MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mgmsscl Structured version   Visualization version   GIF version

Theorem mgmsscl 18572
Description: If the base set of a magma is contained in the base set of another magma, and the group operation of the magma is the restriction of the group operation of the other magma to its base set, then the base set of the magma is closed under the group operation of the other magma. Formerly part of proof of grpissubg 19078. (Contributed by AV, 17-Feb-2024.)
Hypotheses
Ref Expression
mgmsscl.b 𝐵 = (Base‘𝐺)
mgmsscl.s 𝑆 = (Base‘𝐻)
Assertion
Ref Expression
mgmsscl (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋𝑆𝑌𝑆)) → (𝑋(+g𝐺)𝑌) ∈ 𝑆)

Proof of Theorem mgmsscl
StepHypRef Expression
1 ovres 7555 . . 3 ((𝑋𝑆𝑌𝑆) → (𝑋((+g𝐺) ↾ (𝑆 × 𝑆))𝑌) = (𝑋(+g𝐺)𝑌))
213ad2ant3 1135 . 2 (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋𝑆𝑌𝑆)) → (𝑋((+g𝐺) ↾ (𝑆 × 𝑆))𝑌) = (𝑋(+g𝐺)𝑌))
3 simp1r 1199 . . . . 5 (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋𝑆𝑌𝑆)) → 𝐻 ∈ Mgm)
4 simp3 1138 . . . . 5 (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋𝑆𝑌𝑆)) → (𝑋𝑆𝑌𝑆))
5 3anass 1094 . . . . 5 ((𝐻 ∈ Mgm ∧ 𝑋𝑆𝑌𝑆) ↔ (𝐻 ∈ Mgm ∧ (𝑋𝑆𝑌𝑆)))
63, 4, 5sylanbrc 583 . . . 4 (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋𝑆𝑌𝑆)) → (𝐻 ∈ Mgm ∧ 𝑋𝑆𝑌𝑆))
7 mgmsscl.s . . . . 5 𝑆 = (Base‘𝐻)
8 eqid 2729 . . . . 5 (+g𝐻) = (+g𝐻)
97, 8mgmcl 18570 . . . 4 ((𝐻 ∈ Mgm ∧ 𝑋𝑆𝑌𝑆) → (𝑋(+g𝐻)𝑌) ∈ 𝑆)
106, 9syl 17 . . 3 (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋𝑆𝑌𝑆)) → (𝑋(+g𝐻)𝑌) ∈ 𝑆)
11 oveq 7393 . . . . . . 7 (((+g𝐺) ↾ (𝑆 × 𝑆)) = (+g𝐻) → (𝑋((+g𝐺) ↾ (𝑆 × 𝑆))𝑌) = (𝑋(+g𝐻)𝑌))
1211eleq1d 2813 . . . . . 6 (((+g𝐺) ↾ (𝑆 × 𝑆)) = (+g𝐻) → ((𝑋((+g𝐺) ↾ (𝑆 × 𝑆))𝑌) ∈ 𝑆 ↔ (𝑋(+g𝐻)𝑌) ∈ 𝑆))
1312eqcoms 2737 . . . . 5 ((+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)) → ((𝑋((+g𝐺) ↾ (𝑆 × 𝑆))𝑌) ∈ 𝑆 ↔ (𝑋(+g𝐻)𝑌) ∈ 𝑆))
1413adantl 481 . . . 4 ((𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) → ((𝑋((+g𝐺) ↾ (𝑆 × 𝑆))𝑌) ∈ 𝑆 ↔ (𝑋(+g𝐻)𝑌) ∈ 𝑆))
15143ad2ant2 1134 . . 3 (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋𝑆𝑌𝑆)) → ((𝑋((+g𝐺) ↾ (𝑆 × 𝑆))𝑌) ∈ 𝑆 ↔ (𝑋(+g𝐻)𝑌) ∈ 𝑆))
1610, 15mpbird 257 . 2 (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋𝑆𝑌𝑆)) → (𝑋((+g𝐺) ↾ (𝑆 × 𝑆))𝑌) ∈ 𝑆)
172, 16eqeltrrd 2829 1 (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋𝑆𝑌𝑆)) → (𝑋(+g𝐺)𝑌) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3914   × cxp 5636  cres 5640  cfv 6511  (class class class)co 7387  Basecbs 17179  +gcplusg 17220  Mgmcmgm 18565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-xp 5644  df-res 5650  df-iota 6464  df-fv 6519  df-ov 7390  df-mgm 18567
This theorem is referenced by:  mndissubm  18734  grpissubg  19078
  Copyright terms: Public domain W3C validator