![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > omeiunlempt | Structured version Visualization version GIF version |
Description: The outer measure of the indexed union of a countable set is the less than or equal to the extended sum of the outer measures. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
omeiunlempt.nph | β’ β²ππ |
omeiunlempt.o | β’ (π β π β OutMeas) |
omeiunlempt.x | β’ π = βͺ dom π |
omeiunlempt.z | β’ π = (β€β₯βπ) |
omeiunlempt.e | β’ ((π β§ π β π) β πΈ β π) |
Ref | Expression |
---|---|
omeiunlempt | β’ (π β (πββͺ π β π πΈ) β€ (Ξ£^β(π β π β¦ (πβπΈ)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omeiunlempt.nph | . . 3 β’ β²ππ | |
2 | nfmpt1 5250 | . . 3 β’ β²π(π β π β¦ πΈ) | |
3 | omeiunlempt.o | . . 3 β’ (π β π β OutMeas) | |
4 | omeiunlempt.x | . . 3 β’ π = βͺ dom π | |
5 | omeiunlempt.z | . . 3 β’ π = (β€β₯βπ) | |
6 | omeiunlempt.e | . . . . 5 β’ ((π β§ π β π) β πΈ β π) | |
7 | 3, 4 | unidmex 44327 | . . . . . . . 8 β’ (π β π β V) |
8 | 7 | adantr 480 | . . . . . . 7 β’ ((π β§ π β π) β π β V) |
9 | ssexg 5317 | . . . . . . 7 β’ ((πΈ β π β§ π β V) β πΈ β V) | |
10 | 6, 8, 9 | syl2anc 583 | . . . . . 6 β’ ((π β§ π β π) β πΈ β V) |
11 | elpwg 4601 | . . . . . 6 β’ (πΈ β V β (πΈ β π« π β πΈ β π)) | |
12 | 10, 11 | syl 17 | . . . . 5 β’ ((π β§ π β π) β (πΈ β π« π β πΈ β π)) |
13 | 6, 12 | mpbird 257 | . . . 4 β’ ((π β§ π β π) β πΈ β π« π) |
14 | eqid 2727 | . . . 4 β’ (π β π β¦ πΈ) = (π β π β¦ πΈ) | |
15 | 1, 13, 14 | fmptdf 7121 | . . 3 β’ (π β (π β π β¦ πΈ):πβΆπ« π) |
16 | 1, 2, 3, 4, 5, 15 | omeiunle 45818 | . 2 β’ (π β (πββͺ π β π ((π β π β¦ πΈ)βπ)) β€ (Ξ£^β(π β π β¦ (πβ((π β π β¦ πΈ)βπ))))) |
17 | simpr 484 | . . . . . . 7 β’ ((π β§ π β π) β π β π) | |
18 | 14 | fvmpt2 7010 | . . . . . . 7 β’ ((π β π β§ πΈ β V) β ((π β π β¦ πΈ)βπ) = πΈ) |
19 | 17, 10, 18 | syl2anc 583 | . . . . . 6 β’ ((π β§ π β π) β ((π β π β¦ πΈ)βπ) = πΈ) |
20 | 19 | eqcomd 2733 | . . . . 5 β’ ((π β§ π β π) β πΈ = ((π β π β¦ πΈ)βπ)) |
21 | 1, 20 | iuneq2df 44323 | . . . 4 β’ (π β βͺ π β π πΈ = βͺ π β π ((π β π β¦ πΈ)βπ)) |
22 | 21 | fveq2d 6895 | . . 3 β’ (π β (πββͺ π β π πΈ) = (πββͺ π β π ((π β π β¦ πΈ)βπ))) |
23 | 20 | fveq2d 6895 | . . . . 5 β’ ((π β§ π β π) β (πβπΈ) = (πβ((π β π β¦ πΈ)βπ))) |
24 | 1, 23 | mpteq2da 5240 | . . . 4 β’ (π β (π β π β¦ (πβπΈ)) = (π β π β¦ (πβ((π β π β¦ πΈ)βπ)))) |
25 | 24 | fveq2d 6895 | . . 3 β’ (π β (Ξ£^β(π β π β¦ (πβπΈ))) = (Ξ£^β(π β π β¦ (πβ((π β π β¦ πΈ)βπ))))) |
26 | 22, 25 | breq12d 5155 | . 2 β’ (π β ((πββͺ π β π πΈ) β€ (Ξ£^β(π β π β¦ (πβπΈ))) β (πββͺ π β π ((π β π β¦ πΈ)βπ)) β€ (Ξ£^β(π β π β¦ (πβ((π β π β¦ πΈ)βπ)))))) |
27 | 16, 26 | mpbird 257 | 1 β’ (π β (πββͺ π β π πΈ) β€ (Ξ£^β(π β π β¦ (πβπΈ)))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 = wceq 1534 β²wnf 1778 β wcel 2099 Vcvv 3469 β wss 3944 π« cpw 4598 βͺ cuni 4903 βͺ ciun 4991 class class class wbr 5142 β¦ cmpt 5225 dom cdm 5672 βcfv 6542 β€ cle 11265 β€β₯cuz 12838 Ξ£^csumge0 45663 OutMeascome 45790 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-inf2 9650 ax-ac2 10472 ax-cnex 11180 ax-resscn 11181 ax-1cn 11182 ax-icn 11183 ax-addcl 11184 ax-addrcl 11185 ax-mulcl 11186 ax-mulrcl 11187 ax-mulcom 11188 ax-addass 11189 ax-mulass 11190 ax-distr 11191 ax-i2m1 11192 ax-1ne0 11193 ax-1rid 11194 ax-rnegex 11195 ax-rrecex 11196 ax-cnre 11197 ax-pre-lttri 11198 ax-pre-lttrn 11199 ax-pre-ltadd 11200 ax-pre-mulgt0 11201 ax-pre-sup 11202 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7863 df-1st 7985 df-2nd 7986 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-oadd 8482 df-omul 8483 df-er 8716 df-map 8836 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-sup 9451 df-oi 9519 df-card 9948 df-acn 9951 df-ac 10125 df-pnf 11266 df-mnf 11267 df-xr 11268 df-ltxr 11269 df-le 11270 df-sub 11462 df-neg 11463 df-div 11888 df-nn 12229 df-2 12291 df-3 12292 df-n0 12489 df-z 12575 df-uz 12839 df-rp 12993 df-ico 13348 df-icc 13349 df-fz 13503 df-fzo 13646 df-seq 13985 df-exp 14045 df-hash 14308 df-cj 15064 df-re 15065 df-im 15066 df-sqrt 15200 df-abs 15201 df-clim 15450 df-sum 15651 df-sumge0 45664 df-ome 45791 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |