Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ishil2 | Structured version Visualization version GIF version |
Description: The predicate "is a Hilbert space" (over a *-division ring). (Contributed by NM, 7-Oct-2011.) (Revised by Mario Carneiro, 22-Jun-2014.) |
Ref | Expression |
---|---|
ishil2.v | ⊢ 𝑉 = (Base‘𝐻) |
ishil2.s | ⊢ ⊕ = (LSSum‘𝐻) |
ishil2.o | ⊢ ⊥ = (ocv‘𝐻) |
ishil2.c | ⊢ 𝐶 = (ClSubSp‘𝐻) |
Ref | Expression |
---|---|
ishil2 | ⊢ (𝐻 ∈ Hil ↔ (𝐻 ∈ PreHil ∧ ∀𝑠 ∈ 𝐶 (𝑠 ⊕ ( ⊥ ‘𝑠)) = 𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2759 | . . 3 ⊢ (proj‘𝐻) = (proj‘𝐻) | |
2 | ishil2.c | . . 3 ⊢ 𝐶 = (ClSubSp‘𝐻) | |
3 | 1, 2 | ishil 20476 | . 2 ⊢ (𝐻 ∈ Hil ↔ (𝐻 ∈ PreHil ∧ dom (proj‘𝐻) = 𝐶)) |
4 | 1, 2 | pjcss 20474 | . . . . . 6 ⊢ (𝐻 ∈ PreHil → dom (proj‘𝐻) ⊆ 𝐶) |
5 | eqss 3908 | . . . . . . 7 ⊢ (dom (proj‘𝐻) = 𝐶 ↔ (dom (proj‘𝐻) ⊆ 𝐶 ∧ 𝐶 ⊆ dom (proj‘𝐻))) | |
6 | 5 | baib 540 | . . . . . 6 ⊢ (dom (proj‘𝐻) ⊆ 𝐶 → (dom (proj‘𝐻) = 𝐶 ↔ 𝐶 ⊆ dom (proj‘𝐻))) |
7 | 4, 6 | syl 17 | . . . . 5 ⊢ (𝐻 ∈ PreHil → (dom (proj‘𝐻) = 𝐶 ↔ 𝐶 ⊆ dom (proj‘𝐻))) |
8 | dfss3 3881 | . . . . 5 ⊢ (𝐶 ⊆ dom (proj‘𝐻) ↔ ∀𝑠 ∈ 𝐶 𝑠 ∈ dom (proj‘𝐻)) | |
9 | 7, 8 | bitrdi 290 | . . . 4 ⊢ (𝐻 ∈ PreHil → (dom (proj‘𝐻) = 𝐶 ↔ ∀𝑠 ∈ 𝐶 𝑠 ∈ dom (proj‘𝐻))) |
10 | eqid 2759 | . . . . . . 7 ⊢ (LSubSp‘𝐻) = (LSubSp‘𝐻) | |
11 | 2, 10 | csslss 20449 | . . . . . 6 ⊢ ((𝐻 ∈ PreHil ∧ 𝑠 ∈ 𝐶) → 𝑠 ∈ (LSubSp‘𝐻)) |
12 | ishil2.v | . . . . . . . 8 ⊢ 𝑉 = (Base‘𝐻) | |
13 | ishil2.o | . . . . . . . 8 ⊢ ⊥ = (ocv‘𝐻) | |
14 | ishil2.s | . . . . . . . 8 ⊢ ⊕ = (LSSum‘𝐻) | |
15 | 12, 10, 13, 14, 1 | pjdm2 20469 | . . . . . . 7 ⊢ (𝐻 ∈ PreHil → (𝑠 ∈ dom (proj‘𝐻) ↔ (𝑠 ∈ (LSubSp‘𝐻) ∧ (𝑠 ⊕ ( ⊥ ‘𝑠)) = 𝑉))) |
16 | 15 | baibd 544 | . . . . . 6 ⊢ ((𝐻 ∈ PreHil ∧ 𝑠 ∈ (LSubSp‘𝐻)) → (𝑠 ∈ dom (proj‘𝐻) ↔ (𝑠 ⊕ ( ⊥ ‘𝑠)) = 𝑉)) |
17 | 11, 16 | syldan 595 | . . . . 5 ⊢ ((𝐻 ∈ PreHil ∧ 𝑠 ∈ 𝐶) → (𝑠 ∈ dom (proj‘𝐻) ↔ (𝑠 ⊕ ( ⊥ ‘𝑠)) = 𝑉)) |
18 | 17 | ralbidva 3126 | . . . 4 ⊢ (𝐻 ∈ PreHil → (∀𝑠 ∈ 𝐶 𝑠 ∈ dom (proj‘𝐻) ↔ ∀𝑠 ∈ 𝐶 (𝑠 ⊕ ( ⊥ ‘𝑠)) = 𝑉)) |
19 | 9, 18 | bitrd 282 | . . 3 ⊢ (𝐻 ∈ PreHil → (dom (proj‘𝐻) = 𝐶 ↔ ∀𝑠 ∈ 𝐶 (𝑠 ⊕ ( ⊥ ‘𝑠)) = 𝑉)) |
20 | 19 | pm5.32i 579 | . 2 ⊢ ((𝐻 ∈ PreHil ∧ dom (proj‘𝐻) = 𝐶) ↔ (𝐻 ∈ PreHil ∧ ∀𝑠 ∈ 𝐶 (𝑠 ⊕ ( ⊥ ‘𝑠)) = 𝑉)) |
21 | 3, 20 | bitri 278 | 1 ⊢ (𝐻 ∈ Hil ↔ (𝐻 ∈ PreHil ∧ ∀𝑠 ∈ 𝐶 (𝑠 ⊕ ( ⊥ ‘𝑠)) = 𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 400 = wceq 1539 ∈ wcel 2112 ∀wral 3071 ⊆ wss 3859 dom cdm 5525 ‘cfv 6336 (class class class)co 7151 Basecbs 16534 LSSumclsm 18819 LSubSpclss 19764 PreHilcphl 20382 ocvcocv 20418 ClSubSpccss 20419 projcpj 20458 Hilchil 20459 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5157 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-cnex 10624 ax-resscn 10625 ax-1cn 10626 ax-icn 10627 ax-addcl 10628 ax-addrcl 10629 ax-mulcl 10630 ax-mulrcl 10631 ax-mulcom 10632 ax-addass 10633 ax-mulass 10634 ax-distr 10635 ax-i2m1 10636 ax-1ne0 10637 ax-1rid 10638 ax-rnegex 10639 ax-rrecex 10640 ax-cnre 10641 ax-pre-lttri 10642 ax-pre-lttrn 10643 ax-pre-ltadd 10644 ax-pre-mulgt0 10645 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-int 4840 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-om 7581 df-1st 7694 df-2nd 7695 df-tpos 7903 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-er 8300 df-map 8419 df-en 8529 df-dom 8530 df-sdom 8531 df-pnf 10708 df-mnf 10709 df-xr 10710 df-ltxr 10711 df-le 10712 df-sub 10903 df-neg 10904 df-nn 11668 df-2 11730 df-3 11731 df-4 11732 df-5 11733 df-6 11734 df-7 11735 df-8 11736 df-ndx 16537 df-slot 16538 df-base 16540 df-sets 16541 df-ress 16542 df-plusg 16629 df-mulr 16630 df-sca 16632 df-vsca 16633 df-ip 16634 df-0g 16766 df-mgm 17911 df-sgrp 17960 df-mnd 17971 df-mhm 18015 df-grp 18165 df-minusg 18166 df-sbg 18167 df-subg 18336 df-ghm 18416 df-cntz 18507 df-lsm 18821 df-pj1 18822 df-cmn 18968 df-abl 18969 df-mgp 19301 df-ur 19313 df-ring 19360 df-oppr 19437 df-rnghom 19531 df-staf 19677 df-srng 19678 df-lmod 19697 df-lss 19765 df-lmhm 19855 df-lvec 19936 df-sra 20005 df-rgmod 20006 df-phl 20384 df-ocv 20421 df-css 20422 df-pj 20461 df-hil 20462 |
This theorem is referenced by: hlhilhillem 39529 |
Copyright terms: Public domain | W3C validator |