MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlhil Structured version   Visualization version   GIF version

Theorem hlhil 25478
Description: Corollary of the Projection Theorem: A subcomplex Hilbert space is a Hilbert space (in the algebraic sense, meaning that all algebraically closed subspaces have a projection decomposition). (Contributed by Mario Carneiro, 17-Oct-2015.)
Assertion
Ref Expression
hlhil (𝑊 ∈ ℂHil → 𝑊 ∈ Hil)

Proof of Theorem hlhil
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hlphl 25400 . 2 (𝑊 ∈ ℂHil → 𝑊 ∈ PreHil)
2 eqid 2736 . . . . 5 (proj‘𝑊) = (proj‘𝑊)
3 eqid 2736 . . . . 5 (ClSubSp‘𝑊) = (ClSubSp‘𝑊)
42, 3pjcss 21737 . . . 4 (𝑊 ∈ PreHil → dom (proj‘𝑊) ⊆ (ClSubSp‘𝑊))
51, 4syl 17 . . 3 (𝑊 ∈ ℂHil → dom (proj‘𝑊) ⊆ (ClSubSp‘𝑊))
6 eqid 2736 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
7 eqid 2736 . . . . 5 (TopOpen‘𝑊) = (TopOpen‘𝑊)
8 eqid 2736 . . . . 5 (LSubSp‘𝑊) = (LSubSp‘𝑊)
96, 7, 8, 3cldcss2 25477 . . . 4 (𝑊 ∈ ℂHil → (ClSubSp‘𝑊) = ((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊))))
10 elin 3966 . . . . . 6 (𝑥 ∈ ((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊))) ↔ (𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑥 ∈ (Clsd‘(TopOpen‘𝑊))))
117, 8, 2pjth2 25475 . . . . . . 7 ((𝑊 ∈ ℂHil ∧ 𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑥 ∈ (Clsd‘(TopOpen‘𝑊))) → 𝑥 ∈ dom (proj‘𝑊))
12113expib 1122 . . . . . 6 (𝑊 ∈ ℂHil → ((𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑥 ∈ (Clsd‘(TopOpen‘𝑊))) → 𝑥 ∈ dom (proj‘𝑊)))
1310, 12biimtrid 242 . . . . 5 (𝑊 ∈ ℂHil → (𝑥 ∈ ((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊))) → 𝑥 ∈ dom (proj‘𝑊)))
1413ssrdv 3988 . . . 4 (𝑊 ∈ ℂHil → ((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊))) ⊆ dom (proj‘𝑊))
159, 14eqsstrd 4017 . . 3 (𝑊 ∈ ℂHil → (ClSubSp‘𝑊) ⊆ dom (proj‘𝑊))
165, 15eqssd 4000 . 2 (𝑊 ∈ ℂHil → dom (proj‘𝑊) = (ClSubSp‘𝑊))
172, 3ishil 21739 . 2 (𝑊 ∈ Hil ↔ (𝑊 ∈ PreHil ∧ dom (proj‘𝑊) = (ClSubSp‘𝑊)))
181, 16, 17sylanbrc 583 1 (𝑊 ∈ ℂHil → 𝑊 ∈ Hil)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  cin 3949  wss 3950  dom cdm 5684  cfv 6560  Basecbs 17248  TopOpenctopn 17467  LSubSpclss 20930  PreHilcphl 21643  ClSubSpccss 21680  projcpj 21721  Hilchil 21722  Clsdccld 23025  ℂHilchl 25369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234  ax-addf 11235  ax-mulf 11236
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-tpos 8252  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-er 8746  df-map 8869  df-ixp 8939  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fsupp 9403  df-fi 9452  df-sup 9483  df-inf 9484  df-oi 9551  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-q 12992  df-rp 13036  df-xneg 13155  df-xadd 13156  df-xmul 13157  df-ioo 13392  df-ico 13394  df-icc 13395  df-fz 13549  df-fzo 13696  df-seq 14044  df-exp 14104  df-hash 14371  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-mhm 18797  df-submnd 18798  df-grp 18955  df-minusg 18956  df-sbg 18957  df-mulg 19087  df-subg 19142  df-ghm 19232  df-cntz 19336  df-lsm 19655  df-pj1 19656  df-cmn 19801  df-abl 19802  df-mgp 20139  df-rng 20151  df-ur 20180  df-ring 20233  df-cring 20234  df-oppr 20335  df-dvdsr 20358  df-unit 20359  df-invr 20389  df-dvr 20402  df-rhm 20473  df-subrng 20547  df-subrg 20571  df-drng 20732  df-staf 20841  df-srng 20842  df-lmod 20861  df-lss 20931  df-lmhm 21022  df-lvec 21103  df-sra 21173  df-rgmod 21174  df-psmet 21357  df-xmet 21358  df-met 21359  df-bl 21360  df-mopn 21361  df-fbas 21362  df-fg 21363  df-cnfld 21366  df-phl 21645  df-ipf 21646  df-ocv 21682  df-css 21683  df-pj 21724  df-hil 21725  df-top 22901  df-topon 22918  df-topsp 22940  df-bases 22954  df-cld 23028  df-ntr 23029  df-cls 23030  df-nei 23107  df-cn 23236  df-cnp 23237  df-t1 23323  df-haus 23324  df-cmp 23396  df-tx 23571  df-hmeo 23764  df-fil 23855  df-flim 23948  df-fcls 23950  df-xms 24331  df-ms 24332  df-tms 24333  df-nm 24596  df-ngp 24597  df-tng 24598  df-nlm 24600  df-cncf 24905  df-clm 25097  df-cph 25203  df-tcph 25204  df-cfil 25290  df-cmet 25292  df-cms 25370  df-bn 25371  df-hl 25372
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator