![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isexid | Structured version Visualization version GIF version |
Description: The predicate 𝐺 has a left and right identity element. (Contributed by FL, 2-Nov-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
isexid.1 | ⊢ 𝑋 = dom dom 𝐺 |
Ref | Expression |
---|---|
isexid | ⊢ (𝐺 ∈ 𝐴 → (𝐺 ∈ ExId ↔ ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmeq 5857 | . . . . 5 ⊢ (𝑔 = 𝐺 → dom 𝑔 = dom 𝐺) | |
2 | 1 | dmeqd 5859 | . . . 4 ⊢ (𝑔 = 𝐺 → dom dom 𝑔 = dom dom 𝐺) |
3 | isexid.1 | . . . 4 ⊢ 𝑋 = dom dom 𝐺 | |
4 | 2, 3 | eqtr4di 2795 | . . 3 ⊢ (𝑔 = 𝐺 → dom dom 𝑔 = 𝑋) |
5 | oveq 7357 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (𝑥𝑔𝑦) = (𝑥𝐺𝑦)) | |
6 | 5 | eqeq1d 2739 | . . . . 5 ⊢ (𝑔 = 𝐺 → ((𝑥𝑔𝑦) = 𝑦 ↔ (𝑥𝐺𝑦) = 𝑦)) |
7 | oveq 7357 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (𝑦𝑔𝑥) = (𝑦𝐺𝑥)) | |
8 | 7 | eqeq1d 2739 | . . . . 5 ⊢ (𝑔 = 𝐺 → ((𝑦𝑔𝑥) = 𝑦 ↔ (𝑦𝐺𝑥) = 𝑦)) |
9 | 6, 8 | anbi12d 631 | . . . 4 ⊢ (𝑔 = 𝐺 → (((𝑥𝑔𝑦) = 𝑦 ∧ (𝑦𝑔𝑥) = 𝑦) ↔ ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦))) |
10 | 4, 9 | raleqbidv 3317 | . . 3 ⊢ (𝑔 = 𝐺 → (∀𝑦 ∈ dom dom 𝑔((𝑥𝑔𝑦) = 𝑦 ∧ (𝑦𝑔𝑥) = 𝑦) ↔ ∀𝑦 ∈ 𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦))) |
11 | 4, 10 | rexeqbidv 3318 | . 2 ⊢ (𝑔 = 𝐺 → (∃𝑥 ∈ dom dom 𝑔∀𝑦 ∈ dom dom 𝑔((𝑥𝑔𝑦) = 𝑦 ∧ (𝑦𝑔𝑥) = 𝑦) ↔ ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦))) |
12 | df-exid 36242 | . 2 ⊢ ExId = {𝑔 ∣ ∃𝑥 ∈ dom dom 𝑔∀𝑦 ∈ dom dom 𝑔((𝑥𝑔𝑦) = 𝑦 ∧ (𝑦𝑔𝑥) = 𝑦)} | |
13 | 11, 12 | elab2g 3630 | 1 ⊢ (𝐺 ∈ 𝐴 → (𝐺 ∈ ExId ↔ ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3062 ∃wrex 3071 dom cdm 5631 (class class class)co 7351 ExId cexid 36241 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3063 df-rex 3072 df-rab 3406 df-v 3445 df-dif 3911 df-un 3913 df-in 3915 df-ss 3925 df-nul 4281 df-if 4485 df-sn 4585 df-pr 4587 df-op 4591 df-uni 4864 df-br 5104 df-dm 5641 df-iota 6445 df-fv 6501 df-ov 7354 df-exid 36242 |
This theorem is referenced by: opidonOLD 36249 isexid2 36252 ismndo 36269 exidres 36275 |
Copyright terms: Public domain | W3C validator |