![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ishil2 | Structured version Visualization version GIF version |
Description: The predicate "is a Hilbert space" (over a *-division ring). (Contributed by NM, 7-Oct-2011.) (Revised by Mario Carneiro, 22-Jun-2014.) |
Ref | Expression |
---|---|
ishil2.v | ⊢ 𝑉 = (Base‘𝐻) |
ishil2.s | ⊢ ⊕ = (LSSum‘𝐻) |
ishil2.o | ⊢ ⊥ = (ocv‘𝐻) |
ishil2.c | ⊢ 𝐶 = (ClSubSp‘𝐻) |
Ref | Expression |
---|---|
ishil2 | ⊢ (𝐻 ∈ Hil ↔ (𝐻 ∈ PreHil ∧ ∀𝑠 ∈ 𝐶 (𝑠 ⊕ ( ⊥ ‘𝑠)) = 𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2800 | . . 3 ⊢ (proj‘𝐻) = (proj‘𝐻) | |
2 | ishil2.c | . . 3 ⊢ 𝐶 = (ClSubSp‘𝐻) | |
3 | 1, 2 | ishil 20386 | . 2 ⊢ (𝐻 ∈ Hil ↔ (𝐻 ∈ PreHil ∧ dom (proj‘𝐻) = 𝐶)) |
4 | 1, 2 | pjcss 20384 | . . . . . 6 ⊢ (𝐻 ∈ PreHil → dom (proj‘𝐻) ⊆ 𝐶) |
5 | eqss 3814 | . . . . . . 7 ⊢ (dom (proj‘𝐻) = 𝐶 ↔ (dom (proj‘𝐻) ⊆ 𝐶 ∧ 𝐶 ⊆ dom (proj‘𝐻))) | |
6 | 5 | baib 532 | . . . . . 6 ⊢ (dom (proj‘𝐻) ⊆ 𝐶 → (dom (proj‘𝐻) = 𝐶 ↔ 𝐶 ⊆ dom (proj‘𝐻))) |
7 | 4, 6 | syl 17 | . . . . 5 ⊢ (𝐻 ∈ PreHil → (dom (proj‘𝐻) = 𝐶 ↔ 𝐶 ⊆ dom (proj‘𝐻))) |
8 | dfss3 3788 | . . . . 5 ⊢ (𝐶 ⊆ dom (proj‘𝐻) ↔ ∀𝑠 ∈ 𝐶 𝑠 ∈ dom (proj‘𝐻)) | |
9 | 7, 8 | syl6bb 279 | . . . 4 ⊢ (𝐻 ∈ PreHil → (dom (proj‘𝐻) = 𝐶 ↔ ∀𝑠 ∈ 𝐶 𝑠 ∈ dom (proj‘𝐻))) |
10 | eqid 2800 | . . . . . . 7 ⊢ (LSubSp‘𝐻) = (LSubSp‘𝐻) | |
11 | 2, 10 | csslss 20359 | . . . . . 6 ⊢ ((𝐻 ∈ PreHil ∧ 𝑠 ∈ 𝐶) → 𝑠 ∈ (LSubSp‘𝐻)) |
12 | ishil2.v | . . . . . . . 8 ⊢ 𝑉 = (Base‘𝐻) | |
13 | ishil2.o | . . . . . . . 8 ⊢ ⊥ = (ocv‘𝐻) | |
14 | ishil2.s | . . . . . . . 8 ⊢ ⊕ = (LSSum‘𝐻) | |
15 | 12, 10, 13, 14, 1 | pjdm2 20379 | . . . . . . 7 ⊢ (𝐻 ∈ PreHil → (𝑠 ∈ dom (proj‘𝐻) ↔ (𝑠 ∈ (LSubSp‘𝐻) ∧ (𝑠 ⊕ ( ⊥ ‘𝑠)) = 𝑉))) |
16 | 15 | baibd 536 | . . . . . 6 ⊢ ((𝐻 ∈ PreHil ∧ 𝑠 ∈ (LSubSp‘𝐻)) → (𝑠 ∈ dom (proj‘𝐻) ↔ (𝑠 ⊕ ( ⊥ ‘𝑠)) = 𝑉)) |
17 | 11, 16 | syldan 586 | . . . . 5 ⊢ ((𝐻 ∈ PreHil ∧ 𝑠 ∈ 𝐶) → (𝑠 ∈ dom (proj‘𝐻) ↔ (𝑠 ⊕ ( ⊥ ‘𝑠)) = 𝑉)) |
18 | 17 | ralbidva 3167 | . . . 4 ⊢ (𝐻 ∈ PreHil → (∀𝑠 ∈ 𝐶 𝑠 ∈ dom (proj‘𝐻) ↔ ∀𝑠 ∈ 𝐶 (𝑠 ⊕ ( ⊥ ‘𝑠)) = 𝑉)) |
19 | 9, 18 | bitrd 271 | . . 3 ⊢ (𝐻 ∈ PreHil → (dom (proj‘𝐻) = 𝐶 ↔ ∀𝑠 ∈ 𝐶 (𝑠 ⊕ ( ⊥ ‘𝑠)) = 𝑉)) |
20 | 19 | pm5.32i 571 | . 2 ⊢ ((𝐻 ∈ PreHil ∧ dom (proj‘𝐻) = 𝐶) ↔ (𝐻 ∈ PreHil ∧ ∀𝑠 ∈ 𝐶 (𝑠 ⊕ ( ⊥ ‘𝑠)) = 𝑉)) |
21 | 3, 20 | bitri 267 | 1 ⊢ (𝐻 ∈ Hil ↔ (𝐻 ∈ PreHil ∧ ∀𝑠 ∈ 𝐶 (𝑠 ⊕ ( ⊥ ‘𝑠)) = 𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ∀wral 3090 ⊆ wss 3770 dom cdm 5313 ‘cfv 6102 (class class class)co 6879 Basecbs 16183 LSSumclsm 18361 LSubSpclss 19249 PreHilcphl 20292 ocvcocv 20328 ClSubSpccss 20329 projcpj 20368 Hilchil 20369 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-rep 4965 ax-sep 4976 ax-nul 4984 ax-pow 5036 ax-pr 5098 ax-un 7184 ax-cnex 10281 ax-resscn 10282 ax-1cn 10283 ax-icn 10284 ax-addcl 10285 ax-addrcl 10286 ax-mulcl 10287 ax-mulrcl 10288 ax-mulcom 10289 ax-addass 10290 ax-mulass 10291 ax-distr 10292 ax-i2m1 10293 ax-1ne0 10294 ax-1rid 10295 ax-rnegex 10296 ax-rrecex 10297 ax-cnre 10298 ax-pre-lttri 10299 ax-pre-lttrn 10300 ax-pre-ltadd 10301 ax-pre-mulgt0 10302 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ne 2973 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3388 df-sbc 3635 df-csb 3730 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-pss 3786 df-nul 4117 df-if 4279 df-pw 4352 df-sn 4370 df-pr 4372 df-tp 4374 df-op 4376 df-uni 4630 df-int 4669 df-iun 4713 df-br 4845 df-opab 4907 df-mpt 4924 df-tr 4947 df-id 5221 df-eprel 5226 df-po 5234 df-so 5235 df-fr 5272 df-we 5274 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-rn 5324 df-res 5325 df-ima 5326 df-pred 5899 df-ord 5945 df-on 5946 df-lim 5947 df-suc 5948 df-iota 6065 df-fun 6104 df-fn 6105 df-f 6106 df-f1 6107 df-fo 6108 df-f1o 6109 df-fv 6110 df-riota 6840 df-ov 6882 df-oprab 6883 df-mpt2 6884 df-om 7301 df-1st 7402 df-2nd 7403 df-tpos 7591 df-wrecs 7646 df-recs 7708 df-rdg 7746 df-er 7983 df-map 8098 df-en 8197 df-dom 8198 df-sdom 8199 df-pnf 10366 df-mnf 10367 df-xr 10368 df-ltxr 10369 df-le 10370 df-sub 10559 df-neg 10560 df-nn 11314 df-2 11375 df-3 11376 df-4 11377 df-5 11378 df-6 11379 df-7 11380 df-8 11381 df-ndx 16186 df-slot 16187 df-base 16189 df-sets 16190 df-ress 16191 df-plusg 16279 df-mulr 16280 df-sca 16282 df-vsca 16283 df-ip 16284 df-0g 16416 df-mgm 17556 df-sgrp 17598 df-mnd 17609 df-mhm 17649 df-grp 17740 df-minusg 17741 df-sbg 17742 df-subg 17903 df-ghm 17970 df-cntz 18061 df-lsm 18363 df-pj1 18364 df-cmn 18509 df-abl 18510 df-mgp 18805 df-ur 18817 df-ring 18864 df-oppr 18938 df-rnghom 19032 df-staf 19162 df-srng 19163 df-lmod 19182 df-lss 19250 df-lmhm 19342 df-lvec 19423 df-sra 19494 df-rgmod 19495 df-phl 20294 df-ocv 20331 df-css 20332 df-pj 20371 df-hil 20372 |
This theorem is referenced by: hlhilhillem 37980 |
Copyright terms: Public domain | W3C validator |