Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omeiunlempt Structured version   Visualization version   GIF version

Theorem omeiunlempt 46141
Description: The outer measure of the indexed union of a countable set is the less than or equal to the extended sum of the outer measures. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
omeiunlempt.nph 𝑛𝜑
omeiunlempt.o (𝜑𝑂 ∈ OutMeas)
omeiunlempt.x 𝑋 = dom 𝑂
omeiunlempt.z 𝑍 = (ℤ𝑁)
omeiunlempt.e ((𝜑𝑛𝑍) → 𝐸𝑋)
Assertion
Ref Expression
omeiunlempt (𝜑 → (𝑂 𝑛𝑍 𝐸) ≤ (Σ^‘(𝑛𝑍 ↦ (𝑂𝐸))))
Distinct variable groups:   𝑛,𝑂   𝑛,𝑋   𝑛,𝑍
Allowed substitution hints:   𝜑(𝑛)   𝐸(𝑛)   𝑁(𝑛)

Proof of Theorem omeiunlempt
StepHypRef Expression
1 omeiunlempt.nph . . 3 𝑛𝜑
2 nfmpt1 5261 . . 3 𝑛(𝑛𝑍𝐸)
3 omeiunlempt.o . . 3 (𝜑𝑂 ∈ OutMeas)
4 omeiunlempt.x . . 3 𝑋 = dom 𝑂
5 omeiunlempt.z . . 3 𝑍 = (ℤ𝑁)
6 omeiunlempt.e . . . . 5 ((𝜑𝑛𝑍) → 𝐸𝑋)
73, 4unidmex 44651 . . . . . . . 8 (𝜑𝑋 ∈ V)
87adantr 479 . . . . . . 7 ((𝜑𝑛𝑍) → 𝑋 ∈ V)
9 ssexg 5328 . . . . . . 7 ((𝐸𝑋𝑋 ∈ V) → 𝐸 ∈ V)
106, 8, 9syl2anc 582 . . . . . 6 ((𝜑𝑛𝑍) → 𝐸 ∈ V)
11 elpwg 4610 . . . . . 6 (𝐸 ∈ V → (𝐸 ∈ 𝒫 𝑋𝐸𝑋))
1210, 11syl 17 . . . . 5 ((𝜑𝑛𝑍) → (𝐸 ∈ 𝒫 𝑋𝐸𝑋))
136, 12mpbird 256 . . . 4 ((𝜑𝑛𝑍) → 𝐸 ∈ 𝒫 𝑋)
14 eqid 2726 . . . 4 (𝑛𝑍𝐸) = (𝑛𝑍𝐸)
151, 13, 14fmptdf 7131 . . 3 (𝜑 → (𝑛𝑍𝐸):𝑍⟶𝒫 𝑋)
161, 2, 3, 4, 5, 15omeiunle 46138 . 2 (𝜑 → (𝑂 𝑛𝑍 ((𝑛𝑍𝐸)‘𝑛)) ≤ (Σ^‘(𝑛𝑍 ↦ (𝑂‘((𝑛𝑍𝐸)‘𝑛)))))
17 simpr 483 . . . . . . 7 ((𝜑𝑛𝑍) → 𝑛𝑍)
1814fvmpt2 7020 . . . . . . 7 ((𝑛𝑍𝐸 ∈ V) → ((𝑛𝑍𝐸)‘𝑛) = 𝐸)
1917, 10, 18syl2anc 582 . . . . . 6 ((𝜑𝑛𝑍) → ((𝑛𝑍𝐸)‘𝑛) = 𝐸)
2019eqcomd 2732 . . . . 5 ((𝜑𝑛𝑍) → 𝐸 = ((𝑛𝑍𝐸)‘𝑛))
211, 20iuneq2df 44647 . . . 4 (𝜑 𝑛𝑍 𝐸 = 𝑛𝑍 ((𝑛𝑍𝐸)‘𝑛))
2221fveq2d 6905 . . 3 (𝜑 → (𝑂 𝑛𝑍 𝐸) = (𝑂 𝑛𝑍 ((𝑛𝑍𝐸)‘𝑛)))
2320fveq2d 6905 . . . . 5 ((𝜑𝑛𝑍) → (𝑂𝐸) = (𝑂‘((𝑛𝑍𝐸)‘𝑛)))
241, 23mpteq2da 5251 . . . 4 (𝜑 → (𝑛𝑍 ↦ (𝑂𝐸)) = (𝑛𝑍 ↦ (𝑂‘((𝑛𝑍𝐸)‘𝑛))))
2524fveq2d 6905 . . 3 (𝜑 → (Σ^‘(𝑛𝑍 ↦ (𝑂𝐸))) = (Σ^‘(𝑛𝑍 ↦ (𝑂‘((𝑛𝑍𝐸)‘𝑛)))))
2622, 25breq12d 5166 . 2 (𝜑 → ((𝑂 𝑛𝑍 𝐸) ≤ (Σ^‘(𝑛𝑍 ↦ (𝑂𝐸))) ↔ (𝑂 𝑛𝑍 ((𝑛𝑍𝐸)‘𝑛)) ≤ (Σ^‘(𝑛𝑍 ↦ (𝑂‘((𝑛𝑍𝐸)‘𝑛))))))
2716, 26mpbird 256 1 (𝜑 → (𝑂 𝑛𝑍 𝐸) ≤ (Σ^‘(𝑛𝑍 ↦ (𝑂𝐸))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1534  wnf 1778  wcel 2099  Vcvv 3462  wss 3947  𝒫 cpw 4607   cuni 4913   ciun 5001   class class class wbr 5153  cmpt 5236  dom cdm 5682  cfv 6554  cle 11299  cuz 12874  Σ^csumge0 45983  OutMeascome 46110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-inf2 9684  ax-ac2 10506  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235  ax-pre-sup 11236
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-isom 6563  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-oadd 8500  df-omul 8501  df-er 8734  df-map 8857  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-sup 9485  df-oi 9553  df-card 9982  df-acn 9985  df-ac 10159  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-div 11922  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12611  df-uz 12875  df-rp 13029  df-ico 13384  df-icc 13385  df-fz 13539  df-fzo 13682  df-seq 14022  df-exp 14082  df-hash 14348  df-cj 15104  df-re 15105  df-im 15106  df-sqrt 15240  df-abs 15241  df-clim 15490  df-sum 15691  df-sumge0 45984  df-ome 46111
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator