| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ocvpj | Structured version Visualization version GIF version | ||
| Description: The orthocomplement of a projection subspace is a projection subspace. (Contributed by Mario Carneiro, 16-Oct-2015.) |
| Ref | Expression |
|---|---|
| ocvpj.k | ⊢ 𝐾 = (proj‘𝑊) |
| ocvpj.o | ⊢ ⊥ = (ocv‘𝑊) |
| Ref | Expression |
|---|---|
| ocvpj | ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → ( ⊥ ‘𝑇) ∈ dom 𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ocvpj.k | . . . . . 6 ⊢ 𝐾 = (proj‘𝑊) | |
| 2 | eqid 2731 | . . . . . 6 ⊢ (ClSubSp‘𝑊) = (ClSubSp‘𝑊) | |
| 3 | 1, 2 | pjcss 21653 | . . . . 5 ⊢ (𝑊 ∈ PreHil → dom 𝐾 ⊆ (ClSubSp‘𝑊)) |
| 4 | 3 | sselda 3929 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑇 ∈ (ClSubSp‘𝑊)) |
| 5 | eqid 2731 | . . . . 5 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 6 | 5, 2 | cssss 21622 | . . . 4 ⊢ (𝑇 ∈ (ClSubSp‘𝑊) → 𝑇 ⊆ (Base‘𝑊)) |
| 7 | 4, 6 | syl 17 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑇 ⊆ (Base‘𝑊)) |
| 8 | ocvpj.o | . . . 4 ⊢ ⊥ = (ocv‘𝑊) | |
| 9 | eqid 2731 | . . . 4 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
| 10 | 5, 8, 9 | ocvlss 21609 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ⊆ (Base‘𝑊)) → ( ⊥ ‘𝑇) ∈ (LSubSp‘𝑊)) |
| 11 | 7, 10 | syldan 591 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → ( ⊥ ‘𝑇) ∈ (LSubSp‘𝑊)) |
| 12 | phllmod 21567 | . . . . . 6 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) | |
| 13 | 12 | adantr 480 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑊 ∈ LMod) |
| 14 | lmodabl 20842 | . . . . 5 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Abel) | |
| 15 | 13, 14 | syl 17 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑊 ∈ Abel) |
| 16 | 9 | lsssssubg 20891 | . . . . . 6 ⊢ (𝑊 ∈ LMod → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊)) |
| 17 | 13, 16 | syl 17 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊)) |
| 18 | 17, 11 | sseldd 3930 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → ( ⊥ ‘𝑇) ∈ (SubGrp‘𝑊)) |
| 19 | 2, 9 | csslss 21628 | . . . . . 6 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ (ClSubSp‘𝑊)) → 𝑇 ∈ (LSubSp‘𝑊)) |
| 20 | 4, 19 | syldan 591 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑇 ∈ (LSubSp‘𝑊)) |
| 21 | 17, 20 | sseldd 3930 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑇 ∈ (SubGrp‘𝑊)) |
| 22 | eqid 2731 | . . . . 5 ⊢ (LSSum‘𝑊) = (LSSum‘𝑊) | |
| 23 | 22 | lsmcom 19770 | . . . 4 ⊢ ((𝑊 ∈ Abel ∧ ( ⊥ ‘𝑇) ∈ (SubGrp‘𝑊) ∧ 𝑇 ∈ (SubGrp‘𝑊)) → (( ⊥ ‘𝑇)(LSSum‘𝑊)𝑇) = (𝑇(LSSum‘𝑊)( ⊥ ‘𝑇))) |
| 24 | 15, 18, 21, 23 | syl3anc 1373 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (( ⊥ ‘𝑇)(LSSum‘𝑊)𝑇) = (𝑇(LSSum‘𝑊)( ⊥ ‘𝑇))) |
| 25 | 8, 2 | cssi 21621 | . . . . 5 ⊢ (𝑇 ∈ (ClSubSp‘𝑊) → 𝑇 = ( ⊥ ‘( ⊥ ‘𝑇))) |
| 26 | 4, 25 | syl 17 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑇 = ( ⊥ ‘( ⊥ ‘𝑇))) |
| 27 | 26 | oveq2d 7362 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (( ⊥ ‘𝑇)(LSSum‘𝑊)𝑇) = (( ⊥ ‘𝑇)(LSSum‘𝑊)( ⊥ ‘( ⊥ ‘𝑇)))) |
| 28 | 5, 9, 8, 22, 1 | pjdm2 21648 | . . . 4 ⊢ (𝑊 ∈ PreHil → (𝑇 ∈ dom 𝐾 ↔ (𝑇 ∈ (LSubSp‘𝑊) ∧ (𝑇(LSSum‘𝑊)( ⊥ ‘𝑇)) = (Base‘𝑊)))) |
| 29 | 28 | simplbda 499 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝑇(LSSum‘𝑊)( ⊥ ‘𝑇)) = (Base‘𝑊)) |
| 30 | 24, 27, 29 | 3eqtr3d 2774 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (( ⊥ ‘𝑇)(LSSum‘𝑊)( ⊥ ‘( ⊥ ‘𝑇))) = (Base‘𝑊)) |
| 31 | 5, 9, 8, 22, 1 | pjdm2 21648 | . . 3 ⊢ (𝑊 ∈ PreHil → (( ⊥ ‘𝑇) ∈ dom 𝐾 ↔ (( ⊥ ‘𝑇) ∈ (LSubSp‘𝑊) ∧ (( ⊥ ‘𝑇)(LSSum‘𝑊)( ⊥ ‘( ⊥ ‘𝑇))) = (Base‘𝑊)))) |
| 32 | 31 | adantr 480 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (( ⊥ ‘𝑇) ∈ dom 𝐾 ↔ (( ⊥ ‘𝑇) ∈ (LSubSp‘𝑊) ∧ (( ⊥ ‘𝑇)(LSSum‘𝑊)( ⊥ ‘( ⊥ ‘𝑇))) = (Base‘𝑊)))) |
| 33 | 11, 30, 32 | mpbir2and 713 | 1 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → ( ⊥ ‘𝑇) ∈ dom 𝐾) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 dom cdm 5614 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 SubGrpcsubg 19033 LSSumclsm 19546 Abelcabl 19693 LModclmod 20793 LSubSpclss 20864 PreHilcphl 21561 ocvcocv 21597 ClSubSpccss 21598 projcpj 21637 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-ip 17179 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mhm 18691 df-grp 18849 df-minusg 18850 df-sbg 18851 df-subg 19036 df-ghm 19125 df-cntz 19229 df-lsm 19548 df-pj1 19549 df-cmn 19694 df-abl 19695 df-mgp 20059 df-rng 20071 df-ur 20100 df-ring 20153 df-oppr 20255 df-rhm 20390 df-staf 20754 df-srng 20755 df-lmod 20795 df-lss 20865 df-lmhm 20956 df-lvec 21037 df-sra 21107 df-rgmod 21108 df-phl 21563 df-ocv 21600 df-css 21601 df-pj 21640 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |