| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > omeiunlempt | Structured version Visualization version GIF version | ||
| Description: The outer measure of the indexed union of a countable set is the less than or equal to the extended sum of the outer measures. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| omeiunlempt.nph | ⊢ Ⅎ𝑛𝜑 |
| omeiunlempt.o | ⊢ (𝜑 → 𝑂 ∈ OutMeas) |
| omeiunlempt.x | ⊢ 𝑋 = ∪ dom 𝑂 |
| omeiunlempt.z | ⊢ 𝑍 = (ℤ≥‘𝑁) |
| omeiunlempt.e | ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝐸 ⊆ 𝑋) |
| Ref | Expression |
|---|---|
| omeiunlempt | ⊢ (𝜑 → (𝑂‘∪ 𝑛 ∈ 𝑍 𝐸) ≤ (Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘𝐸)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omeiunlempt.nph | . . 3 ⊢ Ⅎ𝑛𝜑 | |
| 2 | nfmpt1 5206 | . . 3 ⊢ Ⅎ𝑛(𝑛 ∈ 𝑍 ↦ 𝐸) | |
| 3 | omeiunlempt.o | . . 3 ⊢ (𝜑 → 𝑂 ∈ OutMeas) | |
| 4 | omeiunlempt.x | . . 3 ⊢ 𝑋 = ∪ dom 𝑂 | |
| 5 | omeiunlempt.z | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑁) | |
| 6 | omeiunlempt.e | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝐸 ⊆ 𝑋) | |
| 7 | 3, 4 | unidmex 45044 | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ V) |
| 8 | 7 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝑋 ∈ V) |
| 9 | ssexg 5278 | . . . . . . 7 ⊢ ((𝐸 ⊆ 𝑋 ∧ 𝑋 ∈ V) → 𝐸 ∈ V) | |
| 10 | 6, 8, 9 | syl2anc 584 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝐸 ∈ V) |
| 11 | elpwg 4566 | . . . . . 6 ⊢ (𝐸 ∈ V → (𝐸 ∈ 𝒫 𝑋 ↔ 𝐸 ⊆ 𝑋)) | |
| 12 | 10, 11 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸 ∈ 𝒫 𝑋 ↔ 𝐸 ⊆ 𝑋)) |
| 13 | 6, 12 | mpbird 257 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝐸 ∈ 𝒫 𝑋) |
| 14 | eqid 2729 | . . . 4 ⊢ (𝑛 ∈ 𝑍 ↦ 𝐸) = (𝑛 ∈ 𝑍 ↦ 𝐸) | |
| 15 | 1, 13, 14 | fmptdf 7089 | . . 3 ⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ 𝐸):𝑍⟶𝒫 𝑋) |
| 16 | 1, 2, 3, 4, 5, 15 | omeiunle 46515 | . 2 ⊢ (𝜑 → (𝑂‘∪ 𝑛 ∈ 𝑍 ((𝑛 ∈ 𝑍 ↦ 𝐸)‘𝑛)) ≤ (Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘((𝑛 ∈ 𝑍 ↦ 𝐸)‘𝑛))))) |
| 17 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝑛 ∈ 𝑍) | |
| 18 | 14 | fvmpt2 6979 | . . . . . . 7 ⊢ ((𝑛 ∈ 𝑍 ∧ 𝐸 ∈ V) → ((𝑛 ∈ 𝑍 ↦ 𝐸)‘𝑛) = 𝐸) |
| 19 | 17, 10, 18 | syl2anc 584 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝑛 ∈ 𝑍 ↦ 𝐸)‘𝑛) = 𝐸) |
| 20 | 19 | eqcomd 2735 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝐸 = ((𝑛 ∈ 𝑍 ↦ 𝐸)‘𝑛)) |
| 21 | 1, 20 | iuneq2df 45041 | . . . 4 ⊢ (𝜑 → ∪ 𝑛 ∈ 𝑍 𝐸 = ∪ 𝑛 ∈ 𝑍 ((𝑛 ∈ 𝑍 ↦ 𝐸)‘𝑛)) |
| 22 | 21 | fveq2d 6862 | . . 3 ⊢ (𝜑 → (𝑂‘∪ 𝑛 ∈ 𝑍 𝐸) = (𝑂‘∪ 𝑛 ∈ 𝑍 ((𝑛 ∈ 𝑍 ↦ 𝐸)‘𝑛))) |
| 23 | 20 | fveq2d 6862 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑂‘𝐸) = (𝑂‘((𝑛 ∈ 𝑍 ↦ 𝐸)‘𝑛))) |
| 24 | 1, 23 | mpteq2da 5199 | . . . 4 ⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ (𝑂‘𝐸)) = (𝑛 ∈ 𝑍 ↦ (𝑂‘((𝑛 ∈ 𝑍 ↦ 𝐸)‘𝑛)))) |
| 25 | 24 | fveq2d 6862 | . . 3 ⊢ (𝜑 → (Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘𝐸))) = (Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘((𝑛 ∈ 𝑍 ↦ 𝐸)‘𝑛))))) |
| 26 | 22, 25 | breq12d 5120 | . 2 ⊢ (𝜑 → ((𝑂‘∪ 𝑛 ∈ 𝑍 𝐸) ≤ (Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘𝐸))) ↔ (𝑂‘∪ 𝑛 ∈ 𝑍 ((𝑛 ∈ 𝑍 ↦ 𝐸)‘𝑛)) ≤ (Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘((𝑛 ∈ 𝑍 ↦ 𝐸)‘𝑛)))))) |
| 27 | 16, 26 | mpbird 257 | 1 ⊢ (𝜑 → (𝑂‘∪ 𝑛 ∈ 𝑍 𝐸) ≤ (Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘𝐸)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 Vcvv 3447 ⊆ wss 3914 𝒫 cpw 4563 ∪ cuni 4871 ∪ ciun 4955 class class class wbr 5107 ↦ cmpt 5188 dom cdm 5638 ‘cfv 6511 ≤ cle 11209 ℤ≥cuz 12793 Σ^csumge0 46360 OutMeascome 46487 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-ac2 10416 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-oadd 8438 df-omul 8439 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-oi 9463 df-card 9892 df-acn 9895 df-ac 10069 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-ico 13312 df-icc 13313 df-fz 13469 df-fzo 13616 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 df-sum 15653 df-sumge0 46361 df-ome 46488 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |