Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omeiunlempt Structured version   Visualization version   GIF version

Theorem omeiunlempt 43948
Description: The outer measure of the indexed union of a countable set is the less than or equal to the extended sum of the outer measures. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
omeiunlempt.nph 𝑛𝜑
omeiunlempt.o (𝜑𝑂 ∈ OutMeas)
omeiunlempt.x 𝑋 = dom 𝑂
omeiunlempt.z 𝑍 = (ℤ𝑁)
omeiunlempt.e ((𝜑𝑛𝑍) → 𝐸𝑋)
Assertion
Ref Expression
omeiunlempt (𝜑 → (𝑂 𝑛𝑍 𝐸) ≤ (Σ^‘(𝑛𝑍 ↦ (𝑂𝐸))))
Distinct variable groups:   𝑛,𝑂   𝑛,𝑋   𝑛,𝑍
Allowed substitution hints:   𝜑(𝑛)   𝐸(𝑛)   𝑁(𝑛)

Proof of Theorem omeiunlempt
StepHypRef Expression
1 omeiunlempt.nph . . 3 𝑛𝜑
2 nfmpt1 5178 . . 3 𝑛(𝑛𝑍𝐸)
3 omeiunlempt.o . . 3 (𝜑𝑂 ∈ OutMeas)
4 omeiunlempt.x . . 3 𝑋 = dom 𝑂
5 omeiunlempt.z . . 3 𝑍 = (ℤ𝑁)
6 omeiunlempt.e . . . . 5 ((𝜑𝑛𝑍) → 𝐸𝑋)
73, 4unidmex 42487 . . . . . . . 8 (𝜑𝑋 ∈ V)
87adantr 480 . . . . . . 7 ((𝜑𝑛𝑍) → 𝑋 ∈ V)
9 ssexg 5242 . . . . . . 7 ((𝐸𝑋𝑋 ∈ V) → 𝐸 ∈ V)
106, 8, 9syl2anc 583 . . . . . 6 ((𝜑𝑛𝑍) → 𝐸 ∈ V)
11 elpwg 4533 . . . . . 6 (𝐸 ∈ V → (𝐸 ∈ 𝒫 𝑋𝐸𝑋))
1210, 11syl 17 . . . . 5 ((𝜑𝑛𝑍) → (𝐸 ∈ 𝒫 𝑋𝐸𝑋))
136, 12mpbird 256 . . . 4 ((𝜑𝑛𝑍) → 𝐸 ∈ 𝒫 𝑋)
14 eqid 2738 . . . 4 (𝑛𝑍𝐸) = (𝑛𝑍𝐸)
151, 13, 14fmptdf 6973 . . 3 (𝜑 → (𝑛𝑍𝐸):𝑍⟶𝒫 𝑋)
161, 2, 3, 4, 5, 15omeiunle 43945 . 2 (𝜑 → (𝑂 𝑛𝑍 ((𝑛𝑍𝐸)‘𝑛)) ≤ (Σ^‘(𝑛𝑍 ↦ (𝑂‘((𝑛𝑍𝐸)‘𝑛)))))
17 simpr 484 . . . . . . 7 ((𝜑𝑛𝑍) → 𝑛𝑍)
1814fvmpt2 6868 . . . . . . 7 ((𝑛𝑍𝐸 ∈ V) → ((𝑛𝑍𝐸)‘𝑛) = 𝐸)
1917, 10, 18syl2anc 583 . . . . . 6 ((𝜑𝑛𝑍) → ((𝑛𝑍𝐸)‘𝑛) = 𝐸)
2019eqcomd 2744 . . . . 5 ((𝜑𝑛𝑍) → 𝐸 = ((𝑛𝑍𝐸)‘𝑛))
211, 20iuneq2df 42483 . . . 4 (𝜑 𝑛𝑍 𝐸 = 𝑛𝑍 ((𝑛𝑍𝐸)‘𝑛))
2221fveq2d 6760 . . 3 (𝜑 → (𝑂 𝑛𝑍 𝐸) = (𝑂 𝑛𝑍 ((𝑛𝑍𝐸)‘𝑛)))
2320fveq2d 6760 . . . . 5 ((𝜑𝑛𝑍) → (𝑂𝐸) = (𝑂‘((𝑛𝑍𝐸)‘𝑛)))
241, 23mpteq2da 5168 . . . 4 (𝜑 → (𝑛𝑍 ↦ (𝑂𝐸)) = (𝑛𝑍 ↦ (𝑂‘((𝑛𝑍𝐸)‘𝑛))))
2524fveq2d 6760 . . 3 (𝜑 → (Σ^‘(𝑛𝑍 ↦ (𝑂𝐸))) = (Σ^‘(𝑛𝑍 ↦ (𝑂‘((𝑛𝑍𝐸)‘𝑛)))))
2622, 25breq12d 5083 . 2 (𝜑 → ((𝑂 𝑛𝑍 𝐸) ≤ (Σ^‘(𝑛𝑍 ↦ (𝑂𝐸))) ↔ (𝑂 𝑛𝑍 ((𝑛𝑍𝐸)‘𝑛)) ≤ (Σ^‘(𝑛𝑍 ↦ (𝑂‘((𝑛𝑍𝐸)‘𝑛))))))
2716, 26mpbird 256 1 (𝜑 → (𝑂 𝑛𝑍 𝐸) ≤ (Σ^‘(𝑛𝑍 ↦ (𝑂𝐸))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wnf 1787  wcel 2108  Vcvv 3422  wss 3883  𝒫 cpw 4530   cuni 4836   ciun 4921   class class class wbr 5070  cmpt 5153  dom cdm 5580  cfv 6418  cle 10941  cuz 12511  Σ^csumge0 43790  OutMeascome 43917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-ac2 10150  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-omul 8272  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-oi 9199  df-card 9628  df-acn 9631  df-ac 9803  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-sumge0 43791  df-ome 43918
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator