![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fin17 | Structured version Visualization version GIF version |
Description: Every I-finite set is VII-finite. (Contributed by Mario Carneiro, 17-May-2015.) |
Ref | Expression |
---|---|
fin17 | ⊢ (𝐴 ∈ Fin → 𝐴 ∈ FinVII) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3957 | . . . . 5 ⊢ (𝑏 ∈ (On ∖ ω) ↔ (𝑏 ∈ On ∧ ¬ 𝑏 ∈ ω)) | |
2 | enfi 9192 | . . . . . . . . 9 ⊢ (𝐴 ≈ 𝑏 → (𝐴 ∈ Fin ↔ 𝑏 ∈ Fin)) | |
3 | onfin 9232 | . . . . . . . . 9 ⊢ (𝑏 ∈ On → (𝑏 ∈ Fin ↔ 𝑏 ∈ ω)) | |
4 | 2, 3 | sylan9bbr 509 | . . . . . . . 8 ⊢ ((𝑏 ∈ On ∧ 𝐴 ≈ 𝑏) → (𝐴 ∈ Fin ↔ 𝑏 ∈ ω)) |
5 | 4 | biimpd 228 | . . . . . . 7 ⊢ ((𝑏 ∈ On ∧ 𝐴 ≈ 𝑏) → (𝐴 ∈ Fin → 𝑏 ∈ ω)) |
6 | 5 | con3d 152 | . . . . . 6 ⊢ ((𝑏 ∈ On ∧ 𝐴 ≈ 𝑏) → (¬ 𝑏 ∈ ω → ¬ 𝐴 ∈ Fin)) |
7 | 6 | impancom 450 | . . . . 5 ⊢ ((𝑏 ∈ On ∧ ¬ 𝑏 ∈ ω) → (𝐴 ≈ 𝑏 → ¬ 𝐴 ∈ Fin)) |
8 | 1, 7 | sylbi 216 | . . . 4 ⊢ (𝑏 ∈ (On ∖ ω) → (𝐴 ≈ 𝑏 → ¬ 𝐴 ∈ Fin)) |
9 | 8 | rexlimiv 3146 | . . 3 ⊢ (∃𝑏 ∈ (On ∖ ω)𝐴 ≈ 𝑏 → ¬ 𝐴 ∈ Fin) |
10 | 9 | con2i 139 | . 2 ⊢ (𝐴 ∈ Fin → ¬ ∃𝑏 ∈ (On ∖ ω)𝐴 ≈ 𝑏) |
11 | isfin7 10298 | . 2 ⊢ (𝐴 ∈ Fin → (𝐴 ∈ FinVII ↔ ¬ ∃𝑏 ∈ (On ∖ ω)𝐴 ≈ 𝑏)) | |
12 | 10, 11 | mpbird 256 | 1 ⊢ (𝐴 ∈ Fin → 𝐴 ∈ FinVII) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 ∈ wcel 2104 ∃wrex 3068 ∖ cdif 3944 class class class wbr 5147 Oncon0 6363 ωcom 7857 ≈ cen 8938 Fincfn 8941 FinVIIcfin7 10281 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-om 7858 df-1o 8468 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-fin7 10288 |
This theorem is referenced by: fin67 10392 isfin7-2 10393 |
Copyright terms: Public domain | W3C validator |