| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oddinmgm | Structured version Visualization version GIF version | ||
| Description: The structure of all odd integers together with the addition of complex numbers is not a magma. Remark: the structure of the complementary subset of the set of integers, the even integers, is a magma, actually an abelian group, see 2zrngaabl 48112, and even a non-unital ring, see 2zrng 48103. (Contributed by AV, 3-Feb-2020.) |
| Ref | Expression |
|---|---|
| oddinmgm.e | ⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1)} |
| oddinmgm.r | ⊢ 𝑀 = (ℂfld ↾s 𝑂) |
| Ref | Expression |
|---|---|
| oddinmgm | ⊢ 𝑀 ∉ Mgm |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oddinmgm.e | . . 3 ⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1)} | |
| 2 | 1 | 1odd 48033 | . 2 ⊢ 1 ∈ 𝑂 |
| 3 | 1 | 2nodd 48034 | . . 3 ⊢ 2 ∉ 𝑂 |
| 4 | 1p1e2 12374 | . . . 4 ⊢ (1 + 1) = 2 | |
| 5 | neleq1 3041 | . . . 4 ⊢ ((1 + 1) = 2 → ((1 + 1) ∉ 𝑂 ↔ 2 ∉ 𝑂)) | |
| 6 | 4, 5 | ax-mp 5 | . . 3 ⊢ ((1 + 1) ∉ 𝑂 ↔ 2 ∉ 𝑂) |
| 7 | 3, 6 | mpbir 231 | . 2 ⊢ (1 + 1) ∉ 𝑂 |
| 8 | oddinmgm.r | . . . 4 ⊢ 𝑀 = (ℂfld ↾s 𝑂) | |
| 9 | 1, 8 | oddibas 48035 | . . 3 ⊢ 𝑂 = (Base‘𝑀) |
| 10 | 1, 8 | oddiadd 48036 | . . 3 ⊢ + = (+g‘𝑀) |
| 11 | 9, 10 | isnmgm 18631 | . 2 ⊢ ((1 ∈ 𝑂 ∧ 1 ∈ 𝑂 ∧ (1 + 1) ∉ 𝑂) → 𝑀 ∉ Mgm) |
| 12 | 2, 2, 7, 11 | mp3an 1462 | 1 ⊢ 𝑀 ∉ Mgm |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1539 ∈ wcel 2107 ∉ wnel 3035 ∃wrex 3059 {crab 3420 (class class class)co 7414 1c1 11139 + caddc 11141 · cmul 11143 2c2 12304 ℤcz 12597 ↾s cress 17256 Mgmcmgm 18625 ℂfldccnfld 21331 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-addf 11217 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-tp 4613 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7871 df-1st 7997 df-2nd 7998 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-1o 8489 df-er 8728 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-div 11904 df-nn 12250 df-2 12312 df-3 12313 df-4 12314 df-5 12315 df-6 12316 df-7 12317 df-8 12318 df-9 12319 df-n0 12511 df-z 12598 df-dec 12718 df-uz 12862 df-fz 13531 df-struct 17167 df-sets 17184 df-slot 17202 df-ndx 17214 df-base 17231 df-ress 17257 df-plusg 17290 df-mulr 17291 df-starv 17292 df-tset 17296 df-ple 17297 df-ds 17299 df-unif 17300 df-mgm 18627 df-cnfld 21332 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |