Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subsaliuncl Structured version   Visualization version   GIF version

Theorem subsaliuncl 43364
 Description: A subspace sigma-algebra is closed under countable union. This is Lemma 121A (iii) of [Fremlin1] p. 35. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
subsaliuncl.1 (𝜑𝑆 ∈ SAlg)
subsaliuncl.2 (𝜑𝐷𝑉)
subsaliuncl.3 𝑇 = (𝑆t 𝐷)
subsaliuncl.4 (𝜑𝐹:ℕ⟶𝑇)
Assertion
Ref Expression
subsaliuncl (𝜑 𝑛 ∈ ℕ (𝐹𝑛) ∈ 𝑇)
Distinct variable groups:   𝐷,𝑛   𝑛,𝐹   𝑆,𝑛   𝜑,𝑛
Allowed substitution hints:   𝑇(𝑛)   𝑉(𝑛)

Proof of Theorem subsaliuncl
Dummy variables 𝑒 𝑓 𝑧 𝑚 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2758 . . . . . . . . 9 {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)} = {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}
2 subsaliuncl.1 . . . . . . . . 9 (𝜑𝑆 ∈ SAlg)
31, 2rabexd 5203 . . . . . . . 8 (𝜑 → {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)} ∈ V)
43ralrimivw 3114 . . . . . . 7 (𝜑 → ∀𝑛 ∈ ℕ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)} ∈ V)
5 eqid 2758 . . . . . . . 8 (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) = (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})
65fnmpt 6471 . . . . . . 7 (∀𝑛 ∈ ℕ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)} ∈ V → (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) Fn ℕ)
74, 6syl 17 . . . . . 6 (𝜑 → (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) Fn ℕ)
8 nnex 11680 . . . . . . 7 ℕ ∈ V
9 fnrndomg 9996 . . . . . . 7 (ℕ ∈ V → ((𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) Fn ℕ → ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) ≼ ℕ))
108, 9ax-mp 5 . . . . . 6 ((𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) Fn ℕ → ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) ≼ ℕ)
117, 10syl 17 . . . . 5 (𝜑 → ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) ≼ ℕ)
12 nnenom 13397 . . . . . 6 ℕ ≈ ω
1312a1i 11 . . . . 5 (𝜑 → ℕ ≈ ω)
14 domentr 8586 . . . . 5 ((ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) ≼ ℕ ∧ ℕ ≈ ω) → ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) ≼ ω)
1511, 13, 14syl2anc 587 . . . 4 (𝜑 → ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) ≼ ω)
16 vex 3413 . . . . . . . 8 𝑦 ∈ V
175elrnmpt 5797 . . . . . . . 8 (𝑦 ∈ V → (𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) ↔ ∃𝑛 ∈ ℕ 𝑦 = {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}))
1816, 17ax-mp 5 . . . . . . 7 (𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) ↔ ∃𝑛 ∈ ℕ 𝑦 = {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})
1918biimpi 219 . . . . . 6 (𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) → ∃𝑛 ∈ ℕ 𝑦 = {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})
2019adantl 485 . . . . 5 ((𝜑𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})) → ∃𝑛 ∈ ℕ 𝑦 = {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})
21 simp3 1135 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ ∧ 𝑦 = {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) → 𝑦 = {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})
22 subsaliuncl.4 . . . . . . . . . . . . . 14 (𝜑𝐹:ℕ⟶𝑇)
2322ffvelrnda 6842 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∈ 𝑇)
24 subsaliuncl.3 . . . . . . . . . . . . 13 𝑇 = (𝑆t 𝐷)
2523, 24eleqtrdi 2862 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∈ (𝑆t 𝐷))
26 subsaliuncl.2 . . . . . . . . . . . . . . 15 (𝜑𝐷𝑉)
2726elexd 3430 . . . . . . . . . . . . . 14 (𝜑𝐷 ∈ V)
28 elrest 16759 . . . . . . . . . . . . . 14 ((𝑆 ∈ SAlg ∧ 𝐷 ∈ V) → ((𝐹𝑛) ∈ (𝑆t 𝐷) ↔ ∃𝑥𝑆 (𝐹𝑛) = (𝑥𝐷)))
292, 27, 28syl2anc 587 . . . . . . . . . . . . 13 (𝜑 → ((𝐹𝑛) ∈ (𝑆t 𝐷) ↔ ∃𝑥𝑆 (𝐹𝑛) = (𝑥𝐷)))
3029adantr 484 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → ((𝐹𝑛) ∈ (𝑆t 𝐷) ↔ ∃𝑥𝑆 (𝐹𝑛) = (𝑥𝐷)))
3125, 30mpbid 235 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ∃𝑥𝑆 (𝐹𝑛) = (𝑥𝐷))
32 rabn0 4281 . . . . . . . . . . 11 ({𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)} ≠ ∅ ↔ ∃𝑥𝑆 (𝐹𝑛) = (𝑥𝐷))
3331, 32sylibr 237 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)} ≠ ∅)
34333adant3 1129 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ ∧ 𝑦 = {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) → {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)} ≠ ∅)
3521, 34eqnetrd 3018 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ ∧ 𝑦 = {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) → 𝑦 ≠ ∅)
36353exp 1116 . . . . . . 7 (𝜑 → (𝑛 ∈ ℕ → (𝑦 = {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)} → 𝑦 ≠ ∅)))
3736rexlimdv 3207 . . . . . 6 (𝜑 → (∃𝑛 ∈ ℕ 𝑦 = {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)} → 𝑦 ≠ ∅))
3837adantr 484 . . . . 5 ((𝜑𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})) → (∃𝑛 ∈ ℕ 𝑦 = {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)} → 𝑦 ≠ ∅))
3920, 38mpd 15 . . . 4 ((𝜑𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})) → 𝑦 ≠ ∅)
4015, 39axccdom 42221 . . 3 (𝜑 → ∃𝑓(𝑓 Fn ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) ∧ ∀𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦))
41 simpl 486 . . . . . 6 ((𝜑 ∧ (𝑓 Fn ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) ∧ ∀𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦)) → 𝜑)
42 fveq2 6658 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → (𝐹𝑛) = (𝐹𝑚))
4342eqeq1d 2760 . . . . . . . . . . . 12 (𝑛 = 𝑚 → ((𝐹𝑛) = (𝑥𝐷) ↔ (𝐹𝑚) = (𝑥𝐷)))
4443rabbidv 3392 . . . . . . . . . . 11 (𝑛 = 𝑚 → {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)} = {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)})
4544cbvmptv 5135 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) = (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)})
4645rneqi 5778 . . . . . . . . 9 ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) = ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)})
4746fneq2i 6432 . . . . . . . 8 (𝑓 Fn ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) ↔ 𝑓 Fn ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)}))
4847biimpi 219 . . . . . . 7 (𝑓 Fn ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) → 𝑓 Fn ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)}))
4948ad2antrl 727 . . . . . 6 ((𝜑 ∧ (𝑓 Fn ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) ∧ ∀𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦)) → 𝑓 Fn ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)}))
5046raleqi 3327 . . . . . . . . 9 (∀𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦 ↔ ∀𝑦 ∈ ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦)
5150biimpi 219 . . . . . . . 8 (∀𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦 → ∀𝑦 ∈ ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦)
5251adantl 485 . . . . . . 7 ((𝜑 ∧ ∀𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦) → ∀𝑦 ∈ ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦)
5352adantrl 715 . . . . . 6 ((𝜑 ∧ (𝑓 Fn ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) ∧ ∀𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦)) → ∀𝑦 ∈ ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦)
54 nfv 1915 . . . . . . 7 𝑧(𝜑𝑓 Fn ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)}) ∧ ∀𝑦 ∈ ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦)
5523ad2ant1 1130 . . . . . . 7 ((𝜑𝑓 Fn ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)}) ∧ ∀𝑦 ∈ ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦) → 𝑆 ∈ SAlg)
56 ineq1 4109 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝑥𝐷) = (𝑧𝐷))
5756eqeq2d 2769 . . . . . . . . . . 11 (𝑥 = 𝑧 → ((𝐹𝑚) = (𝑥𝐷) ↔ (𝐹𝑚) = (𝑧𝐷)))
5857cbvrabv 3404 . . . . . . . . . 10 {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)} = {𝑧𝑆 ∣ (𝐹𝑚) = (𝑧𝐷)}
5958mpteq2i 5124 . . . . . . . . 9 (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)}) = (𝑚 ∈ ℕ ↦ {𝑧𝑆 ∣ (𝐹𝑚) = (𝑧𝐷)})
6045, 59eqtr2i 2782 . . . . . . . 8 (𝑚 ∈ ℕ ↦ {𝑧𝑆 ∣ (𝐹𝑚) = (𝑧𝐷)}) = (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})
6160coeq2i 5700 . . . . . . 7 (𝑓 ∘ (𝑚 ∈ ℕ ↦ {𝑧𝑆 ∣ (𝐹𝑚) = (𝑧𝐷)})) = (𝑓 ∘ (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}))
6247biimpri 231 . . . . . . . 8 (𝑓 Fn ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)}) → 𝑓 Fn ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}))
63623ad2ant2 1131 . . . . . . 7 ((𝜑𝑓 Fn ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)}) ∧ ∀𝑦 ∈ ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦) → 𝑓 Fn ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}))
6446eqcomi 2767 . . . . . . . . . . 11 ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)}) = ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})
6564raleqi 3327 . . . . . . . . . 10 (∀𝑦 ∈ ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦 ↔ ∀𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦)
66 fveq2 6658 . . . . . . . . . . . 12 (𝑦 = 𝑧 → (𝑓𝑦) = (𝑓𝑧))
67 id 22 . . . . . . . . . . . 12 (𝑦 = 𝑧𝑦 = 𝑧)
6866, 67eleq12d 2846 . . . . . . . . . . 11 (𝑦 = 𝑧 → ((𝑓𝑦) ∈ 𝑦 ↔ (𝑓𝑧) ∈ 𝑧))
6968cbvralvw 3361 . . . . . . . . . 10 (∀𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦 ↔ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})(𝑓𝑧) ∈ 𝑧)
7065, 69bitri 278 . . . . . . . . 9 (∀𝑦 ∈ ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦 ↔ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})(𝑓𝑧) ∈ 𝑧)
7170biimpi 219 . . . . . . . 8 (∀𝑦 ∈ ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦 → ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})(𝑓𝑧) ∈ 𝑧)
72713ad2ant3 1132 . . . . . . 7 ((𝜑𝑓 Fn ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)}) ∧ ∀𝑦 ∈ ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦) → ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})(𝑓𝑧) ∈ 𝑧)
7354, 55, 5, 61, 63, 72subsaliuncllem 43363 . . . . . 6 ((𝜑𝑓 Fn ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)}) ∧ ∀𝑦 ∈ ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦) → ∃𝑒 ∈ (𝑆m ℕ)∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷))
7441, 49, 53, 73syl3anc 1368 . . . . 5 ((𝜑 ∧ (𝑓 Fn ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) ∧ ∀𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦)) → ∃𝑒 ∈ (𝑆m ℕ)∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷))
7574ex 416 . . . 4 (𝜑 → ((𝑓 Fn ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) ∧ ∀𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦) → ∃𝑒 ∈ (𝑆m ℕ)∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷)))
7675exlimdv 1934 . . 3 (𝜑 → (∃𝑓(𝑓 Fn ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) ∧ ∀𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦) → ∃𝑒 ∈ (𝑆m ℕ)∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷)))
7740, 76mpd 15 . 2 (𝜑 → ∃𝑒 ∈ (𝑆m ℕ)∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷))
7823ad2ant1 1130 . . . . . 6 ((𝜑𝑒 ∈ (𝑆m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷)) → 𝑆 ∈ SAlg)
79273ad2ant1 1130 . . . . . 6 ((𝜑𝑒 ∈ (𝑆m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷)) → 𝐷 ∈ V)
802adantr 484 . . . . . . . 8 ((𝜑𝑒 ∈ (𝑆m ℕ)) → 𝑆 ∈ SAlg)
81 nnct 13398 . . . . . . . . 9 ℕ ≼ ω
8281a1i 11 . . . . . . . 8 ((𝜑𝑒 ∈ (𝑆m ℕ)) → ℕ ≼ ω)
83 elmapi 8438 . . . . . . . . . 10 (𝑒 ∈ (𝑆m ℕ) → 𝑒:ℕ⟶𝑆)
8483adantl 485 . . . . . . . . 9 ((𝜑𝑒 ∈ (𝑆m ℕ)) → 𝑒:ℕ⟶𝑆)
8584ffvelrnda 6842 . . . . . . . 8 (((𝜑𝑒 ∈ (𝑆m ℕ)) ∧ 𝑛 ∈ ℕ) → (𝑒𝑛) ∈ 𝑆)
8680, 82, 85saliuncl 43330 . . . . . . 7 ((𝜑𝑒 ∈ (𝑆m ℕ)) → 𝑛 ∈ ℕ (𝑒𝑛) ∈ 𝑆)
87863adant3 1129 . . . . . 6 ((𝜑𝑒 ∈ (𝑆m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷)) → 𝑛 ∈ ℕ (𝑒𝑛) ∈ 𝑆)
88 eqid 2758 . . . . . 6 ( 𝑛 ∈ ℕ (𝑒𝑛) ∩ 𝐷) = ( 𝑛 ∈ ℕ (𝑒𝑛) ∩ 𝐷)
8978, 79, 87, 88elrestd 42117 . . . . 5 ((𝜑𝑒 ∈ (𝑆m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷)) → ( 𝑛 ∈ ℕ (𝑒𝑛) ∩ 𝐷) ∈ (𝑆t 𝐷))
90 nfra1 3147 . . . . . . . . 9 𝑛𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷)
91 rspa 3135 . . . . . . . . 9 ((∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷))
9290, 91iuneq2df 42053 . . . . . . . 8 (∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷) → 𝑛 ∈ ℕ (𝐹𝑛) = 𝑛 ∈ ℕ ((𝑒𝑛) ∩ 𝐷))
93 iunin1 4959 . . . . . . . . 9 𝑛 ∈ ℕ ((𝑒𝑛) ∩ 𝐷) = ( 𝑛 ∈ ℕ (𝑒𝑛) ∩ 𝐷)
9493a1i 11 . . . . . . . 8 (∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷) → 𝑛 ∈ ℕ ((𝑒𝑛) ∩ 𝐷) = ( 𝑛 ∈ ℕ (𝑒𝑛) ∩ 𝐷))
9592, 94eqtrd 2793 . . . . . . 7 (∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷) → 𝑛 ∈ ℕ (𝐹𝑛) = ( 𝑛 ∈ ℕ (𝑒𝑛) ∩ 𝐷))
96953ad2ant3 1132 . . . . . 6 ((𝜑𝑒 ∈ (𝑆m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷)) → 𝑛 ∈ ℕ (𝐹𝑛) = ( 𝑛 ∈ ℕ (𝑒𝑛) ∩ 𝐷))
9724a1i 11 . . . . . 6 ((𝜑𝑒 ∈ (𝑆m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷)) → 𝑇 = (𝑆t 𝐷))
9896, 97eleq12d 2846 . . . . 5 ((𝜑𝑒 ∈ (𝑆m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷)) → ( 𝑛 ∈ ℕ (𝐹𝑛) ∈ 𝑇 ↔ ( 𝑛 ∈ ℕ (𝑒𝑛) ∩ 𝐷) ∈ (𝑆t 𝐷)))
9989, 98mpbird 260 . . . 4 ((𝜑𝑒 ∈ (𝑆m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷)) → 𝑛 ∈ ℕ (𝐹𝑛) ∈ 𝑇)
100993exp 1116 . . 3 (𝜑 → (𝑒 ∈ (𝑆m ℕ) → (∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷) → 𝑛 ∈ ℕ (𝐹𝑛) ∈ 𝑇)))
101100rexlimdv 3207 . 2 (𝜑 → (∃𝑒 ∈ (𝑆m ℕ)∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷) → 𝑛 ∈ ℕ (𝐹𝑛) ∈ 𝑇))
10277, 101mpd 15 1 (𝜑 𝑛 ∈ ℕ (𝐹𝑛) ∈ 𝑇)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538  ∃wex 1781   ∈ wcel 2111   ≠ wne 2951  ∀wral 3070  ∃wrex 3071  {crab 3074  Vcvv 3409   ∩ cin 3857  ∅c0 4225  ∪ ciun 4883   class class class wbr 5032   ↦ cmpt 5112  ran crn 5525   ∘ ccom 5528   Fn wfn 6330  ⟶wf 6331  ‘cfv 6335  (class class class)co 7150  ωcom 7579   ↑m cmap 8416   ≈ cen 8524   ≼ cdom 8525  ℕcn 11674   ↾t crest 16752  SAlgcsalg 43316 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-inf2 9137  ax-cc 9895  ax-ac2 9923  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-se 5484  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-isom 6344  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-er 8299  df-map 8418  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-card 9401  df-acn 9404  df-ac 9576  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-nn 11675  df-n0 11935  df-z 12021  df-uz 12283  df-rest 16754  df-salg 43317 This theorem is referenced by:  subsalsal  43365
 Copyright terms: Public domain W3C validator