Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subsaliuncl Structured version   Visualization version   GIF version

Theorem subsaliuncl 46314
Description: A subspace sigma-algebra is closed under countable union. This is Lemma 121A (iii) of [Fremlin1] p. 35. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
subsaliuncl.1 (𝜑𝑆 ∈ SAlg)
subsaliuncl.2 (𝜑𝐷𝑉)
subsaliuncl.3 𝑇 = (𝑆t 𝐷)
subsaliuncl.4 (𝜑𝐹:ℕ⟶𝑇)
Assertion
Ref Expression
subsaliuncl (𝜑 𝑛 ∈ ℕ (𝐹𝑛) ∈ 𝑇)
Distinct variable groups:   𝐷,𝑛   𝑛,𝐹   𝑆,𝑛   𝜑,𝑛
Allowed substitution hints:   𝑇(𝑛)   𝑉(𝑛)

Proof of Theorem subsaliuncl
Dummy variables 𝑒 𝑓 𝑧 𝑚 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . . . . . . . 9 {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)} = {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}
2 subsaliuncl.1 . . . . . . . . 9 (𝜑𝑆 ∈ SAlg)
31, 2rabexd 5346 . . . . . . . 8 (𝜑 → {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)} ∈ V)
43ralrimivw 3148 . . . . . . 7 (𝜑 → ∀𝑛 ∈ ℕ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)} ∈ V)
5 eqid 2735 . . . . . . . 8 (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) = (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})
65fnmpt 6709 . . . . . . 7 (∀𝑛 ∈ ℕ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)} ∈ V → (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) Fn ℕ)
74, 6syl 17 . . . . . 6 (𝜑 → (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) Fn ℕ)
8 nnex 12270 . . . . . . 7 ℕ ∈ V
9 fnrndomg 10574 . . . . . . 7 (ℕ ∈ V → ((𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) Fn ℕ → ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) ≼ ℕ))
108, 9ax-mp 5 . . . . . 6 ((𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) Fn ℕ → ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) ≼ ℕ)
117, 10syl 17 . . . . 5 (𝜑 → ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) ≼ ℕ)
12 nnenom 14018 . . . . . 6 ℕ ≈ ω
1312a1i 11 . . . . 5 (𝜑 → ℕ ≈ ω)
14 domentr 9052 . . . . 5 ((ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) ≼ ℕ ∧ ℕ ≈ ω) → ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) ≼ ω)
1511, 13, 14syl2anc 584 . . . 4 (𝜑 → ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) ≼ ω)
16 vex 3482 . . . . . . . 8 𝑦 ∈ V
175elrnmpt 5972 . . . . . . . 8 (𝑦 ∈ V → (𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) ↔ ∃𝑛 ∈ ℕ 𝑦 = {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}))
1816, 17ax-mp 5 . . . . . . 7 (𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) ↔ ∃𝑛 ∈ ℕ 𝑦 = {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})
1918biimpi 216 . . . . . 6 (𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) → ∃𝑛 ∈ ℕ 𝑦 = {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})
2019adantl 481 . . . . 5 ((𝜑𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})) → ∃𝑛 ∈ ℕ 𝑦 = {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})
21 simp3 1137 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ ∧ 𝑦 = {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) → 𝑦 = {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})
22 subsaliuncl.4 . . . . . . . . . . . . . 14 (𝜑𝐹:ℕ⟶𝑇)
2322ffvelcdmda 7104 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∈ 𝑇)
24 subsaliuncl.3 . . . . . . . . . . . . 13 𝑇 = (𝑆t 𝐷)
2523, 24eleqtrdi 2849 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∈ (𝑆t 𝐷))
26 subsaliuncl.2 . . . . . . . . . . . . . . 15 (𝜑𝐷𝑉)
2726elexd 3502 . . . . . . . . . . . . . 14 (𝜑𝐷 ∈ V)
28 elrest 17474 . . . . . . . . . . . . . 14 ((𝑆 ∈ SAlg ∧ 𝐷 ∈ V) → ((𝐹𝑛) ∈ (𝑆t 𝐷) ↔ ∃𝑥𝑆 (𝐹𝑛) = (𝑥𝐷)))
292, 27, 28syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → ((𝐹𝑛) ∈ (𝑆t 𝐷) ↔ ∃𝑥𝑆 (𝐹𝑛) = (𝑥𝐷)))
3029adantr 480 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → ((𝐹𝑛) ∈ (𝑆t 𝐷) ↔ ∃𝑥𝑆 (𝐹𝑛) = (𝑥𝐷)))
3125, 30mpbid 232 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ∃𝑥𝑆 (𝐹𝑛) = (𝑥𝐷))
32 rabn0 4395 . . . . . . . . . . 11 ({𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)} ≠ ∅ ↔ ∃𝑥𝑆 (𝐹𝑛) = (𝑥𝐷))
3331, 32sylibr 234 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)} ≠ ∅)
34333adant3 1131 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ ∧ 𝑦 = {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) → {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)} ≠ ∅)
3521, 34eqnetrd 3006 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ ∧ 𝑦 = {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) → 𝑦 ≠ ∅)
36353exp 1118 . . . . . . 7 (𝜑 → (𝑛 ∈ ℕ → (𝑦 = {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)} → 𝑦 ≠ ∅)))
3736rexlimdv 3151 . . . . . 6 (𝜑 → (∃𝑛 ∈ ℕ 𝑦 = {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)} → 𝑦 ≠ ∅))
3837adantr 480 . . . . 5 ((𝜑𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})) → (∃𝑛 ∈ ℕ 𝑦 = {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)} → 𝑦 ≠ ∅))
3920, 38mpd 15 . . . 4 ((𝜑𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})) → 𝑦 ≠ ∅)
4015, 39axccdom 45165 . . 3 (𝜑 → ∃𝑓(𝑓 Fn ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) ∧ ∀𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦))
41 simpl 482 . . . . . 6 ((𝜑 ∧ (𝑓 Fn ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) ∧ ∀𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦)) → 𝜑)
42 fveq2 6907 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → (𝐹𝑛) = (𝐹𝑚))
4342eqeq1d 2737 . . . . . . . . . . . 12 (𝑛 = 𝑚 → ((𝐹𝑛) = (𝑥𝐷) ↔ (𝐹𝑚) = (𝑥𝐷)))
4443rabbidv 3441 . . . . . . . . . . 11 (𝑛 = 𝑚 → {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)} = {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)})
4544cbvmptv 5261 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) = (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)})
4645rneqi 5951 . . . . . . . . 9 ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) = ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)})
4746fneq2i 6667 . . . . . . . 8 (𝑓 Fn ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) ↔ 𝑓 Fn ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)}))
4847biimpi 216 . . . . . . 7 (𝑓 Fn ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) → 𝑓 Fn ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)}))
4948ad2antrl 728 . . . . . 6 ((𝜑 ∧ (𝑓 Fn ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) ∧ ∀𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦)) → 𝑓 Fn ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)}))
5046raleqi 3322 . . . . . . . . 9 (∀𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦 ↔ ∀𝑦 ∈ ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦)
5150biimpi 216 . . . . . . . 8 (∀𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦 → ∀𝑦 ∈ ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦)
5251adantl 481 . . . . . . 7 ((𝜑 ∧ ∀𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦) → ∀𝑦 ∈ ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦)
5352adantrl 716 . . . . . 6 ((𝜑 ∧ (𝑓 Fn ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) ∧ ∀𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦)) → ∀𝑦 ∈ ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦)
54 nfv 1912 . . . . . . 7 𝑧(𝜑𝑓 Fn ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)}) ∧ ∀𝑦 ∈ ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦)
5523ad2ant1 1132 . . . . . . 7 ((𝜑𝑓 Fn ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)}) ∧ ∀𝑦 ∈ ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦) → 𝑆 ∈ SAlg)
56 ineq1 4221 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝑥𝐷) = (𝑧𝐷))
5756eqeq2d 2746 . . . . . . . . . . 11 (𝑥 = 𝑧 → ((𝐹𝑚) = (𝑥𝐷) ↔ (𝐹𝑚) = (𝑧𝐷)))
5857cbvrabv 3444 . . . . . . . . . 10 {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)} = {𝑧𝑆 ∣ (𝐹𝑚) = (𝑧𝐷)}
5958mpteq2i 5253 . . . . . . . . 9 (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)}) = (𝑚 ∈ ℕ ↦ {𝑧𝑆 ∣ (𝐹𝑚) = (𝑧𝐷)})
6045, 59eqtr2i 2764 . . . . . . . 8 (𝑚 ∈ ℕ ↦ {𝑧𝑆 ∣ (𝐹𝑚) = (𝑧𝐷)}) = (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})
6160coeq2i 5874 . . . . . . 7 (𝑓 ∘ (𝑚 ∈ ℕ ↦ {𝑧𝑆 ∣ (𝐹𝑚) = (𝑧𝐷)})) = (𝑓 ∘ (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}))
6247biimpri 228 . . . . . . . 8 (𝑓 Fn ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)}) → 𝑓 Fn ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}))
63623ad2ant2 1133 . . . . . . 7 ((𝜑𝑓 Fn ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)}) ∧ ∀𝑦 ∈ ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦) → 𝑓 Fn ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}))
6446eqcomi 2744 . . . . . . . . . . 11 ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)}) = ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})
6564raleqi 3322 . . . . . . . . . 10 (∀𝑦 ∈ ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦 ↔ ∀𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦)
66 fveq2 6907 . . . . . . . . . . . 12 (𝑦 = 𝑧 → (𝑓𝑦) = (𝑓𝑧))
67 id 22 . . . . . . . . . . . 12 (𝑦 = 𝑧𝑦 = 𝑧)
6866, 67eleq12d 2833 . . . . . . . . . . 11 (𝑦 = 𝑧 → ((𝑓𝑦) ∈ 𝑦 ↔ (𝑓𝑧) ∈ 𝑧))
6968cbvralvw 3235 . . . . . . . . . 10 (∀𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦 ↔ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})(𝑓𝑧) ∈ 𝑧)
7065, 69bitri 275 . . . . . . . . 9 (∀𝑦 ∈ ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦 ↔ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})(𝑓𝑧) ∈ 𝑧)
7170biimpi 216 . . . . . . . 8 (∀𝑦 ∈ ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦 → ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})(𝑓𝑧) ∈ 𝑧)
72713ad2ant3 1134 . . . . . . 7 ((𝜑𝑓 Fn ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)}) ∧ ∀𝑦 ∈ ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦) → ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})(𝑓𝑧) ∈ 𝑧)
7354, 55, 5, 61, 63, 72subsaliuncllem 46313 . . . . . 6 ((𝜑𝑓 Fn ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)}) ∧ ∀𝑦 ∈ ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦) → ∃𝑒 ∈ (𝑆m ℕ)∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷))
7441, 49, 53, 73syl3anc 1370 . . . . 5 ((𝜑 ∧ (𝑓 Fn ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) ∧ ∀𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦)) → ∃𝑒 ∈ (𝑆m ℕ)∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷))
7574ex 412 . . . 4 (𝜑 → ((𝑓 Fn ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) ∧ ∀𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦) → ∃𝑒 ∈ (𝑆m ℕ)∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷)))
7675exlimdv 1931 . . 3 (𝜑 → (∃𝑓(𝑓 Fn ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) ∧ ∀𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦) → ∃𝑒 ∈ (𝑆m ℕ)∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷)))
7740, 76mpd 15 . 2 (𝜑 → ∃𝑒 ∈ (𝑆m ℕ)∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷))
7823ad2ant1 1132 . . . . . 6 ((𝜑𝑒 ∈ (𝑆m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷)) → 𝑆 ∈ SAlg)
79273ad2ant1 1132 . . . . . 6 ((𝜑𝑒 ∈ (𝑆m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷)) → 𝐷 ∈ V)
802adantr 480 . . . . . . . 8 ((𝜑𝑒 ∈ (𝑆m ℕ)) → 𝑆 ∈ SAlg)
81 nnct 14019 . . . . . . . . 9 ℕ ≼ ω
8281a1i 11 . . . . . . . 8 ((𝜑𝑒 ∈ (𝑆m ℕ)) → ℕ ≼ ω)
83 elmapi 8888 . . . . . . . . . 10 (𝑒 ∈ (𝑆m ℕ) → 𝑒:ℕ⟶𝑆)
8483adantl 481 . . . . . . . . 9 ((𝜑𝑒 ∈ (𝑆m ℕ)) → 𝑒:ℕ⟶𝑆)
8584ffvelcdmda 7104 . . . . . . . 8 (((𝜑𝑒 ∈ (𝑆m ℕ)) ∧ 𝑛 ∈ ℕ) → (𝑒𝑛) ∈ 𝑆)
8680, 82, 85saliuncl 46279 . . . . . . 7 ((𝜑𝑒 ∈ (𝑆m ℕ)) → 𝑛 ∈ ℕ (𝑒𝑛) ∈ 𝑆)
87863adant3 1131 . . . . . 6 ((𝜑𝑒 ∈ (𝑆m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷)) → 𝑛 ∈ ℕ (𝑒𝑛) ∈ 𝑆)
88 eqid 2735 . . . . . 6 ( 𝑛 ∈ ℕ (𝑒𝑛) ∩ 𝐷) = ( 𝑛 ∈ ℕ (𝑒𝑛) ∩ 𝐷)
8978, 79, 87, 88elrestd 45048 . . . . 5 ((𝜑𝑒 ∈ (𝑆m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷)) → ( 𝑛 ∈ ℕ (𝑒𝑛) ∩ 𝐷) ∈ (𝑆t 𝐷))
90 nfra1 3282 . . . . . . . . 9 𝑛𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷)
91 rspa 3246 . . . . . . . . 9 ((∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷))
9290, 91iuneq2df 44986 . . . . . . . 8 (∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷) → 𝑛 ∈ ℕ (𝐹𝑛) = 𝑛 ∈ ℕ ((𝑒𝑛) ∩ 𝐷))
93 iunin1 5077 . . . . . . . . 9 𝑛 ∈ ℕ ((𝑒𝑛) ∩ 𝐷) = ( 𝑛 ∈ ℕ (𝑒𝑛) ∩ 𝐷)
9493a1i 11 . . . . . . . 8 (∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷) → 𝑛 ∈ ℕ ((𝑒𝑛) ∩ 𝐷) = ( 𝑛 ∈ ℕ (𝑒𝑛) ∩ 𝐷))
9592, 94eqtrd 2775 . . . . . . 7 (∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷) → 𝑛 ∈ ℕ (𝐹𝑛) = ( 𝑛 ∈ ℕ (𝑒𝑛) ∩ 𝐷))
96953ad2ant3 1134 . . . . . 6 ((𝜑𝑒 ∈ (𝑆m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷)) → 𝑛 ∈ ℕ (𝐹𝑛) = ( 𝑛 ∈ ℕ (𝑒𝑛) ∩ 𝐷))
9724a1i 11 . . . . . 6 ((𝜑𝑒 ∈ (𝑆m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷)) → 𝑇 = (𝑆t 𝐷))
9896, 97eleq12d 2833 . . . . 5 ((𝜑𝑒 ∈ (𝑆m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷)) → ( 𝑛 ∈ ℕ (𝐹𝑛) ∈ 𝑇 ↔ ( 𝑛 ∈ ℕ (𝑒𝑛) ∩ 𝐷) ∈ (𝑆t 𝐷)))
9989, 98mpbird 257 . . . 4 ((𝜑𝑒 ∈ (𝑆m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷)) → 𝑛 ∈ ℕ (𝐹𝑛) ∈ 𝑇)
100993exp 1118 . . 3 (𝜑 → (𝑒 ∈ (𝑆m ℕ) → (∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷) → 𝑛 ∈ ℕ (𝐹𝑛) ∈ 𝑇)))
101100rexlimdv 3151 . 2 (𝜑 → (∃𝑒 ∈ (𝑆m ℕ)∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷) → 𝑛 ∈ ℕ (𝐹𝑛) ∈ 𝑇))
10277, 101mpd 15 1 (𝜑 𝑛 ∈ ℕ (𝐹𝑛) ∈ 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wex 1776  wcel 2106  wne 2938  wral 3059  wrex 3068  {crab 3433  Vcvv 3478  cin 3962  c0 4339   ciun 4996   class class class wbr 5148  cmpt 5231  ran crn 5690  ccom 5693   Fn wfn 6558  wf 6559  cfv 6563  (class class class)co 7431  ωcom 7887  m cmap 8865  cen 8981  cdom 8982  cn 12264  t crest 17467  SAlgcsalg 46264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cc 10473  ax-ac2 10501  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-card 9977  df-acn 9980  df-ac 10154  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-rest 17469  df-salg 46265
This theorem is referenced by:  subsalsal  46315
  Copyright terms: Public domain W3C validator