MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ist0-2 Structured version   Visualization version   GIF version

Theorem ist0-2 22847
Description: The predicate "is a T0 space". (Contributed by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
ist0-2 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ (𝐽 ∈ Kol2 ↔ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ 𝑋 (βˆ€π‘œ ∈ 𝐽 (π‘₯ ∈ π‘œ ↔ 𝑦 ∈ π‘œ) β†’ π‘₯ = 𝑦)))
Distinct variable groups:   π‘₯,𝑦,π‘œ,𝐽   π‘œ,𝑋,π‘₯,𝑦

Proof of Theorem ist0-2
StepHypRef Expression
1 topontop 22414 . . 3 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ 𝐽 ∈ Top)
2 eqid 2732 . . . . 5 βˆͺ 𝐽 = βˆͺ 𝐽
32ist0 22823 . . . 4 (𝐽 ∈ Kol2 ↔ (𝐽 ∈ Top ∧ βˆ€π‘₯ ∈ βˆͺ π½βˆ€π‘¦ ∈ βˆͺ 𝐽(βˆ€π‘œ ∈ 𝐽 (π‘₯ ∈ π‘œ ↔ 𝑦 ∈ π‘œ) β†’ π‘₯ = 𝑦)))
43baib 536 . . 3 (𝐽 ∈ Top β†’ (𝐽 ∈ Kol2 ↔ βˆ€π‘₯ ∈ βˆͺ π½βˆ€π‘¦ ∈ βˆͺ 𝐽(βˆ€π‘œ ∈ 𝐽 (π‘₯ ∈ π‘œ ↔ 𝑦 ∈ π‘œ) β†’ π‘₯ = 𝑦)))
51, 4syl 17 . 2 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ (𝐽 ∈ Kol2 ↔ βˆ€π‘₯ ∈ βˆͺ π½βˆ€π‘¦ ∈ βˆͺ 𝐽(βˆ€π‘œ ∈ 𝐽 (π‘₯ ∈ π‘œ ↔ 𝑦 ∈ π‘œ) β†’ π‘₯ = 𝑦)))
6 toponuni 22415 . . 3 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ 𝑋 = βˆͺ 𝐽)
76raleqdv 3325 . . 3 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ (βˆ€π‘¦ ∈ 𝑋 (βˆ€π‘œ ∈ 𝐽 (π‘₯ ∈ π‘œ ↔ 𝑦 ∈ π‘œ) β†’ π‘₯ = 𝑦) ↔ βˆ€π‘¦ ∈ βˆͺ 𝐽(βˆ€π‘œ ∈ 𝐽 (π‘₯ ∈ π‘œ ↔ 𝑦 ∈ π‘œ) β†’ π‘₯ = 𝑦)))
86, 7raleqbidv 3342 . 2 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ (βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ 𝑋 (βˆ€π‘œ ∈ 𝐽 (π‘₯ ∈ π‘œ ↔ 𝑦 ∈ π‘œ) β†’ π‘₯ = 𝑦) ↔ βˆ€π‘₯ ∈ βˆͺ π½βˆ€π‘¦ ∈ βˆͺ 𝐽(βˆ€π‘œ ∈ 𝐽 (π‘₯ ∈ π‘œ ↔ 𝑦 ∈ π‘œ) β†’ π‘₯ = 𝑦)))
95, 8bitr4d 281 1 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ (𝐽 ∈ Kol2 ↔ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ 𝑋 (βˆ€π‘œ ∈ 𝐽 (π‘₯ ∈ π‘œ ↔ 𝑦 ∈ π‘œ) β†’ π‘₯ = 𝑦)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∈ wcel 2106  βˆ€wral 3061  βˆͺ cuni 4908  β€˜cfv 6543  Topctop 22394  TopOnctopon 22411  Kol2ct0 22809
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-topon 22412  df-t0 22816
This theorem is referenced by:  ist0-3  22848  t1t0  22851  ist0-4  23232  kqt0lem  23239  tgpt0  23622  onsuct0  35321
  Copyright terms: Public domain W3C validator