![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fin17 | Structured version Visualization version GIF version |
Description: Every I-finite set is VII-finite. (Contributed by Mario Carneiro, 17-May-2015.) |
Ref | Expression |
---|---|
fin17 | ⊢ (𝐴 ∈ Fin → 𝐴 ∈ FinVII) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3973 | . . . . 5 ⊢ (𝑏 ∈ (On ∖ ω) ↔ (𝑏 ∈ On ∧ ¬ 𝑏 ∈ ω)) | |
2 | enfi 9225 | . . . . . . . . 9 ⊢ (𝐴 ≈ 𝑏 → (𝐴 ∈ Fin ↔ 𝑏 ∈ Fin)) | |
3 | onfin 9265 | . . . . . . . . 9 ⊢ (𝑏 ∈ On → (𝑏 ∈ Fin ↔ 𝑏 ∈ ω)) | |
4 | 2, 3 | sylan9bbr 510 | . . . . . . . 8 ⊢ ((𝑏 ∈ On ∧ 𝐴 ≈ 𝑏) → (𝐴 ∈ Fin ↔ 𝑏 ∈ ω)) |
5 | 4 | biimpd 229 | . . . . . . 7 ⊢ ((𝑏 ∈ On ∧ 𝐴 ≈ 𝑏) → (𝐴 ∈ Fin → 𝑏 ∈ ω)) |
6 | 5 | con3d 152 | . . . . . 6 ⊢ ((𝑏 ∈ On ∧ 𝐴 ≈ 𝑏) → (¬ 𝑏 ∈ ω → ¬ 𝐴 ∈ Fin)) |
7 | 6 | impancom 451 | . . . . 5 ⊢ ((𝑏 ∈ On ∧ ¬ 𝑏 ∈ ω) → (𝐴 ≈ 𝑏 → ¬ 𝐴 ∈ Fin)) |
8 | 1, 7 | sylbi 217 | . . . 4 ⊢ (𝑏 ∈ (On ∖ ω) → (𝐴 ≈ 𝑏 → ¬ 𝐴 ∈ Fin)) |
9 | 8 | rexlimiv 3146 | . . 3 ⊢ (∃𝑏 ∈ (On ∖ ω)𝐴 ≈ 𝑏 → ¬ 𝐴 ∈ Fin) |
10 | 9 | con2i 139 | . 2 ⊢ (𝐴 ∈ Fin → ¬ ∃𝑏 ∈ (On ∖ ω)𝐴 ≈ 𝑏) |
11 | isfin7 10339 | . 2 ⊢ (𝐴 ∈ Fin → (𝐴 ∈ FinVII ↔ ¬ ∃𝑏 ∈ (On ∖ ω)𝐴 ≈ 𝑏)) | |
12 | 10, 11 | mpbird 257 | 1 ⊢ (𝐴 ∈ Fin → 𝐴 ∈ FinVII) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2106 ∃wrex 3068 ∖ cdif 3960 class class class wbr 5148 Oncon0 6386 ωcom 7887 ≈ cen 8981 Fincfn 8984 FinVIIcfin7 10322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-om 7888 df-1o 8505 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fin7 10329 |
This theorem is referenced by: fin67 10433 isfin7-2 10434 |
Copyright terms: Public domain | W3C validator |