MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ist0-2 Structured version   Visualization version   GIF version

Theorem ist0-2 21477
Description: The predicate "is a T0 space". (Contributed by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
ist0-2 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Kol2 ↔ ∀𝑥𝑋𝑦𝑋 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)))
Distinct variable groups:   𝑥,𝑦,𝑜,𝐽   𝑜,𝑋,𝑥,𝑦

Proof of Theorem ist0-2
StepHypRef Expression
1 topontop 21046 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
2 eqid 2799 . . . . 5 𝐽 = 𝐽
32ist0 21453 . . . 4 (𝐽 ∈ Kol2 ↔ (𝐽 ∈ Top ∧ ∀𝑥 𝐽𝑦 𝐽(∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)))
43baib 532 . . 3 (𝐽 ∈ Top → (𝐽 ∈ Kol2 ↔ ∀𝑥 𝐽𝑦 𝐽(∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)))
51, 4syl 17 . 2 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Kol2 ↔ ∀𝑥 𝐽𝑦 𝐽(∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)))
6 toponuni 21047 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
76raleqdv 3327 . . 3 (𝐽 ∈ (TopOn‘𝑋) → (∀𝑦𝑋 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦) ↔ ∀𝑦 𝐽(∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)))
86, 7raleqbidv 3335 . 2 (𝐽 ∈ (TopOn‘𝑋) → (∀𝑥𝑋𝑦𝑋 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦) ↔ ∀𝑥 𝐽𝑦 𝐽(∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)))
95, 8bitr4d 274 1 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Kol2 ↔ ∀𝑥𝑋𝑦𝑋 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wcel 2157  wral 3089   cuni 4628  cfv 6101  Topctop 21026  TopOnctopon 21043  Kol2ct0 21439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3387  df-sbc 3634  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-br 4844  df-opab 4906  df-mpt 4923  df-id 5220  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-iota 6064  df-fun 6103  df-fv 6109  df-topon 21044  df-t0 21446
This theorem is referenced by:  ist0-3  21478  t1t0  21481  ist0-4  21861  kqt0lem  21868  tgpt0  22250  onsuct0  32948
  Copyright terms: Public domain W3C validator