Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omeiunlempt Structured version   Visualization version   GIF version

Theorem omeiunlempt 46617
Description: The outer measure of the indexed union of a countable set is the less than or equal to the extended sum of the outer measures. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
omeiunlempt.nph 𝑛𝜑
omeiunlempt.o (𝜑𝑂 ∈ OutMeas)
omeiunlempt.x 𝑋 = dom 𝑂
omeiunlempt.z 𝑍 = (ℤ𝑁)
omeiunlempt.e ((𝜑𝑛𝑍) → 𝐸𝑋)
Assertion
Ref Expression
omeiunlempt (𝜑 → (𝑂 𝑛𝑍 𝐸) ≤ (Σ^‘(𝑛𝑍 ↦ (𝑂𝐸))))
Distinct variable groups:   𝑛,𝑂   𝑛,𝑋   𝑛,𝑍
Allowed substitution hints:   𝜑(𝑛)   𝐸(𝑛)   𝑁(𝑛)

Proof of Theorem omeiunlempt
StepHypRef Expression
1 omeiunlempt.nph . . 3 𝑛𝜑
2 nfmpt1 5188 . . 3 𝑛(𝑛𝑍𝐸)
3 omeiunlempt.o . . 3 (𝜑𝑂 ∈ OutMeas)
4 omeiunlempt.x . . 3 𝑋 = dom 𝑂
5 omeiunlempt.z . . 3 𝑍 = (ℤ𝑁)
6 omeiunlempt.e . . . . 5 ((𝜑𝑛𝑍) → 𝐸𝑋)
73, 4unidmex 45146 . . . . . . . 8 (𝜑𝑋 ∈ V)
87adantr 480 . . . . . . 7 ((𝜑𝑛𝑍) → 𝑋 ∈ V)
9 ssexg 5259 . . . . . . 7 ((𝐸𝑋𝑋 ∈ V) → 𝐸 ∈ V)
106, 8, 9syl2anc 584 . . . . . 6 ((𝜑𝑛𝑍) → 𝐸 ∈ V)
11 elpwg 4550 . . . . . 6 (𝐸 ∈ V → (𝐸 ∈ 𝒫 𝑋𝐸𝑋))
1210, 11syl 17 . . . . 5 ((𝜑𝑛𝑍) → (𝐸 ∈ 𝒫 𝑋𝐸𝑋))
136, 12mpbird 257 . . . 4 ((𝜑𝑛𝑍) → 𝐸 ∈ 𝒫 𝑋)
14 eqid 2731 . . . 4 (𝑛𝑍𝐸) = (𝑛𝑍𝐸)
151, 13, 14fmptdf 7050 . . 3 (𝜑 → (𝑛𝑍𝐸):𝑍⟶𝒫 𝑋)
161, 2, 3, 4, 5, 15omeiunle 46614 . 2 (𝜑 → (𝑂 𝑛𝑍 ((𝑛𝑍𝐸)‘𝑛)) ≤ (Σ^‘(𝑛𝑍 ↦ (𝑂‘((𝑛𝑍𝐸)‘𝑛)))))
17 simpr 484 . . . . . . 7 ((𝜑𝑛𝑍) → 𝑛𝑍)
1814fvmpt2 6940 . . . . . . 7 ((𝑛𝑍𝐸 ∈ V) → ((𝑛𝑍𝐸)‘𝑛) = 𝐸)
1917, 10, 18syl2anc 584 . . . . . 6 ((𝜑𝑛𝑍) → ((𝑛𝑍𝐸)‘𝑛) = 𝐸)
2019eqcomd 2737 . . . . 5 ((𝜑𝑛𝑍) → 𝐸 = ((𝑛𝑍𝐸)‘𝑛))
211, 20iuneq2df 45143 . . . 4 (𝜑 𝑛𝑍 𝐸 = 𝑛𝑍 ((𝑛𝑍𝐸)‘𝑛))
2221fveq2d 6826 . . 3 (𝜑 → (𝑂 𝑛𝑍 𝐸) = (𝑂 𝑛𝑍 ((𝑛𝑍𝐸)‘𝑛)))
2320fveq2d 6826 . . . . 5 ((𝜑𝑛𝑍) → (𝑂𝐸) = (𝑂‘((𝑛𝑍𝐸)‘𝑛)))
241, 23mpteq2da 5181 . . . 4 (𝜑 → (𝑛𝑍 ↦ (𝑂𝐸)) = (𝑛𝑍 ↦ (𝑂‘((𝑛𝑍𝐸)‘𝑛))))
2524fveq2d 6826 . . 3 (𝜑 → (Σ^‘(𝑛𝑍 ↦ (𝑂𝐸))) = (Σ^‘(𝑛𝑍 ↦ (𝑂‘((𝑛𝑍𝐸)‘𝑛)))))
2622, 25breq12d 5102 . 2 (𝜑 → ((𝑂 𝑛𝑍 𝐸) ≤ (Σ^‘(𝑛𝑍 ↦ (𝑂𝐸))) ↔ (𝑂 𝑛𝑍 ((𝑛𝑍𝐸)‘𝑛)) ≤ (Σ^‘(𝑛𝑍 ↦ (𝑂‘((𝑛𝑍𝐸)‘𝑛))))))
2716, 26mpbird 257 1 (𝜑 → (𝑂 𝑛𝑍 𝐸) ≤ (Σ^‘(𝑛𝑍 ↦ (𝑂𝐸))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wnf 1784  wcel 2111  Vcvv 3436  wss 3897  𝒫 cpw 4547   cuni 4856   ciun 4939   class class class wbr 5089  cmpt 5170  dom cdm 5614  cfv 6481  cle 11147  cuz 12732  Σ^csumge0 46459  OutMeascome 46586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-ac2 10354  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-omul 8390  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-oi 9396  df-card 9832  df-acn 9835  df-ac 10007  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-sumge0 46460  df-ome 46587
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator