Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > oddinmgm | Structured version Visualization version GIF version |
Description: The structure of all odd integers together with the addition of complex numbers is not a magma. Remark: the structure of the complementary subset of the set of integers, the even integers, is a magma, actually an abelian group, see 2zrngaabl 45175, and even a non-unital ring, see 2zrng 45166. (Contributed by AV, 3-Feb-2020.) |
Ref | Expression |
---|---|
oddinmgm.e | ⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1)} |
oddinmgm.r | ⊢ 𝑀 = (ℂfld ↾s 𝑂) |
Ref | Expression |
---|---|
oddinmgm | ⊢ 𝑀 ∉ Mgm |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oddinmgm.e | . . 3 ⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1)} | |
2 | 1 | 1odd 45038 | . 2 ⊢ 1 ∈ 𝑂 |
3 | 1 | 2nodd 45039 | . . 3 ⊢ 2 ∉ 𝑂 |
4 | 1p1e2 11955 | . . . 4 ⊢ (1 + 1) = 2 | |
5 | neleq1 3051 | . . . 4 ⊢ ((1 + 1) = 2 → ((1 + 1) ∉ 𝑂 ↔ 2 ∉ 𝑂)) | |
6 | 4, 5 | ax-mp 5 | . . 3 ⊢ ((1 + 1) ∉ 𝑂 ↔ 2 ∉ 𝑂) |
7 | 3, 6 | mpbir 234 | . 2 ⊢ (1 + 1) ∉ 𝑂 |
8 | oddinmgm.r | . . . 4 ⊢ 𝑀 = (ℂfld ↾s 𝑂) | |
9 | 1, 8 | oddibas 45040 | . . 3 ⊢ 𝑂 = (Base‘𝑀) |
10 | 1, 8 | oddiadd 45041 | . . 3 ⊢ + = (+g‘𝑀) |
11 | 9, 10 | isnmgm 18118 | . 2 ⊢ ((1 ∈ 𝑂 ∧ 1 ∈ 𝑂 ∧ (1 + 1) ∉ 𝑂) → 𝑀 ∉ Mgm) |
12 | 2, 2, 7, 11 | mp3an 1463 | 1 ⊢ 𝑀 ∉ Mgm |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 = wceq 1543 ∈ wcel 2110 ∉ wnel 3046 ∃wrex 3062 {crab 3065 (class class class)co 7213 1c1 10730 + caddc 10732 · cmul 10734 2c2 11885 ℤcz 12176 ↾s cress 16784 Mgmcmgm 18112 ℂfldccnfld 20363 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 ax-addf 10808 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-div 11490 df-nn 11831 df-2 11893 df-3 11894 df-4 11895 df-5 11896 df-6 11897 df-7 11898 df-8 11899 df-9 11900 df-n0 12091 df-z 12177 df-dec 12294 df-uz 12439 df-fz 13096 df-struct 16700 df-sets 16717 df-slot 16735 df-ndx 16745 df-base 16761 df-ress 16785 df-plusg 16815 df-mulr 16816 df-starv 16817 df-tset 16821 df-ple 16822 df-ds 16824 df-unif 16825 df-mgm 18114 df-cnfld 20364 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |