Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subsaliuncl Structured version   Visualization version   GIF version

Theorem subsaliuncl 41060
Description: A subspace sigma-algebra is closed under countable union. This is Lemma 121A (iii) of [Fremlin1] p. 35. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
subsaliuncl.1 (𝜑𝑆 ∈ SAlg)
subsaliuncl.2 (𝜑𝐷𝑉)
subsaliuncl.3 𝑇 = (𝑆t 𝐷)
subsaliuncl.4 (𝜑𝐹:ℕ⟶𝑇)
Assertion
Ref Expression
subsaliuncl (𝜑 𝑛 ∈ ℕ (𝐹𝑛) ∈ 𝑇)
Distinct variable groups:   𝐷,𝑛   𝑛,𝐹   𝑆,𝑛   𝜑,𝑛
Allowed substitution hints:   𝑇(𝑛)   𝑉(𝑛)

Proof of Theorem subsaliuncl
Dummy variables 𝑒 𝑓 𝑧 𝑚 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2817 . . . . . . . . 9 {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)} = {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}
2 subsaliuncl.1 . . . . . . . . 9 (𝜑𝑆 ∈ SAlg)
31, 2rabexd 5019 . . . . . . . 8 (𝜑 → {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)} ∈ V)
43ralrimivw 3166 . . . . . . 7 (𝜑 → ∀𝑛 ∈ ℕ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)} ∈ V)
5 eqid 2817 . . . . . . . 8 (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) = (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})
65fnmpt 6238 . . . . . . 7 (∀𝑛 ∈ ℕ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)} ∈ V → (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) Fn ℕ)
74, 6syl 17 . . . . . 6 (𝜑 → (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) Fn ℕ)
8 nnex 11318 . . . . . . 7 ℕ ∈ V
9 fnrndomg 9650 . . . . . . 7 (ℕ ∈ V → ((𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) Fn ℕ → ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) ≼ ℕ))
108, 9ax-mp 5 . . . . . 6 ((𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) Fn ℕ → ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) ≼ ℕ)
117, 10syl 17 . . . . 5 (𝜑 → ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) ≼ ℕ)
12 nnenom 13010 . . . . . 6 ℕ ≈ ω
1312a1i 11 . . . . 5 (𝜑 → ℕ ≈ ω)
14 domentr 8258 . . . . 5 ((ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) ≼ ℕ ∧ ℕ ≈ ω) → ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) ≼ ω)
1511, 13, 14syl2anc 575 . . . 4 (𝜑 → ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) ≼ ω)
16 vex 3405 . . . . . . . 8 𝑦 ∈ V
175elrnmpt 5584 . . . . . . . 8 (𝑦 ∈ V → (𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) ↔ ∃𝑛 ∈ ℕ 𝑦 = {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}))
1816, 17ax-mp 5 . . . . . . 7 (𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) ↔ ∃𝑛 ∈ ℕ 𝑦 = {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})
1918biimpi 207 . . . . . 6 (𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) → ∃𝑛 ∈ ℕ 𝑦 = {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})
2019adantl 469 . . . . 5 ((𝜑𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})) → ∃𝑛 ∈ ℕ 𝑦 = {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})
21 simp3 1161 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ ∧ 𝑦 = {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) → 𝑦 = {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})
22 subsaliuncl.4 . . . . . . . . . . . . . 14 (𝜑𝐹:ℕ⟶𝑇)
2322ffvelrnda 6588 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∈ 𝑇)
24 subsaliuncl.3 . . . . . . . . . . . . 13 𝑇 = (𝑆t 𝐷)
2523, 24syl6eleq 2906 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∈ (𝑆t 𝐷))
26 subsaliuncl.2 . . . . . . . . . . . . . . 15 (𝜑𝐷𝑉)
2726elexd 3419 . . . . . . . . . . . . . 14 (𝜑𝐷 ∈ V)
28 elrest 16300 . . . . . . . . . . . . . 14 ((𝑆 ∈ SAlg ∧ 𝐷 ∈ V) → ((𝐹𝑛) ∈ (𝑆t 𝐷) ↔ ∃𝑥𝑆 (𝐹𝑛) = (𝑥𝐷)))
292, 27, 28syl2anc 575 . . . . . . . . . . . . 13 (𝜑 → ((𝐹𝑛) ∈ (𝑆t 𝐷) ↔ ∃𝑥𝑆 (𝐹𝑛) = (𝑥𝐷)))
3029adantr 468 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → ((𝐹𝑛) ∈ (𝑆t 𝐷) ↔ ∃𝑥𝑆 (𝐹𝑛) = (𝑥𝐷)))
3125, 30mpbid 223 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ∃𝑥𝑆 (𝐹𝑛) = (𝑥𝐷))
32 rabn0 4169 . . . . . . . . . . 11 ({𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)} ≠ ∅ ↔ ∃𝑥𝑆 (𝐹𝑛) = (𝑥𝐷))
3331, 32sylibr 225 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)} ≠ ∅)
34333adant3 1155 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ ∧ 𝑦 = {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) → {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)} ≠ ∅)
3521, 34eqnetrd 3056 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ ∧ 𝑦 = {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) → 𝑦 ≠ ∅)
36353exp 1141 . . . . . . 7 (𝜑 → (𝑛 ∈ ℕ → (𝑦 = {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)} → 𝑦 ≠ ∅)))
3736rexlimdv 3229 . . . . . 6 (𝜑 → (∃𝑛 ∈ ℕ 𝑦 = {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)} → 𝑦 ≠ ∅))
3837adantr 468 . . . . 5 ((𝜑𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})) → (∃𝑛 ∈ ℕ 𝑦 = {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)} → 𝑦 ≠ ∅))
3920, 38mpd 15 . . . 4 ((𝜑𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})) → 𝑦 ≠ ∅)
4015, 39axccdom 39908 . . 3 (𝜑 → ∃𝑓(𝑓 Fn ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) ∧ ∀𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦))
41 simpl 470 . . . . . 6 ((𝜑 ∧ (𝑓 Fn ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) ∧ ∀𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦)) → 𝜑)
42 fveq2 6415 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → (𝐹𝑛) = (𝐹𝑚))
4342eqeq1d 2819 . . . . . . . . . . . 12 (𝑛 = 𝑚 → ((𝐹𝑛) = (𝑥𝐷) ↔ (𝐹𝑚) = (𝑥𝐷)))
4443rabbidv 3390 . . . . . . . . . . 11 (𝑛 = 𝑚 → {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)} = {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)})
4544cbvmptv 4955 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) = (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)})
4645rneqi 5564 . . . . . . . . 9 ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) = ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)})
4746fneq2i 6204 . . . . . . . 8 (𝑓 Fn ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) ↔ 𝑓 Fn ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)}))
4847biimpi 207 . . . . . . 7 (𝑓 Fn ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) → 𝑓 Fn ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)}))
4948ad2antrl 710 . . . . . 6 ((𝜑 ∧ (𝑓 Fn ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) ∧ ∀𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦)) → 𝑓 Fn ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)}))
5046raleqi 3342 . . . . . . . . 9 (∀𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦 ↔ ∀𝑦 ∈ ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦)
5150biimpi 207 . . . . . . . 8 (∀𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦 → ∀𝑦 ∈ ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦)
5251adantl 469 . . . . . . 7 ((𝜑 ∧ ∀𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦) → ∀𝑦 ∈ ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦)
5352adantrl 698 . . . . . 6 ((𝜑 ∧ (𝑓 Fn ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) ∧ ∀𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦)) → ∀𝑦 ∈ ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦)
54 nfv 2005 . . . . . . 7 𝑧(𝜑𝑓 Fn ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)}) ∧ ∀𝑦 ∈ ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦)
5523ad2ant1 1156 . . . . . . 7 ((𝜑𝑓 Fn ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)}) ∧ ∀𝑦 ∈ ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦) → 𝑆 ∈ SAlg)
56 ineq1 4017 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝑥𝐷) = (𝑧𝐷))
5756eqeq2d 2827 . . . . . . . . . . 11 (𝑥 = 𝑧 → ((𝐹𝑚) = (𝑥𝐷) ↔ (𝐹𝑚) = (𝑧𝐷)))
5857cbvrabv 3400 . . . . . . . . . 10 {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)} = {𝑧𝑆 ∣ (𝐹𝑚) = (𝑧𝐷)}
5958mpteq2i 4946 . . . . . . . . 9 (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)}) = (𝑚 ∈ ℕ ↦ {𝑧𝑆 ∣ (𝐹𝑚) = (𝑧𝐷)})
6045, 59eqtr2i 2840 . . . . . . . 8 (𝑚 ∈ ℕ ↦ {𝑧𝑆 ∣ (𝐹𝑚) = (𝑧𝐷)}) = (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})
6160coeq2i 5495 . . . . . . 7 (𝑓 ∘ (𝑚 ∈ ℕ ↦ {𝑧𝑆 ∣ (𝐹𝑚) = (𝑧𝐷)})) = (𝑓 ∘ (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}))
6247biimpri 219 . . . . . . . 8 (𝑓 Fn ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)}) → 𝑓 Fn ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}))
63623ad2ant2 1157 . . . . . . 7 ((𝜑𝑓 Fn ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)}) ∧ ∀𝑦 ∈ ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦) → 𝑓 Fn ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}))
6446eqcomi 2826 . . . . . . . . . . 11 ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)}) = ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})
6564raleqi 3342 . . . . . . . . . 10 (∀𝑦 ∈ ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦 ↔ ∀𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦)
66 fveq2 6415 . . . . . . . . . . . 12 (𝑦 = 𝑧 → (𝑓𝑦) = (𝑓𝑧))
67 id 22 . . . . . . . . . . . 12 (𝑦 = 𝑧𝑦 = 𝑧)
6866, 67eleq12d 2890 . . . . . . . . . . 11 (𝑦 = 𝑧 → ((𝑓𝑦) ∈ 𝑦 ↔ (𝑓𝑧) ∈ 𝑧))
6968cbvralv 3371 . . . . . . . . . 10 (∀𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦 ↔ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})(𝑓𝑧) ∈ 𝑧)
7065, 69bitri 266 . . . . . . . . 9 (∀𝑦 ∈ ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦 ↔ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})(𝑓𝑧) ∈ 𝑧)
7170biimpi 207 . . . . . . . 8 (∀𝑦 ∈ ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦 → ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})(𝑓𝑧) ∈ 𝑧)
72713ad2ant3 1158 . . . . . . 7 ((𝜑𝑓 Fn ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)}) ∧ ∀𝑦 ∈ ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦) → ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})(𝑓𝑧) ∈ 𝑧)
7354, 55, 5, 61, 63, 72subsaliuncllem 41059 . . . . . 6 ((𝜑𝑓 Fn ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)}) ∧ ∀𝑦 ∈ ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦) → ∃𝑒 ∈ (𝑆𝑚 ℕ)∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷))
7441, 49, 53, 73syl3anc 1483 . . . . 5 ((𝜑 ∧ (𝑓 Fn ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) ∧ ∀𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦)) → ∃𝑒 ∈ (𝑆𝑚 ℕ)∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷))
7574ex 399 . . . 4 (𝜑 → ((𝑓 Fn ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) ∧ ∀𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦) → ∃𝑒 ∈ (𝑆𝑚 ℕ)∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷)))
7675exlimdv 2024 . . 3 (𝜑 → (∃𝑓(𝑓 Fn ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) ∧ ∀𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦) → ∃𝑒 ∈ (𝑆𝑚 ℕ)∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷)))
7740, 76mpd 15 . 2 (𝜑 → ∃𝑒 ∈ (𝑆𝑚 ℕ)∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷))
7823ad2ant1 1156 . . . . . 6 ((𝜑𝑒 ∈ (𝑆𝑚 ℕ) ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷)) → 𝑆 ∈ SAlg)
79273ad2ant1 1156 . . . . . 6 ((𝜑𝑒 ∈ (𝑆𝑚 ℕ) ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷)) → 𝐷 ∈ V)
802adantr 468 . . . . . . . 8 ((𝜑𝑒 ∈ (𝑆𝑚 ℕ)) → 𝑆 ∈ SAlg)
81 nnct 13011 . . . . . . . . 9 ℕ ≼ ω
8281a1i 11 . . . . . . . 8 ((𝜑𝑒 ∈ (𝑆𝑚 ℕ)) → ℕ ≼ ω)
83 elmapi 8121 . . . . . . . . . 10 (𝑒 ∈ (𝑆𝑚 ℕ) → 𝑒:ℕ⟶𝑆)
8483adantl 469 . . . . . . . . 9 ((𝜑𝑒 ∈ (𝑆𝑚 ℕ)) → 𝑒:ℕ⟶𝑆)
8584ffvelrnda 6588 . . . . . . . 8 (((𝜑𝑒 ∈ (𝑆𝑚 ℕ)) ∧ 𝑛 ∈ ℕ) → (𝑒𝑛) ∈ 𝑆)
8680, 82, 85saliuncl 41026 . . . . . . 7 ((𝜑𝑒 ∈ (𝑆𝑚 ℕ)) → 𝑛 ∈ ℕ (𝑒𝑛) ∈ 𝑆)
87863adant3 1155 . . . . . 6 ((𝜑𝑒 ∈ (𝑆𝑚 ℕ) ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷)) → 𝑛 ∈ ℕ (𝑒𝑛) ∈ 𝑆)
88 eqid 2817 . . . . . 6 ( 𝑛 ∈ ℕ (𝑒𝑛) ∩ 𝐷) = ( 𝑛 ∈ ℕ (𝑒𝑛) ∩ 𝐷)
8978, 79, 87, 88elrestd 39788 . . . . 5 ((𝜑𝑒 ∈ (𝑆𝑚 ℕ) ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷)) → ( 𝑛 ∈ ℕ (𝑒𝑛) ∩ 𝐷) ∈ (𝑆t 𝐷))
90 nfra1 3140 . . . . . . . . 9 𝑛𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷)
91 rspa 3129 . . . . . . . . 9 ((∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷))
9290, 91iuneq2df 39710 . . . . . . . 8 (∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷) → 𝑛 ∈ ℕ (𝐹𝑛) = 𝑛 ∈ ℕ ((𝑒𝑛) ∩ 𝐷))
93 iunin1 4788 . . . . . . . . 9 𝑛 ∈ ℕ ((𝑒𝑛) ∩ 𝐷) = ( 𝑛 ∈ ℕ (𝑒𝑛) ∩ 𝐷)
9493a1i 11 . . . . . . . 8 (∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷) → 𝑛 ∈ ℕ ((𝑒𝑛) ∩ 𝐷) = ( 𝑛 ∈ ℕ (𝑒𝑛) ∩ 𝐷))
9592, 94eqtrd 2851 . . . . . . 7 (∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷) → 𝑛 ∈ ℕ (𝐹𝑛) = ( 𝑛 ∈ ℕ (𝑒𝑛) ∩ 𝐷))
96953ad2ant3 1158 . . . . . 6 ((𝜑𝑒 ∈ (𝑆𝑚 ℕ) ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷)) → 𝑛 ∈ ℕ (𝐹𝑛) = ( 𝑛 ∈ ℕ (𝑒𝑛) ∩ 𝐷))
9724a1i 11 . . . . . 6 ((𝜑𝑒 ∈ (𝑆𝑚 ℕ) ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷)) → 𝑇 = (𝑆t 𝐷))
9896, 97eleq12d 2890 . . . . 5 ((𝜑𝑒 ∈ (𝑆𝑚 ℕ) ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷)) → ( 𝑛 ∈ ℕ (𝐹𝑛) ∈ 𝑇 ↔ ( 𝑛 ∈ ℕ (𝑒𝑛) ∩ 𝐷) ∈ (𝑆t 𝐷)))
9989, 98mpbird 248 . . . 4 ((𝜑𝑒 ∈ (𝑆𝑚 ℕ) ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷)) → 𝑛 ∈ ℕ (𝐹𝑛) ∈ 𝑇)
100993exp 1141 . . 3 (𝜑 → (𝑒 ∈ (𝑆𝑚 ℕ) → (∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷) → 𝑛 ∈ ℕ (𝐹𝑛) ∈ 𝑇)))
101100rexlimdv 3229 . 2 (𝜑 → (∃𝑒 ∈ (𝑆𝑚 ℕ)∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷) → 𝑛 ∈ ℕ (𝐹𝑛) ∈ 𝑇))
10277, 101mpd 15 1 (𝜑 𝑛 ∈ ℕ (𝐹𝑛) ∈ 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1100   = wceq 1637  wex 1859  wcel 2157  wne 2989  wral 3107  wrex 3108  {crab 3111  Vcvv 3402  cin 3779  c0 4127   ciun 4723   class class class wbr 4855  cmpt 4934  ran crn 5323  ccom 5326   Fn wfn 6103  wf 6104  cfv 6108  (class class class)co 6881  ωcom 7302  𝑚 cmap 8099  cen 8196  cdom 8197  cn 11312  t crest 16293  SAlgcsalg 41012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2795  ax-rep 4975  ax-sep 4986  ax-nul 4994  ax-pow 5046  ax-pr 5107  ax-un 7186  ax-inf2 8792  ax-cc 9549  ax-ac2 9577  ax-cnex 10284  ax-resscn 10285  ax-1cn 10286  ax-icn 10287  ax-addcl 10288  ax-addrcl 10289  ax-mulcl 10290  ax-mulrcl 10291  ax-mulcom 10292  ax-addass 10293  ax-mulass 10294  ax-distr 10295  ax-i2m1 10296  ax-1ne0 10297  ax-1rid 10298  ax-rnegex 10299  ax-rrecex 10300  ax-cnre 10301  ax-pre-lttri 10302  ax-pre-lttrn 10303  ax-pre-ltadd 10304  ax-pre-mulgt0 10305
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2642  df-clab 2804  df-cleq 2810  df-clel 2813  df-nfc 2948  df-ne 2990  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3404  df-sbc 3645  df-csb 3740  df-dif 3783  df-un 3785  df-in 3787  df-ss 3794  df-pss 3796  df-nul 4128  df-if 4291  df-pw 4364  df-sn 4382  df-pr 4384  df-tp 4386  df-op 4388  df-uni 4642  df-int 4681  df-iun 4725  df-br 4856  df-opab 4918  df-mpt 4935  df-tr 4958  df-id 5230  df-eprel 5235  df-po 5243  df-so 5244  df-fr 5281  df-se 5282  df-we 5283  df-xp 5328  df-rel 5329  df-cnv 5330  df-co 5331  df-dm 5332  df-rn 5333  df-res 5334  df-ima 5335  df-pred 5904  df-ord 5950  df-on 5951  df-lim 5952  df-suc 5953  df-iota 6071  df-fun 6110  df-fn 6111  df-f 6112  df-f1 6113  df-fo 6114  df-f1o 6115  df-fv 6116  df-isom 6117  df-riota 6842  df-ov 6884  df-oprab 6885  df-mpt2 6886  df-om 7303  df-1st 7405  df-2nd 7406  df-wrecs 7649  df-recs 7711  df-rdg 7749  df-1o 7803  df-oadd 7807  df-er 7986  df-map 8101  df-en 8200  df-dom 8201  df-sdom 8202  df-fin 8203  df-card 9055  df-acn 9058  df-ac 9229  df-pnf 10368  df-mnf 10369  df-xr 10370  df-ltxr 10371  df-le 10372  df-sub 10560  df-neg 10561  df-nn 11313  df-n0 11567  df-z 11651  df-uz 11912  df-rest 16295  df-salg 41013
This theorem is referenced by:  subsalsal  41061
  Copyright terms: Public domain W3C validator