Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > iuneq2df | Structured version Visualization version GIF version |
Description: Equality deduction for indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
iuneq2df.1 | ⊢ Ⅎ𝑥𝜑 |
iuneq2df.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
iuneq2df | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iuneq2df.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | iuneq2df.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) | |
3 | 2 | ex 412 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐵 = 𝐶)) |
4 | 1, 3 | ralrimi 3139 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 = 𝐶) |
5 | iuneq2 4940 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) | |
6 | 4, 5 | syl 17 | 1 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 Ⅎwnf 1787 ∈ wcel 2108 ∀wral 3063 ∪ ciun 4921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-v 3424 df-in 3890 df-ss 3900 df-iun 4923 |
This theorem is referenced by: subsaliuncl 43787 omeiunlempt 43948 hoicvrrex 43984 ovnlecvr2 44038 smflimmpt 44230 smflimsupmpt 44249 smfliminfmpt 44252 |
Copyright terms: Public domain | W3C validator |