MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mgmsscl Structured version   Visualization version   GIF version

Theorem mgmsscl 18685
Description: If the base set of a magma is contained in the base set of another magma, and the group operation of the magma is the restriction of the group operation of the other magma to its base set, then the base set of the magma is closed under the group operation of the other magma. Formerly part of proof of grpissubg 19188. (Contributed by AV, 17-Feb-2024.)
Hypotheses
Ref Expression
mgmsscl.b 𝐵 = (Base‘𝐺)
mgmsscl.s 𝑆 = (Base‘𝐻)
Assertion
Ref Expression
mgmsscl (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋𝑆𝑌𝑆)) → (𝑋(+g𝐺)𝑌) ∈ 𝑆)

Proof of Theorem mgmsscl
StepHypRef Expression
1 ovres 7618 . . 3 ((𝑋𝑆𝑌𝑆) → (𝑋((+g𝐺) ↾ (𝑆 × 𝑆))𝑌) = (𝑋(+g𝐺)𝑌))
213ad2ant3 1135 . 2 (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋𝑆𝑌𝑆)) → (𝑋((+g𝐺) ↾ (𝑆 × 𝑆))𝑌) = (𝑋(+g𝐺)𝑌))
3 simp1r 1198 . . . . 5 (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋𝑆𝑌𝑆)) → 𝐻 ∈ Mgm)
4 simp3 1138 . . . . 5 (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋𝑆𝑌𝑆)) → (𝑋𝑆𝑌𝑆))
5 3anass 1095 . . . . 5 ((𝐻 ∈ Mgm ∧ 𝑋𝑆𝑌𝑆) ↔ (𝐻 ∈ Mgm ∧ (𝑋𝑆𝑌𝑆)))
63, 4, 5sylanbrc 582 . . . 4 (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋𝑆𝑌𝑆)) → (𝐻 ∈ Mgm ∧ 𝑋𝑆𝑌𝑆))
7 mgmsscl.s . . . . 5 𝑆 = (Base‘𝐻)
8 eqid 2740 . . . . 5 (+g𝐻) = (+g𝐻)
97, 8mgmcl 18683 . . . 4 ((𝐻 ∈ Mgm ∧ 𝑋𝑆𝑌𝑆) → (𝑋(+g𝐻)𝑌) ∈ 𝑆)
106, 9syl 17 . . 3 (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋𝑆𝑌𝑆)) → (𝑋(+g𝐻)𝑌) ∈ 𝑆)
11 oveq 7456 . . . . . . 7 (((+g𝐺) ↾ (𝑆 × 𝑆)) = (+g𝐻) → (𝑋((+g𝐺) ↾ (𝑆 × 𝑆))𝑌) = (𝑋(+g𝐻)𝑌))
1211eleq1d 2829 . . . . . 6 (((+g𝐺) ↾ (𝑆 × 𝑆)) = (+g𝐻) → ((𝑋((+g𝐺) ↾ (𝑆 × 𝑆))𝑌) ∈ 𝑆 ↔ (𝑋(+g𝐻)𝑌) ∈ 𝑆))
1312eqcoms 2748 . . . . 5 ((+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)) → ((𝑋((+g𝐺) ↾ (𝑆 × 𝑆))𝑌) ∈ 𝑆 ↔ (𝑋(+g𝐻)𝑌) ∈ 𝑆))
1413adantl 481 . . . 4 ((𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) → ((𝑋((+g𝐺) ↾ (𝑆 × 𝑆))𝑌) ∈ 𝑆 ↔ (𝑋(+g𝐻)𝑌) ∈ 𝑆))
15143ad2ant2 1134 . . 3 (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋𝑆𝑌𝑆)) → ((𝑋((+g𝐺) ↾ (𝑆 × 𝑆))𝑌) ∈ 𝑆 ↔ (𝑋(+g𝐻)𝑌) ∈ 𝑆))
1610, 15mpbird 257 . 2 (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋𝑆𝑌𝑆)) → (𝑋((+g𝐺) ↾ (𝑆 × 𝑆))𝑌) ∈ 𝑆)
172, 16eqeltrrd 2845 1 (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋𝑆𝑌𝑆)) → (𝑋(+g𝐺)𝑌) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wss 3976   × cxp 5698  cres 5702  cfv 6575  (class class class)co 7450  Basecbs 17260  +gcplusg 17313  Mgmcmgm 18678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-xp 5706  df-res 5712  df-iota 6527  df-fv 6583  df-ov 7453  df-mgm 18680
This theorem is referenced by:  mndissubm  18844  grpissubg  19188
  Copyright terms: Public domain W3C validator