ≼ 2o)
7 domfi 9255 . . . . 5 ((2o ∈ Fin ∧ 𝐴 ≼ 2o) → 𝐴 ∈ Fin)
85, 6, 7sylancr 586 . . . 4 (𝐴 ≺ 2o𝐴 ∈ Fin)
9 fin17 10463 . . . 4 (𝐴 ∈ Fin → 𝐴 ∈ FinVII)
108, 9syl 17 . . 3 (𝐴 ≺ 2o𝐴 ∈ FinVII)
11 sdomnen 9041 . . . . 5 (𝐴 ≺ (𝐴 × 𝐴) → ¬ 𝐴 ≈ (𝐴 × 𝐴))
12 eldifi 4154 . . . . . . . . 9 (𝑏 ∈ (On ∖ ω) → 𝑏 ∈ On)
13 ensym 9063 . . . . . . . . 9 (𝐴𝑏𝑏𝐴)
14 isnumi 10015 . . . . . . . . 9 ((𝑏 ∈ On ∧ 𝑏𝐴) → 𝐴 ∈ dom card)
1512, 13, 14syl2an 595 . . . . . . . 8 ((𝑏 ∈ (On ∖ ω) ∧ 𝐴𝑏) → 𝐴 ∈ dom card)
16 vex 3492 . . . . . . . . . . 11 𝑏 ∈ V
17 eldif 3986 . . . . . . . . . . . 12 (𝑏 ∈ (On ∖ ω) ↔ (𝑏 ∈ On ∧ ¬ 𝑏 ∈ ω))
18 ordom 7913 . . . . . . . . . . . . . 14 Ord ω
19 eloni 6405 . . . . . . . . . . . . . 14 (𝑏 ∈ On → Ord 𝑏)
20 ordtri1 6428 . . . . . . . . . . . . . 14 ((Ord ω ∧ Ord 𝑏) → (ω ⊆ 𝑏 ↔ ¬ 𝑏 ∈ ω))
2118, 19, 20sylancr 586 . . . . . . . . . . . . 13 (𝑏 ∈ On → (ω ⊆ 𝑏 ↔ ¬ 𝑏 ∈ ω))
2221biimpar 477 . . . . . . . . . . . 12 ((𝑏 ∈ On ∧ ¬ 𝑏 ∈ ω) → ω ⊆ 𝑏)
2317, 22sylbi 217 . . . . . . . . . . 11 (𝑏 ∈ (On ∖ ω) → ω ⊆ 𝑏)
24 ssdomg 9060 . . . . . . . . . . 11 (𝑏 ∈ V → (ω ⊆ 𝑏 → ω ≼ 𝑏))
2516, 23, 24mpsyl 68 . . . . . . . . . 10 (𝑏 ∈ (On ∖ ω) → ω ≼ 𝑏)
26 domen2 9186 . . . . . . . . . 10 (𝐴𝑏 → (ω ≼ 𝐴 ↔ ω ≼ 𝑏))
2725, 26imbitrrid 246 . . . . . . . . 9 (𝐴𝑏 → (𝑏 ∈ (On ∖ ω) → ω ≼ 𝐴))
2827impcom 407 . . . . . . . 8 ((𝑏 ∈ (On ∖ ω) ∧ 𝐴𝑏) → ω ≼ 𝐴)
29 infxpidm2 10086 . . . . . . . 8 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴 × 𝐴) ≈ 𝐴)
3015, 28, 29syl2anc 583 . . . . . . 7 ((𝑏 ∈ (On ∖ ω) ∧ 𝐴𝑏) → (𝐴 × 𝐴) ≈ 𝐴)
31 ensym 9063 . . . . . . 7 ((𝐴 × 𝐴) ≈ 𝐴𝐴 ≈ (𝐴 × 𝐴))
3230, 31syl 17 . . . . . 6 ((𝑏 ∈ (On ∖ ω) ∧ 𝐴𝑏) → 𝐴 ≈ (𝐴 × 𝐴))
3332rexlimiva 3153 . . . . 5 (∃𝑏 ∈ (On ∖ ω)𝐴𝑏𝐴 ≈ (𝐴 × 𝐴))
3411, 33nsyl 140 . . . 4 (𝐴 ≺ (𝐴 × 𝐴) → ¬ ∃𝑏 ∈ (On ∖ ω)𝐴𝑏)
35 relsdom 9010 . . . . . 6 Rel ≺
3635brrelex1i 5756 . . . . 5 (𝐴 ≺ (𝐴 × 𝐴) → 𝐴 ∈ V)
37 isfin7 10370 . . . . 5 (𝐴 ∈ V → (𝐴 ∈ FinVII ↔ ¬ ∃𝑏 ∈ (On ∖ ω)𝐴𝑏))
3836, 37syl 17 . . . 4 (𝐴 ≺ (𝐴 × 𝐴) → (𝐴 ∈ FinVII ↔ ¬ ∃𝑏 ∈ (On ∖ ω)𝐴𝑏))
3934, 38mpbird 257 . . 3 (𝐴 ≺ (𝐴 × 𝐴) → 𝐴 ∈ FinVII)
4010, 39jaoi 856 . 2 ((𝐴 ≺ 2o𝐴 ≺ (𝐴 × 𝐴)) → 𝐴 ∈ FinVII)
411, 40sylbi 217 1 (𝐴 ∈ FinVI𝐴 ∈ FinVII)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846  wcel 2108  wrex 3076  Vcvv 3488  cdif 3973  wss 3976   class class class wbr 5166   × cxp 5698  dom cdm 5700  Ord word 6394  Oncon0 6395  ωcom 7903  2oc2o 8516  cen 9000  cdom 9001  csdm 9002  Fincfn 9003  cardccrd 10004  FinVIcfin6 10352  FinVIIcfin7 10353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-oi 9579  df-card 10008  df-fin6 10359  df-fin7 10360
This theorem is referenced by:  fin2so  37567
  Copyright terms: Public domain W3C validator