Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isexid Structured version   Visualization version   GIF version

Theorem isexid 35993
Description: The predicate 𝐺 has a left and right identity element. (Contributed by FL, 2-Nov-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
isexid.1 𝑋 = dom dom 𝐺
Assertion
Ref Expression
isexid (𝐺𝐴 → (𝐺 ∈ ExId ↔ ∃𝑥𝑋𝑦𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦)))
Distinct variable groups:   𝑥,𝐺,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem isexid
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 dmeq 5810 . . . . 5 (𝑔 = 𝐺 → dom 𝑔 = dom 𝐺)
21dmeqd 5812 . . . 4 (𝑔 = 𝐺 → dom dom 𝑔 = dom dom 𝐺)
3 isexid.1 . . . 4 𝑋 = dom dom 𝐺
42, 3eqtr4di 2798 . . 3 (𝑔 = 𝐺 → dom dom 𝑔 = 𝑋)
5 oveq 7275 . . . . . 6 (𝑔 = 𝐺 → (𝑥𝑔𝑦) = (𝑥𝐺𝑦))
65eqeq1d 2742 . . . . 5 (𝑔 = 𝐺 → ((𝑥𝑔𝑦) = 𝑦 ↔ (𝑥𝐺𝑦) = 𝑦))
7 oveq 7275 . . . . . 6 (𝑔 = 𝐺 → (𝑦𝑔𝑥) = (𝑦𝐺𝑥))
87eqeq1d 2742 . . . . 5 (𝑔 = 𝐺 → ((𝑦𝑔𝑥) = 𝑦 ↔ (𝑦𝐺𝑥) = 𝑦))
96, 8anbi12d 631 . . . 4 (𝑔 = 𝐺 → (((𝑥𝑔𝑦) = 𝑦 ∧ (𝑦𝑔𝑥) = 𝑦) ↔ ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦)))
104, 9raleqbidv 3335 . . 3 (𝑔 = 𝐺 → (∀𝑦 ∈ dom dom 𝑔((𝑥𝑔𝑦) = 𝑦 ∧ (𝑦𝑔𝑥) = 𝑦) ↔ ∀𝑦𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦)))
114, 10rexeqbidv 3336 . 2 (𝑔 = 𝐺 → (∃𝑥 ∈ dom dom 𝑔𝑦 ∈ dom dom 𝑔((𝑥𝑔𝑦) = 𝑦 ∧ (𝑦𝑔𝑥) = 𝑦) ↔ ∃𝑥𝑋𝑦𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦)))
12 df-exid 35991 . 2 ExId = {𝑔 ∣ ∃𝑥 ∈ dom dom 𝑔𝑦 ∈ dom dom 𝑔((𝑥𝑔𝑦) = 𝑦 ∧ (𝑦𝑔𝑥) = 𝑦)}
1311, 12elab2g 3613 1 (𝐺𝐴 → (𝐺 ∈ ExId ↔ ∃𝑥𝑋𝑦𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1542  wcel 2110  wral 3066  wrex 3067  dom cdm 5589  (class class class)co 7269   ExId cexid 35990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-ext 2711
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-dm 5599  df-iota 6389  df-fv 6439  df-ov 7272  df-exid 35991
This theorem is referenced by:  opidonOLD  35998  isexid2  36001  ismndo  36018  exidres  36024
  Copyright terms: Public domain W3C validator