| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isexid | Structured version Visualization version GIF version | ||
| Description: The predicate 𝐺 has a left and right identity element. (Contributed by FL, 2-Nov-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| isexid.1 | ⊢ 𝑋 = dom dom 𝐺 |
| Ref | Expression |
|---|---|
| isexid | ⊢ (𝐺 ∈ 𝐴 → (𝐺 ∈ ExId ↔ ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmeq 5888 | . . . . 5 ⊢ (𝑔 = 𝐺 → dom 𝑔 = dom 𝐺) | |
| 2 | 1 | dmeqd 5890 | . . . 4 ⊢ (𝑔 = 𝐺 → dom dom 𝑔 = dom dom 𝐺) |
| 3 | isexid.1 | . . . 4 ⊢ 𝑋 = dom dom 𝐺 | |
| 4 | 2, 3 | eqtr4di 2789 | . . 3 ⊢ (𝑔 = 𝐺 → dom dom 𝑔 = 𝑋) |
| 5 | oveq 7416 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (𝑥𝑔𝑦) = (𝑥𝐺𝑦)) | |
| 6 | 5 | eqeq1d 2738 | . . . . 5 ⊢ (𝑔 = 𝐺 → ((𝑥𝑔𝑦) = 𝑦 ↔ (𝑥𝐺𝑦) = 𝑦)) |
| 7 | oveq 7416 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (𝑦𝑔𝑥) = (𝑦𝐺𝑥)) | |
| 8 | 7 | eqeq1d 2738 | . . . . 5 ⊢ (𝑔 = 𝐺 → ((𝑦𝑔𝑥) = 𝑦 ↔ (𝑦𝐺𝑥) = 𝑦)) |
| 9 | 6, 8 | anbi12d 632 | . . . 4 ⊢ (𝑔 = 𝐺 → (((𝑥𝑔𝑦) = 𝑦 ∧ (𝑦𝑔𝑥) = 𝑦) ↔ ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦))) |
| 10 | 4, 9 | raleqbidv 3329 | . . 3 ⊢ (𝑔 = 𝐺 → (∀𝑦 ∈ dom dom 𝑔((𝑥𝑔𝑦) = 𝑦 ∧ (𝑦𝑔𝑥) = 𝑦) ↔ ∀𝑦 ∈ 𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦))) |
| 11 | 4, 10 | rexeqbidv 3330 | . 2 ⊢ (𝑔 = 𝐺 → (∃𝑥 ∈ dom dom 𝑔∀𝑦 ∈ dom dom 𝑔((𝑥𝑔𝑦) = 𝑦 ∧ (𝑦𝑔𝑥) = 𝑦) ↔ ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦))) |
| 12 | df-exid 37874 | . 2 ⊢ ExId = {𝑔 ∣ ∃𝑥 ∈ dom dom 𝑔∀𝑦 ∈ dom dom 𝑔((𝑥𝑔𝑦) = 𝑦 ∧ (𝑦𝑔𝑥) = 𝑦)} | |
| 13 | 11, 12 | elab2g 3664 | 1 ⊢ (𝐺 ∈ 𝐴 → (𝐺 ∈ ExId ↔ ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ∃wrex 3061 dom cdm 5659 (class class class)co 7410 ExId cexid 37873 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-dm 5669 df-iota 6489 df-fv 6544 df-ov 7413 df-exid 37874 |
| This theorem is referenced by: opidonOLD 37881 isexid2 37884 ismndo 37901 exidres 37907 |
| Copyright terms: Public domain | W3C validator |