Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iuneq2df Structured version   Visualization version   GIF version

Theorem iuneq2df 42483
Description: Equality deduction for indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
iuneq2df.1 𝑥𝜑
iuneq2df.2 ((𝜑𝑥𝐴) → 𝐵 = 𝐶)
Assertion
Ref Expression
iuneq2df (𝜑 𝑥𝐴 𝐵 = 𝑥𝐴 𝐶)

Proof of Theorem iuneq2df
StepHypRef Expression
1 iuneq2df.1 . . 3 𝑥𝜑
2 iuneq2df.2 . . . 4 ((𝜑𝑥𝐴) → 𝐵 = 𝐶)
32ex 412 . . 3 (𝜑 → (𝑥𝐴𝐵 = 𝐶))
41, 3ralrimi 3139 . 2 (𝜑 → ∀𝑥𝐴 𝐵 = 𝐶)
5 iuneq2 4940 . 2 (∀𝑥𝐴 𝐵 = 𝐶 𝑥𝐴 𝐵 = 𝑥𝐴 𝐶)
64, 5syl 17 1 (𝜑 𝑥𝐴 𝐵 = 𝑥𝐴 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wnf 1787  wcel 2108  wral 3063   ciun 4921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-v 3424  df-in 3890  df-ss 3900  df-iun 4923
This theorem is referenced by:  subsaliuncl  43787  omeiunlempt  43948  hoicvrrex  43984  ovnlecvr2  44038  smflimmpt  44230  smflimsupmpt  44249  smfliminfmpt  44252
  Copyright terms: Public domain W3C validator