![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hlhil | Structured version Visualization version GIF version |
Description: Corollary of the Projection Theorem: A subcomplex Hilbert space is a Hilbert space (in the algebraic sense, meaning that all algebraically closed subspaces have a projection decomposition). (Contributed by Mario Carneiro, 17-Oct-2015.) |
Ref | Expression |
---|---|
hlhil | ⊢ (𝑊 ∈ ℂHil → 𝑊 ∈ Hil) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlphl 25413 | . 2 ⊢ (𝑊 ∈ ℂHil → 𝑊 ∈ PreHil) | |
2 | eqid 2735 | . . . . 5 ⊢ (proj‘𝑊) = (proj‘𝑊) | |
3 | eqid 2735 | . . . . 5 ⊢ (ClSubSp‘𝑊) = (ClSubSp‘𝑊) | |
4 | 2, 3 | pjcss 21754 | . . . 4 ⊢ (𝑊 ∈ PreHil → dom (proj‘𝑊) ⊆ (ClSubSp‘𝑊)) |
5 | 1, 4 | syl 17 | . . 3 ⊢ (𝑊 ∈ ℂHil → dom (proj‘𝑊) ⊆ (ClSubSp‘𝑊)) |
6 | eqid 2735 | . . . . 5 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
7 | eqid 2735 | . . . . 5 ⊢ (TopOpen‘𝑊) = (TopOpen‘𝑊) | |
8 | eqid 2735 | . . . . 5 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
9 | 6, 7, 8, 3 | cldcss2 25490 | . . . 4 ⊢ (𝑊 ∈ ℂHil → (ClSubSp‘𝑊) = ((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊)))) |
10 | elin 3979 | . . . . . 6 ⊢ (𝑥 ∈ ((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊))) ↔ (𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑥 ∈ (Clsd‘(TopOpen‘𝑊)))) | |
11 | 7, 8, 2 | pjth2 25488 | . . . . . . 7 ⊢ ((𝑊 ∈ ℂHil ∧ 𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑥 ∈ (Clsd‘(TopOpen‘𝑊))) → 𝑥 ∈ dom (proj‘𝑊)) |
12 | 11 | 3expib 1121 | . . . . . 6 ⊢ (𝑊 ∈ ℂHil → ((𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑥 ∈ (Clsd‘(TopOpen‘𝑊))) → 𝑥 ∈ dom (proj‘𝑊))) |
13 | 10, 12 | biimtrid 242 | . . . . 5 ⊢ (𝑊 ∈ ℂHil → (𝑥 ∈ ((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊))) → 𝑥 ∈ dom (proj‘𝑊))) |
14 | 13 | ssrdv 4001 | . . . 4 ⊢ (𝑊 ∈ ℂHil → ((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊))) ⊆ dom (proj‘𝑊)) |
15 | 9, 14 | eqsstrd 4034 | . . 3 ⊢ (𝑊 ∈ ℂHil → (ClSubSp‘𝑊) ⊆ dom (proj‘𝑊)) |
16 | 5, 15 | eqssd 4013 | . 2 ⊢ (𝑊 ∈ ℂHil → dom (proj‘𝑊) = (ClSubSp‘𝑊)) |
17 | 2, 3 | ishil 21756 | . 2 ⊢ (𝑊 ∈ Hil ↔ (𝑊 ∈ PreHil ∧ dom (proj‘𝑊) = (ClSubSp‘𝑊))) |
18 | 1, 16, 17 | sylanbrc 583 | 1 ⊢ (𝑊 ∈ ℂHil → 𝑊 ∈ Hil) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∩ cin 3962 ⊆ wss 3963 dom cdm 5689 ‘cfv 6563 Basecbs 17245 TopOpenctopn 17468 LSubSpclss 20947 PreHilcphl 21660 ClSubSpccss 21697 projcpj 21738 Hilchil 21739 Clsdccld 23040 ℂHilchl 25382 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 ax-addf 11232 ax-mulf 11233 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8013 df-2nd 8014 df-supp 8185 df-tpos 8250 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-map 8867 df-ixp 8937 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fsupp 9400 df-fi 9449 df-sup 9480 df-inf 9481 df-oi 9548 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-q 12989 df-rp 13033 df-xneg 13152 df-xadd 13153 df-xmul 13154 df-ioo 13388 df-ico 13390 df-icc 13391 df-fz 13545 df-fzo 13692 df-seq 14040 df-exp 14100 df-hash 14367 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-starv 17313 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-hom 17322 df-cco 17323 df-rest 17469 df-topn 17470 df-0g 17488 df-gsum 17489 df-topgen 17490 df-pt 17491 df-prds 17494 df-xrs 17549 df-qtop 17554 df-imas 17555 df-xps 17557 df-mre 17631 df-mrc 17632 df-acs 17634 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-mhm 18809 df-submnd 18810 df-grp 18967 df-minusg 18968 df-sbg 18969 df-mulg 19099 df-subg 19154 df-ghm 19244 df-cntz 19348 df-lsm 19669 df-pj1 19670 df-cmn 19815 df-abl 19816 df-mgp 20153 df-rng 20171 df-ur 20200 df-ring 20253 df-cring 20254 df-oppr 20351 df-dvdsr 20374 df-unit 20375 df-invr 20405 df-dvr 20418 df-rhm 20489 df-subrng 20563 df-subrg 20587 df-drng 20748 df-staf 20857 df-srng 20858 df-lmod 20877 df-lss 20948 df-lmhm 21039 df-lvec 21120 df-sra 21190 df-rgmod 21191 df-psmet 21374 df-xmet 21375 df-met 21376 df-bl 21377 df-mopn 21378 df-fbas 21379 df-fg 21380 df-cnfld 21383 df-phl 21662 df-ipf 21663 df-ocv 21699 df-css 21700 df-pj 21741 df-hil 21742 df-top 22916 df-topon 22933 df-topsp 22955 df-bases 22969 df-cld 23043 df-ntr 23044 df-cls 23045 df-nei 23122 df-cn 23251 df-cnp 23252 df-t1 23338 df-haus 23339 df-cmp 23411 df-tx 23586 df-hmeo 23779 df-fil 23870 df-flim 23963 df-fcls 23965 df-xms 24346 df-ms 24347 df-tms 24348 df-nm 24611 df-ngp 24612 df-tng 24613 df-nlm 24615 df-cncf 24918 df-clm 25110 df-cph 25216 df-tcph 25217 df-cfil 25303 df-cmet 25305 df-cms 25383 df-bn 25384 df-hl 25385 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |