MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mgmsscl Structured version   Visualization version   GIF version

Theorem mgmsscl 18246
Description: If the base set of a magma is contained in the base set of another magma, and the group operation of the magma is the restriction of the group operation of the other magma to its base set, then the base set of the magma is closed under the group operation of the other magma. Formerly part of proof of grpissubg 18690. (Contributed by AV, 17-Feb-2024.)
Hypotheses
Ref Expression
mgmsscl.b 𝐵 = (Base‘𝐺)
mgmsscl.s 𝑆 = (Base‘𝐻)
Assertion
Ref Expression
mgmsscl (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋𝑆𝑌𝑆)) → (𝑋(+g𝐺)𝑌) ∈ 𝑆)

Proof of Theorem mgmsscl
StepHypRef Expression
1 ovres 7416 . . 3 ((𝑋𝑆𝑌𝑆) → (𝑋((+g𝐺) ↾ (𝑆 × 𝑆))𝑌) = (𝑋(+g𝐺)𝑌))
213ad2ant3 1133 . 2 (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋𝑆𝑌𝑆)) → (𝑋((+g𝐺) ↾ (𝑆 × 𝑆))𝑌) = (𝑋(+g𝐺)𝑌))
3 simp1r 1196 . . . . 5 (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋𝑆𝑌𝑆)) → 𝐻 ∈ Mgm)
4 simp3 1136 . . . . 5 (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋𝑆𝑌𝑆)) → (𝑋𝑆𝑌𝑆))
5 3anass 1093 . . . . 5 ((𝐻 ∈ Mgm ∧ 𝑋𝑆𝑌𝑆) ↔ (𝐻 ∈ Mgm ∧ (𝑋𝑆𝑌𝑆)))
63, 4, 5sylanbrc 582 . . . 4 (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋𝑆𝑌𝑆)) → (𝐻 ∈ Mgm ∧ 𝑋𝑆𝑌𝑆))
7 mgmsscl.s . . . . 5 𝑆 = (Base‘𝐻)
8 eqid 2738 . . . . 5 (+g𝐻) = (+g𝐻)
97, 8mgmcl 18244 . . . 4 ((𝐻 ∈ Mgm ∧ 𝑋𝑆𝑌𝑆) → (𝑋(+g𝐻)𝑌) ∈ 𝑆)
106, 9syl 17 . . 3 (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋𝑆𝑌𝑆)) → (𝑋(+g𝐻)𝑌) ∈ 𝑆)
11 oveq 7261 . . . . . . 7 (((+g𝐺) ↾ (𝑆 × 𝑆)) = (+g𝐻) → (𝑋((+g𝐺) ↾ (𝑆 × 𝑆))𝑌) = (𝑋(+g𝐻)𝑌))
1211eleq1d 2823 . . . . . 6 (((+g𝐺) ↾ (𝑆 × 𝑆)) = (+g𝐻) → ((𝑋((+g𝐺) ↾ (𝑆 × 𝑆))𝑌) ∈ 𝑆 ↔ (𝑋(+g𝐻)𝑌) ∈ 𝑆))
1312eqcoms 2746 . . . . 5 ((+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)) → ((𝑋((+g𝐺) ↾ (𝑆 × 𝑆))𝑌) ∈ 𝑆 ↔ (𝑋(+g𝐻)𝑌) ∈ 𝑆))
1413adantl 481 . . . 4 ((𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) → ((𝑋((+g𝐺) ↾ (𝑆 × 𝑆))𝑌) ∈ 𝑆 ↔ (𝑋(+g𝐻)𝑌) ∈ 𝑆))
15143ad2ant2 1132 . . 3 (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋𝑆𝑌𝑆)) → ((𝑋((+g𝐺) ↾ (𝑆 × 𝑆))𝑌) ∈ 𝑆 ↔ (𝑋(+g𝐻)𝑌) ∈ 𝑆))
1610, 15mpbird 256 . 2 (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋𝑆𝑌𝑆)) → (𝑋((+g𝐺) ↾ (𝑆 × 𝑆))𝑌) ∈ 𝑆)
172, 16eqeltrrd 2840 1 (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋𝑆𝑌𝑆)) → (𝑋(+g𝐺)𝑌) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wss 3883   × cxp 5578  cres 5582  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  Mgmcmgm 18239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-xp 5586  df-res 5592  df-iota 6376  df-fv 6426  df-ov 7258  df-mgm 18241
This theorem is referenced by:  mndissubm  18361  grpissubg  18690
  Copyright terms: Public domain W3C validator