Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > omeiunlempt | Structured version Visualization version GIF version |
Description: The outer measure of the indexed union of a countable set is the less than or equal to the extended sum of the outer measures. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
omeiunlempt.nph | ⊢ Ⅎ𝑛𝜑 |
omeiunlempt.o | ⊢ (𝜑 → 𝑂 ∈ OutMeas) |
omeiunlempt.x | ⊢ 𝑋 = ∪ dom 𝑂 |
omeiunlempt.z | ⊢ 𝑍 = (ℤ≥‘𝑁) |
omeiunlempt.e | ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝐸 ⊆ 𝑋) |
Ref | Expression |
---|---|
omeiunlempt | ⊢ (𝜑 → (𝑂‘∪ 𝑛 ∈ 𝑍 𝐸) ≤ (Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘𝐸)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omeiunlempt.nph | . . 3 ⊢ Ⅎ𝑛𝜑 | |
2 | nfmpt1 5178 | . . 3 ⊢ Ⅎ𝑛(𝑛 ∈ 𝑍 ↦ 𝐸) | |
3 | omeiunlempt.o | . . 3 ⊢ (𝜑 → 𝑂 ∈ OutMeas) | |
4 | omeiunlempt.x | . . 3 ⊢ 𝑋 = ∪ dom 𝑂 | |
5 | omeiunlempt.z | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑁) | |
6 | omeiunlempt.e | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝐸 ⊆ 𝑋) | |
7 | 3, 4 | unidmex 42487 | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ V) |
8 | 7 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝑋 ∈ V) |
9 | ssexg 5242 | . . . . . . 7 ⊢ ((𝐸 ⊆ 𝑋 ∧ 𝑋 ∈ V) → 𝐸 ∈ V) | |
10 | 6, 8, 9 | syl2anc 583 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝐸 ∈ V) |
11 | elpwg 4533 | . . . . . 6 ⊢ (𝐸 ∈ V → (𝐸 ∈ 𝒫 𝑋 ↔ 𝐸 ⊆ 𝑋)) | |
12 | 10, 11 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸 ∈ 𝒫 𝑋 ↔ 𝐸 ⊆ 𝑋)) |
13 | 6, 12 | mpbird 256 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝐸 ∈ 𝒫 𝑋) |
14 | eqid 2738 | . . . 4 ⊢ (𝑛 ∈ 𝑍 ↦ 𝐸) = (𝑛 ∈ 𝑍 ↦ 𝐸) | |
15 | 1, 13, 14 | fmptdf 6973 | . . 3 ⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ 𝐸):𝑍⟶𝒫 𝑋) |
16 | 1, 2, 3, 4, 5, 15 | omeiunle 43945 | . 2 ⊢ (𝜑 → (𝑂‘∪ 𝑛 ∈ 𝑍 ((𝑛 ∈ 𝑍 ↦ 𝐸)‘𝑛)) ≤ (Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘((𝑛 ∈ 𝑍 ↦ 𝐸)‘𝑛))))) |
17 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝑛 ∈ 𝑍) | |
18 | 14 | fvmpt2 6868 | . . . . . . 7 ⊢ ((𝑛 ∈ 𝑍 ∧ 𝐸 ∈ V) → ((𝑛 ∈ 𝑍 ↦ 𝐸)‘𝑛) = 𝐸) |
19 | 17, 10, 18 | syl2anc 583 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝑛 ∈ 𝑍 ↦ 𝐸)‘𝑛) = 𝐸) |
20 | 19 | eqcomd 2744 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝐸 = ((𝑛 ∈ 𝑍 ↦ 𝐸)‘𝑛)) |
21 | 1, 20 | iuneq2df 42483 | . . . 4 ⊢ (𝜑 → ∪ 𝑛 ∈ 𝑍 𝐸 = ∪ 𝑛 ∈ 𝑍 ((𝑛 ∈ 𝑍 ↦ 𝐸)‘𝑛)) |
22 | 21 | fveq2d 6760 | . . 3 ⊢ (𝜑 → (𝑂‘∪ 𝑛 ∈ 𝑍 𝐸) = (𝑂‘∪ 𝑛 ∈ 𝑍 ((𝑛 ∈ 𝑍 ↦ 𝐸)‘𝑛))) |
23 | 20 | fveq2d 6760 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑂‘𝐸) = (𝑂‘((𝑛 ∈ 𝑍 ↦ 𝐸)‘𝑛))) |
24 | 1, 23 | mpteq2da 5168 | . . . 4 ⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ (𝑂‘𝐸)) = (𝑛 ∈ 𝑍 ↦ (𝑂‘((𝑛 ∈ 𝑍 ↦ 𝐸)‘𝑛)))) |
25 | 24 | fveq2d 6760 | . . 3 ⊢ (𝜑 → (Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘𝐸))) = (Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘((𝑛 ∈ 𝑍 ↦ 𝐸)‘𝑛))))) |
26 | 22, 25 | breq12d 5083 | . 2 ⊢ (𝜑 → ((𝑂‘∪ 𝑛 ∈ 𝑍 𝐸) ≤ (Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘𝐸))) ↔ (𝑂‘∪ 𝑛 ∈ 𝑍 ((𝑛 ∈ 𝑍 ↦ 𝐸)‘𝑛)) ≤ (Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘((𝑛 ∈ 𝑍 ↦ 𝐸)‘𝑛)))))) |
27 | 16, 26 | mpbird 256 | 1 ⊢ (𝜑 → (𝑂‘∪ 𝑛 ∈ 𝑍 𝐸) ≤ (Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘𝐸)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 Ⅎwnf 1787 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 𝒫 cpw 4530 ∪ cuni 4836 ∪ ciun 4921 class class class wbr 5070 ↦ cmpt 5153 dom cdm 5580 ‘cfv 6418 ≤ cle 10941 ℤ≥cuz 12511 Σ^csumge0 43790 OutMeascome 43917 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-ac2 10150 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-oadd 8271 df-omul 8272 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-oi 9199 df-card 9628 df-acn 9631 df-ac 9803 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-sum 15326 df-sumge0 43791 df-ome 43918 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |