![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fin17 | Structured version Visualization version GIF version |
Description: Every I-finite set is VII-finite. (Contributed by Mario Carneiro, 17-May-2015.) |
Ref | Expression |
---|---|
fin17 | ⊢ (𝐴 ∈ Fin → 𝐴 ∈ FinVII) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3986 | . . . . 5 ⊢ (𝑏 ∈ (On ∖ ω) ↔ (𝑏 ∈ On ∧ ¬ 𝑏 ∈ ω)) | |
2 | enfi 9253 | . . . . . . . . 9 ⊢ (𝐴 ≈ 𝑏 → (𝐴 ∈ Fin ↔ 𝑏 ∈ Fin)) | |
3 | onfin 9293 | . . . . . . . . 9 ⊢ (𝑏 ∈ On → (𝑏 ∈ Fin ↔ 𝑏 ∈ ω)) | |
4 | 2, 3 | sylan9bbr 510 | . . . . . . . 8 ⊢ ((𝑏 ∈ On ∧ 𝐴 ≈ 𝑏) → (𝐴 ∈ Fin ↔ 𝑏 ∈ ω)) |
5 | 4 | biimpd 229 | . . . . . . 7 ⊢ ((𝑏 ∈ On ∧ 𝐴 ≈ 𝑏) → (𝐴 ∈ Fin → 𝑏 ∈ ω)) |
6 | 5 | con3d 152 | . . . . . 6 ⊢ ((𝑏 ∈ On ∧ 𝐴 ≈ 𝑏) → (¬ 𝑏 ∈ ω → ¬ 𝐴 ∈ Fin)) |
7 | 6 | impancom 451 | . . . . 5 ⊢ ((𝑏 ∈ On ∧ ¬ 𝑏 ∈ ω) → (𝐴 ≈ 𝑏 → ¬ 𝐴 ∈ Fin)) |
8 | 1, 7 | sylbi 217 | . . . 4 ⊢ (𝑏 ∈ (On ∖ ω) → (𝐴 ≈ 𝑏 → ¬ 𝐴 ∈ Fin)) |
9 | 8 | rexlimiv 3154 | . . 3 ⊢ (∃𝑏 ∈ (On ∖ ω)𝐴 ≈ 𝑏 → ¬ 𝐴 ∈ Fin) |
10 | 9 | con2i 139 | . 2 ⊢ (𝐴 ∈ Fin → ¬ ∃𝑏 ∈ (On ∖ ω)𝐴 ≈ 𝑏) |
11 | isfin7 10370 | . 2 ⊢ (𝐴 ∈ Fin → (𝐴 ∈ FinVII ↔ ¬ ∃𝑏 ∈ (On ∖ ω)𝐴 ≈ 𝑏)) | |
12 | 10, 11 | mpbird 257 | 1 ⊢ (𝐴 ∈ Fin → 𝐴 ∈ FinVII) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2108 ∃wrex 3076 ∖ cdif 3973 class class class wbr 5166 Oncon0 6395 ωcom 7903 ≈ cen 9000 Fincfn 9003 FinVIIcfin7 10353 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-om 7904 df-1o 8522 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fin7 10360 |
This theorem is referenced by: fin67 10464 isfin7-2 10465 |
Copyright terms: Public domain | W3C validator |