MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin17 Structured version   Visualization version   GIF version

Theorem fin17 10354
Description: Every I-finite set is VII-finite. (Contributed by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
fin17 (𝐴 ∈ Fin → 𝐴 ∈ FinVII)

Proof of Theorem fin17
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 eldif 3927 . . . . 5 (𝑏 ∈ (On ∖ ω) ↔ (𝑏 ∈ On ∧ ¬ 𝑏 ∈ ω))
2 enfi 9157 . . . . . . . . 9 (𝐴𝑏 → (𝐴 ∈ Fin ↔ 𝑏 ∈ Fin))
3 onfin 9185 . . . . . . . . 9 (𝑏 ∈ On → (𝑏 ∈ Fin ↔ 𝑏 ∈ ω))
42, 3sylan9bbr 510 . . . . . . . 8 ((𝑏 ∈ On ∧ 𝐴𝑏) → (𝐴 ∈ Fin ↔ 𝑏 ∈ ω))
54biimpd 229 . . . . . . 7 ((𝑏 ∈ On ∧ 𝐴𝑏) → (𝐴 ∈ Fin → 𝑏 ∈ ω))
65con3d 152 . . . . . 6 ((𝑏 ∈ On ∧ 𝐴𝑏) → (¬ 𝑏 ∈ ω → ¬ 𝐴 ∈ Fin))
76impancom 451 . . . . 5 ((𝑏 ∈ On ∧ ¬ 𝑏 ∈ ω) → (𝐴𝑏 → ¬ 𝐴 ∈ Fin))
81, 7sylbi 217 . . . 4 (𝑏 ∈ (On ∖ ω) → (𝐴𝑏 → ¬ 𝐴 ∈ Fin))
98rexlimiv 3128 . . 3 (∃𝑏 ∈ (On ∖ ω)𝐴𝑏 → ¬ 𝐴 ∈ Fin)
109con2i 139 . 2 (𝐴 ∈ Fin → ¬ ∃𝑏 ∈ (On ∖ ω)𝐴𝑏)
11 isfin7 10261 . 2 (𝐴 ∈ Fin → (𝐴 ∈ FinVII ↔ ¬ ∃𝑏 ∈ (On ∖ ω)𝐴𝑏))
1210, 11mpbird 257 1 (𝐴 ∈ Fin → 𝐴 ∈ FinVII)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2109  wrex 3054  cdif 3914   class class class wbr 5110  Oncon0 6335  ωcom 7845  cen 8918  Fincfn 8921  FinVIIcfin7 10244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-om 7846  df-1o 8437  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fin7 10251
This theorem is referenced by:  fin67  10355  isfin7-2  10356
  Copyright terms: Public domain W3C validator