MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin17 Structured version   Visualization version   GIF version

Theorem fin17 10285
Description: Every I-finite set is VII-finite. (Contributed by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
fin17 (𝐴 ∈ Fin → 𝐴 ∈ FinVII)

Proof of Theorem fin17
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 eldif 3907 . . . . 5 (𝑏 ∈ (On ∖ ω) ↔ (𝑏 ∈ On ∧ ¬ 𝑏 ∈ ω))
2 enfi 9096 . . . . . . . . 9 (𝐴𝑏 → (𝐴 ∈ Fin ↔ 𝑏 ∈ Fin))
3 onfin 9124 . . . . . . . . 9 (𝑏 ∈ On → (𝑏 ∈ Fin ↔ 𝑏 ∈ ω))
42, 3sylan9bbr 510 . . . . . . . 8 ((𝑏 ∈ On ∧ 𝐴𝑏) → (𝐴 ∈ Fin ↔ 𝑏 ∈ ω))
54biimpd 229 . . . . . . 7 ((𝑏 ∈ On ∧ 𝐴𝑏) → (𝐴 ∈ Fin → 𝑏 ∈ ω))
65con3d 152 . . . . . 6 ((𝑏 ∈ On ∧ 𝐴𝑏) → (¬ 𝑏 ∈ ω → ¬ 𝐴 ∈ Fin))
76impancom 451 . . . . 5 ((𝑏 ∈ On ∧ ¬ 𝑏 ∈ ω) → (𝐴𝑏 → ¬ 𝐴 ∈ Fin))
81, 7sylbi 217 . . . 4 (𝑏 ∈ (On ∖ ω) → (𝐴𝑏 → ¬ 𝐴 ∈ Fin))
98rexlimiv 3126 . . 3 (∃𝑏 ∈ (On ∖ ω)𝐴𝑏 → ¬ 𝐴 ∈ Fin)
109con2i 139 . 2 (𝐴 ∈ Fin → ¬ ∃𝑏 ∈ (On ∖ ω)𝐴𝑏)
11 isfin7 10192 . 2 (𝐴 ∈ Fin → (𝐴 ∈ FinVII ↔ ¬ ∃𝑏 ∈ (On ∖ ω)𝐴𝑏))
1210, 11mpbird 257 1 (𝐴 ∈ Fin → 𝐴 ∈ FinVII)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2111  wrex 3056  cdif 3894   class class class wbr 5089  Oncon0 6306  ωcom 7796  cen 8866  Fincfn 8869  FinVIIcfin7 10175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-om 7797  df-1o 8385  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fin7 10182
This theorem is referenced by:  fin67  10286  isfin7-2  10287
  Copyright terms: Public domain W3C validator