MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin17 Structured version   Visualization version   GIF version

Theorem fin17 10150
Description: Every I-finite set is VII-finite. (Contributed by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
fin17 (𝐴 ∈ Fin → 𝐴 ∈ FinVII)

Proof of Theorem fin17
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 eldif 3897 . . . . 5 (𝑏 ∈ (On ∖ ω) ↔ (𝑏 ∈ On ∧ ¬ 𝑏 ∈ ω))
2 enfi 8973 . . . . . . . . 9 (𝐴𝑏 → (𝐴 ∈ Fin ↔ 𝑏 ∈ Fin))
3 onfin 9013 . . . . . . . . 9 (𝑏 ∈ On → (𝑏 ∈ Fin ↔ 𝑏 ∈ ω))
42, 3sylan9bbr 511 . . . . . . . 8 ((𝑏 ∈ On ∧ 𝐴𝑏) → (𝐴 ∈ Fin ↔ 𝑏 ∈ ω))
54biimpd 228 . . . . . . 7 ((𝑏 ∈ On ∧ 𝐴𝑏) → (𝐴 ∈ Fin → 𝑏 ∈ ω))
65con3d 152 . . . . . 6 ((𝑏 ∈ On ∧ 𝐴𝑏) → (¬ 𝑏 ∈ ω → ¬ 𝐴 ∈ Fin))
76impancom 452 . . . . 5 ((𝑏 ∈ On ∧ ¬ 𝑏 ∈ ω) → (𝐴𝑏 → ¬ 𝐴 ∈ Fin))
81, 7sylbi 216 . . . 4 (𝑏 ∈ (On ∖ ω) → (𝐴𝑏 → ¬ 𝐴 ∈ Fin))
98rexlimiv 3209 . . 3 (∃𝑏 ∈ (On ∖ ω)𝐴𝑏 → ¬ 𝐴 ∈ Fin)
109con2i 139 . 2 (𝐴 ∈ Fin → ¬ ∃𝑏 ∈ (On ∖ ω)𝐴𝑏)
11 isfin7 10057 . 2 (𝐴 ∈ Fin → (𝐴 ∈ FinVII ↔ ¬ ∃𝑏 ∈ (On ∖ ω)𝐴𝑏))
1210, 11mpbird 256 1 (𝐴 ∈ Fin → 𝐴 ∈ FinVII)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wcel 2106  wrex 3065  cdif 3884   class class class wbr 5074  Oncon0 6266  ωcom 7712  cen 8730  Fincfn 8733  FinVIIcfin7 10040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-om 7713  df-1o 8297  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fin7 10047
This theorem is referenced by:  fin67  10151  isfin7-2  10152
  Copyright terms: Public domain W3C validator