| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ishil2 | Structured version Visualization version GIF version | ||
| Description: The predicate "is a Hilbert space" (over a *-division ring). (Contributed by NM, 7-Oct-2011.) (Revised by Mario Carneiro, 22-Jun-2014.) |
| Ref | Expression |
|---|---|
| ishil2.v | ⊢ 𝑉 = (Base‘𝐻) |
| ishil2.s | ⊢ ⊕ = (LSSum‘𝐻) |
| ishil2.o | ⊢ ⊥ = (ocv‘𝐻) |
| ishil2.c | ⊢ 𝐶 = (ClSubSp‘𝐻) |
| Ref | Expression |
|---|---|
| ishil2 | ⊢ (𝐻 ∈ Hil ↔ (𝐻 ∈ PreHil ∧ ∀𝑠 ∈ 𝐶 (𝑠 ⊕ ( ⊥ ‘𝑠)) = 𝑉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2737 | . . 3 ⊢ (proj‘𝐻) = (proj‘𝐻) | |
| 2 | ishil2.c | . . 3 ⊢ 𝐶 = (ClSubSp‘𝐻) | |
| 3 | 1, 2 | ishil 21738 | . 2 ⊢ (𝐻 ∈ Hil ↔ (𝐻 ∈ PreHil ∧ dom (proj‘𝐻) = 𝐶)) |
| 4 | 1, 2 | pjcss 21736 | . . . . . 6 ⊢ (𝐻 ∈ PreHil → dom (proj‘𝐻) ⊆ 𝐶) |
| 5 | eqss 3999 | . . . . . . 7 ⊢ (dom (proj‘𝐻) = 𝐶 ↔ (dom (proj‘𝐻) ⊆ 𝐶 ∧ 𝐶 ⊆ dom (proj‘𝐻))) | |
| 6 | 5 | baib 535 | . . . . . 6 ⊢ (dom (proj‘𝐻) ⊆ 𝐶 → (dom (proj‘𝐻) = 𝐶 ↔ 𝐶 ⊆ dom (proj‘𝐻))) |
| 7 | 4, 6 | syl 17 | . . . . 5 ⊢ (𝐻 ∈ PreHil → (dom (proj‘𝐻) = 𝐶 ↔ 𝐶 ⊆ dom (proj‘𝐻))) |
| 8 | dfss3 3972 | . . . . 5 ⊢ (𝐶 ⊆ dom (proj‘𝐻) ↔ ∀𝑠 ∈ 𝐶 𝑠 ∈ dom (proj‘𝐻)) | |
| 9 | 7, 8 | bitrdi 287 | . . . 4 ⊢ (𝐻 ∈ PreHil → (dom (proj‘𝐻) = 𝐶 ↔ ∀𝑠 ∈ 𝐶 𝑠 ∈ dom (proj‘𝐻))) |
| 10 | eqid 2737 | . . . . . . 7 ⊢ (LSubSp‘𝐻) = (LSubSp‘𝐻) | |
| 11 | 2, 10 | csslss 21709 | . . . . . 6 ⊢ ((𝐻 ∈ PreHil ∧ 𝑠 ∈ 𝐶) → 𝑠 ∈ (LSubSp‘𝐻)) |
| 12 | ishil2.v | . . . . . . . 8 ⊢ 𝑉 = (Base‘𝐻) | |
| 13 | ishil2.o | . . . . . . . 8 ⊢ ⊥ = (ocv‘𝐻) | |
| 14 | ishil2.s | . . . . . . . 8 ⊢ ⊕ = (LSSum‘𝐻) | |
| 15 | 12, 10, 13, 14, 1 | pjdm2 21731 | . . . . . . 7 ⊢ (𝐻 ∈ PreHil → (𝑠 ∈ dom (proj‘𝐻) ↔ (𝑠 ∈ (LSubSp‘𝐻) ∧ (𝑠 ⊕ ( ⊥ ‘𝑠)) = 𝑉))) |
| 16 | 15 | baibd 539 | . . . . . 6 ⊢ ((𝐻 ∈ PreHil ∧ 𝑠 ∈ (LSubSp‘𝐻)) → (𝑠 ∈ dom (proj‘𝐻) ↔ (𝑠 ⊕ ( ⊥ ‘𝑠)) = 𝑉)) |
| 17 | 11, 16 | syldan 591 | . . . . 5 ⊢ ((𝐻 ∈ PreHil ∧ 𝑠 ∈ 𝐶) → (𝑠 ∈ dom (proj‘𝐻) ↔ (𝑠 ⊕ ( ⊥ ‘𝑠)) = 𝑉)) |
| 18 | 17 | ralbidva 3176 | . . . 4 ⊢ (𝐻 ∈ PreHil → (∀𝑠 ∈ 𝐶 𝑠 ∈ dom (proj‘𝐻) ↔ ∀𝑠 ∈ 𝐶 (𝑠 ⊕ ( ⊥ ‘𝑠)) = 𝑉)) |
| 19 | 9, 18 | bitrd 279 | . . 3 ⊢ (𝐻 ∈ PreHil → (dom (proj‘𝐻) = 𝐶 ↔ ∀𝑠 ∈ 𝐶 (𝑠 ⊕ ( ⊥ ‘𝑠)) = 𝑉)) |
| 20 | 19 | pm5.32i 574 | . 2 ⊢ ((𝐻 ∈ PreHil ∧ dom (proj‘𝐻) = 𝐶) ↔ (𝐻 ∈ PreHil ∧ ∀𝑠 ∈ 𝐶 (𝑠 ⊕ ( ⊥ ‘𝑠)) = 𝑉)) |
| 21 | 3, 20 | bitri 275 | 1 ⊢ (𝐻 ∈ Hil ↔ (𝐻 ∈ PreHil ∧ ∀𝑠 ∈ 𝐶 (𝑠 ⊕ ( ⊥ ‘𝑠)) = 𝑉)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3061 ⊆ wss 3951 dom cdm 5685 ‘cfv 6561 (class class class)co 7431 Basecbs 17247 LSSumclsm 19652 LSubSpclss 20929 PreHilcphl 21642 ocvcocv 21678 ClSubSpccss 21679 projcpj 21720 Hilchil 21721 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-tpos 8251 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-map 8868 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-sca 17313 df-vsca 17314 df-ip 17315 df-0g 17486 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-mhm 18796 df-grp 18954 df-minusg 18955 df-sbg 18956 df-subg 19141 df-ghm 19231 df-cntz 19335 df-lsm 19654 df-pj1 19655 df-cmn 19800 df-abl 19801 df-mgp 20138 df-rng 20150 df-ur 20179 df-ring 20232 df-oppr 20334 df-rhm 20472 df-staf 20840 df-srng 20841 df-lmod 20860 df-lss 20930 df-lmhm 21021 df-lvec 21102 df-sra 21172 df-rgmod 21173 df-phl 21644 df-ocv 21681 df-css 21682 df-pj 21723 df-hil 21724 |
| This theorem is referenced by: hlhilhillem 41966 |
| Copyright terms: Public domain | W3C validator |