![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > omeiunlempt | Structured version Visualization version GIF version |
Description: The outer measure of the indexed union of a countable set is the less than or equal to the extended sum of the outer measures. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
omeiunlempt.nph | ⊢ Ⅎ𝑛𝜑 |
omeiunlempt.o | ⊢ (𝜑 → 𝑂 ∈ OutMeas) |
omeiunlempt.x | ⊢ 𝑋 = ∪ dom 𝑂 |
omeiunlempt.z | ⊢ 𝑍 = (ℤ≥‘𝑁) |
omeiunlempt.e | ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝐸 ⊆ 𝑋) |
Ref | Expression |
---|---|
omeiunlempt | ⊢ (𝜑 → (𝑂‘∪ 𝑛 ∈ 𝑍 𝐸) ≤ (Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘𝐸)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omeiunlempt.nph | . . 3 ⊢ Ⅎ𝑛𝜑 | |
2 | nfmpt1 5274 | . . 3 ⊢ Ⅎ𝑛(𝑛 ∈ 𝑍 ↦ 𝐸) | |
3 | omeiunlempt.o | . . 3 ⊢ (𝜑 → 𝑂 ∈ OutMeas) | |
4 | omeiunlempt.x | . . 3 ⊢ 𝑋 = ∪ dom 𝑂 | |
5 | omeiunlempt.z | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑁) | |
6 | omeiunlempt.e | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝐸 ⊆ 𝑋) | |
7 | 3, 4 | unidmex 44952 | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ V) |
8 | 7 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝑋 ∈ V) |
9 | ssexg 5341 | . . . . . . 7 ⊢ ((𝐸 ⊆ 𝑋 ∧ 𝑋 ∈ V) → 𝐸 ∈ V) | |
10 | 6, 8, 9 | syl2anc 583 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝐸 ∈ V) |
11 | elpwg 4625 | . . . . . 6 ⊢ (𝐸 ∈ V → (𝐸 ∈ 𝒫 𝑋 ↔ 𝐸 ⊆ 𝑋)) | |
12 | 10, 11 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸 ∈ 𝒫 𝑋 ↔ 𝐸 ⊆ 𝑋)) |
13 | 6, 12 | mpbird 257 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝐸 ∈ 𝒫 𝑋) |
14 | eqid 2740 | . . . 4 ⊢ (𝑛 ∈ 𝑍 ↦ 𝐸) = (𝑛 ∈ 𝑍 ↦ 𝐸) | |
15 | 1, 13, 14 | fmptdf 7151 | . . 3 ⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ 𝐸):𝑍⟶𝒫 𝑋) |
16 | 1, 2, 3, 4, 5, 15 | omeiunle 46438 | . 2 ⊢ (𝜑 → (𝑂‘∪ 𝑛 ∈ 𝑍 ((𝑛 ∈ 𝑍 ↦ 𝐸)‘𝑛)) ≤ (Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘((𝑛 ∈ 𝑍 ↦ 𝐸)‘𝑛))))) |
17 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝑛 ∈ 𝑍) | |
18 | 14 | fvmpt2 7040 | . . . . . . 7 ⊢ ((𝑛 ∈ 𝑍 ∧ 𝐸 ∈ V) → ((𝑛 ∈ 𝑍 ↦ 𝐸)‘𝑛) = 𝐸) |
19 | 17, 10, 18 | syl2anc 583 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝑛 ∈ 𝑍 ↦ 𝐸)‘𝑛) = 𝐸) |
20 | 19 | eqcomd 2746 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝐸 = ((𝑛 ∈ 𝑍 ↦ 𝐸)‘𝑛)) |
21 | 1, 20 | iuneq2df 44948 | . . . 4 ⊢ (𝜑 → ∪ 𝑛 ∈ 𝑍 𝐸 = ∪ 𝑛 ∈ 𝑍 ((𝑛 ∈ 𝑍 ↦ 𝐸)‘𝑛)) |
22 | 21 | fveq2d 6924 | . . 3 ⊢ (𝜑 → (𝑂‘∪ 𝑛 ∈ 𝑍 𝐸) = (𝑂‘∪ 𝑛 ∈ 𝑍 ((𝑛 ∈ 𝑍 ↦ 𝐸)‘𝑛))) |
23 | 20 | fveq2d 6924 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑂‘𝐸) = (𝑂‘((𝑛 ∈ 𝑍 ↦ 𝐸)‘𝑛))) |
24 | 1, 23 | mpteq2da 5264 | . . . 4 ⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ (𝑂‘𝐸)) = (𝑛 ∈ 𝑍 ↦ (𝑂‘((𝑛 ∈ 𝑍 ↦ 𝐸)‘𝑛)))) |
25 | 24 | fveq2d 6924 | . . 3 ⊢ (𝜑 → (Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘𝐸))) = (Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘((𝑛 ∈ 𝑍 ↦ 𝐸)‘𝑛))))) |
26 | 22, 25 | breq12d 5179 | . 2 ⊢ (𝜑 → ((𝑂‘∪ 𝑛 ∈ 𝑍 𝐸) ≤ (Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘𝐸))) ↔ (𝑂‘∪ 𝑛 ∈ 𝑍 ((𝑛 ∈ 𝑍 ↦ 𝐸)‘𝑛)) ≤ (Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘((𝑛 ∈ 𝑍 ↦ 𝐸)‘𝑛)))))) |
27 | 16, 26 | mpbird 257 | 1 ⊢ (𝜑 → (𝑂‘∪ 𝑛 ∈ 𝑍 𝐸) ≤ (Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘𝐸)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 Ⅎwnf 1781 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 𝒫 cpw 4622 ∪ cuni 4931 ∪ ciun 5015 class class class wbr 5166 ↦ cmpt 5249 dom cdm 5700 ‘cfv 6573 ≤ cle 11325 ℤ≥cuz 12903 Σ^csumge0 46283 OutMeascome 46410 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-ac2 10532 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-oadd 8526 df-omul 8527 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-oi 9579 df-card 10008 df-acn 10011 df-ac 10185 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-ico 13413 df-icc 13414 df-fz 13568 df-fzo 13712 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 df-sum 15735 df-sumge0 46284 df-ome 46411 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |