MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ocvpj Structured version   Visualization version   GIF version

Theorem ocvpj 20922
Description: The orthocomplement of a projection subspace is a projection subspace. (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypotheses
Ref Expression
ocvpj.k 𝐾 = (proj‘𝑊)
ocvpj.o = (ocv‘𝑊)
Assertion
Ref Expression
ocvpj ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → ( 𝑇) ∈ dom 𝐾)

Proof of Theorem ocvpj
StepHypRef Expression
1 ocvpj.k . . . . . 6 𝐾 = (proj‘𝑊)
2 eqid 2738 . . . . . 6 (ClSubSp‘𝑊) = (ClSubSp‘𝑊)
31, 2pjcss 20921 . . . . 5 (𝑊 ∈ PreHil → dom 𝐾 ⊆ (ClSubSp‘𝑊))
43sselda 3922 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑇 ∈ (ClSubSp‘𝑊))
5 eqid 2738 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
65, 2cssss 20888 . . . 4 (𝑇 ∈ (ClSubSp‘𝑊) → 𝑇 ⊆ (Base‘𝑊))
74, 6syl 17 . . 3 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑇 ⊆ (Base‘𝑊))
8 ocvpj.o . . . 4 = (ocv‘𝑊)
9 eqid 2738 . . . 4 (LSubSp‘𝑊) = (LSubSp‘𝑊)
105, 8, 9ocvlss 20875 . . 3 ((𝑊 ∈ PreHil ∧ 𝑇 ⊆ (Base‘𝑊)) → ( 𝑇) ∈ (LSubSp‘𝑊))
117, 10syldan 591 . 2 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → ( 𝑇) ∈ (LSubSp‘𝑊))
12 phllmod 20833 . . . . . 6 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
1312adantr 481 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑊 ∈ LMod)
14 lmodabl 20168 . . . . 5 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
1513, 14syl 17 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑊 ∈ Abel)
169lsssssubg 20218 . . . . . 6 (𝑊 ∈ LMod → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
1713, 16syl 17 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
1817, 11sseldd 3923 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → ( 𝑇) ∈ (SubGrp‘𝑊))
192, 9csslss 20894 . . . . . 6 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ (ClSubSp‘𝑊)) → 𝑇 ∈ (LSubSp‘𝑊))
204, 19syldan 591 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑇 ∈ (LSubSp‘𝑊))
2117, 20sseldd 3923 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑇 ∈ (SubGrp‘𝑊))
22 eqid 2738 . . . . 5 (LSSum‘𝑊) = (LSSum‘𝑊)
2322lsmcom 19457 . . . 4 ((𝑊 ∈ Abel ∧ ( 𝑇) ∈ (SubGrp‘𝑊) ∧ 𝑇 ∈ (SubGrp‘𝑊)) → (( 𝑇)(LSSum‘𝑊)𝑇) = (𝑇(LSSum‘𝑊)( 𝑇)))
2415, 18, 21, 23syl3anc 1370 . . 3 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (( 𝑇)(LSSum‘𝑊)𝑇) = (𝑇(LSSum‘𝑊)( 𝑇)))
258, 2cssi 20887 . . . . 5 (𝑇 ∈ (ClSubSp‘𝑊) → 𝑇 = ( ‘( 𝑇)))
264, 25syl 17 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑇 = ( ‘( 𝑇)))
2726oveq2d 7293 . . 3 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (( 𝑇)(LSSum‘𝑊)𝑇) = (( 𝑇)(LSSum‘𝑊)( ‘( 𝑇))))
285, 9, 8, 22, 1pjdm2 20916 . . . 4 (𝑊 ∈ PreHil → (𝑇 ∈ dom 𝐾 ↔ (𝑇 ∈ (LSubSp‘𝑊) ∧ (𝑇(LSSum‘𝑊)( 𝑇)) = (Base‘𝑊))))
2928simplbda 500 . . 3 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝑇(LSSum‘𝑊)( 𝑇)) = (Base‘𝑊))
3024, 27, 293eqtr3d 2786 . 2 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (( 𝑇)(LSSum‘𝑊)( ‘( 𝑇))) = (Base‘𝑊))
315, 9, 8, 22, 1pjdm2 20916 . . 3 (𝑊 ∈ PreHil → (( 𝑇) ∈ dom 𝐾 ↔ (( 𝑇) ∈ (LSubSp‘𝑊) ∧ (( 𝑇)(LSSum‘𝑊)( ‘( 𝑇))) = (Base‘𝑊))))
3231adantr 481 . 2 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (( 𝑇) ∈ dom 𝐾 ↔ (( 𝑇) ∈ (LSubSp‘𝑊) ∧ (( 𝑇)(LSSum‘𝑊)( ‘( 𝑇))) = (Base‘𝑊))))
3311, 30, 32mpbir2and 710 1 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → ( 𝑇) ∈ dom 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wss 3888  dom cdm 5591  cfv 6435  (class class class)co 7277  Basecbs 16910  SubGrpcsubg 18747  LSSumclsm 19237  Abelcabl 19385  LModclmod 20121  LSubSpclss 20191  PreHilcphl 20827  ocvcocv 20863  ClSubSpccss 20864  projcpj 20905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5211  ax-sep 5225  ax-nul 5232  ax-pow 5290  ax-pr 5354  ax-un 7588  ax-cnex 10925  ax-resscn 10926  ax-1cn 10927  ax-icn 10928  ax-addcl 10929  ax-addrcl 10930  ax-mulcl 10931  ax-mulrcl 10932  ax-mulcom 10933  ax-addass 10934  ax-mulass 10935  ax-distr 10936  ax-i2m1 10937  ax-1ne0 10938  ax-1rid 10939  ax-rnegex 10940  ax-rrecex 10941  ax-cnre 10942  ax-pre-lttri 10943  ax-pre-lttrn 10944  ax-pre-ltadd 10945  ax-pre-mulgt0 10946
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3433  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4259  df-if 4462  df-pw 4537  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4842  df-int 4882  df-iun 4928  df-br 5077  df-opab 5139  df-mpt 5160  df-tr 5194  df-id 5491  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-we 5548  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-pred 6204  df-ord 6271  df-on 6272  df-lim 6273  df-suc 6274  df-iota 6393  df-fun 6437  df-fn 6438  df-f 6439  df-f1 6440  df-fo 6441  df-f1o 6442  df-fv 6443  df-riota 7234  df-ov 7280  df-oprab 7281  df-mpo 7282  df-om 7713  df-1st 7831  df-2nd 7832  df-tpos 8040  df-frecs 8095  df-wrecs 8126  df-recs 8200  df-rdg 8239  df-er 8496  df-map 8615  df-en 8732  df-dom 8733  df-sdom 8734  df-pnf 11009  df-mnf 11010  df-xr 11011  df-ltxr 11012  df-le 11013  df-sub 11205  df-neg 11206  df-nn 11972  df-2 12034  df-3 12035  df-4 12036  df-5 12037  df-6 12038  df-7 12039  df-8 12040  df-sets 16863  df-slot 16881  df-ndx 16893  df-base 16911  df-ress 16940  df-plusg 16973  df-mulr 16974  df-sca 16976  df-vsca 16977  df-ip 16978  df-0g 17150  df-mgm 18324  df-sgrp 18373  df-mnd 18384  df-mhm 18428  df-grp 18578  df-minusg 18579  df-sbg 18580  df-subg 18750  df-ghm 18830  df-cntz 18921  df-lsm 19239  df-pj1 19240  df-cmn 19386  df-abl 19387  df-mgp 19719  df-ur 19736  df-ring 19783  df-oppr 19860  df-rnghom 19957  df-staf 20103  df-srng 20104  df-lmod 20123  df-lss 20192  df-lmhm 20282  df-lvec 20363  df-sra 20432  df-rgmod 20433  df-phl 20829  df-ocv 20866  df-css 20867  df-pj 20908
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator