Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . . . . . . . 9
⊢ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)} = {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)} |
2 | | subsaliuncl.1 |
. . . . . . . . 9
⊢ (𝜑 → 𝑆 ∈ SAlg) |
3 | 1, 2 | rabexd 5252 |
. . . . . . . 8
⊢ (𝜑 → {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)} ∈ V) |
4 | 3 | ralrimivw 3108 |
. . . . . . 7
⊢ (𝜑 → ∀𝑛 ∈ ℕ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)} ∈ V) |
5 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ ↦ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)}) = (𝑛 ∈ ℕ ↦ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)}) |
6 | 5 | fnmpt 6557 |
. . . . . . 7
⊢
(∀𝑛 ∈
ℕ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)} ∈ V → (𝑛 ∈ ℕ ↦ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)}) Fn ℕ) |
7 | 4, 6 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝑛 ∈ ℕ ↦ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)}) Fn ℕ) |
8 | | nnex 11909 |
. . . . . . 7
⊢ ℕ
∈ V |
9 | | fnrndomg 10223 |
. . . . . . 7
⊢ (ℕ
∈ V → ((𝑛 ∈
ℕ ↦ {𝑥 ∈
𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)}) Fn ℕ → ran (𝑛 ∈ ℕ ↦ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)}) ≼ ℕ)) |
10 | 8, 9 | ax-mp 5 |
. . . . . 6
⊢ ((𝑛 ∈ ℕ ↦ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)}) Fn ℕ → ran (𝑛 ∈ ℕ ↦ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)}) ≼ ℕ) |
11 | 7, 10 | syl 17 |
. . . . 5
⊢ (𝜑 → ran (𝑛 ∈ ℕ ↦ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)}) ≼ ℕ) |
12 | | nnenom 13628 |
. . . . . 6
⊢ ℕ
≈ ω |
13 | 12 | a1i 11 |
. . . . 5
⊢ (𝜑 → ℕ ≈
ω) |
14 | | domentr 8754 |
. . . . 5
⊢ ((ran
(𝑛 ∈ ℕ ↦
{𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)}) ≼ ℕ ∧ ℕ ≈
ω) → ran (𝑛
∈ ℕ ↦ {𝑥
∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)}) ≼ ω) |
15 | 11, 13, 14 | syl2anc 583 |
. . . 4
⊢ (𝜑 → ran (𝑛 ∈ ℕ ↦ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)}) ≼ ω) |
16 | | vex 3426 |
. . . . . . . 8
⊢ 𝑦 ∈ V |
17 | 5 | elrnmpt 5854 |
. . . . . . . 8
⊢ (𝑦 ∈ V → (𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)}) ↔ ∃𝑛 ∈ ℕ 𝑦 = {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)})) |
18 | 16, 17 | ax-mp 5 |
. . . . . . 7
⊢ (𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)}) ↔ ∃𝑛 ∈ ℕ 𝑦 = {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)}) |
19 | 18 | biimpi 215 |
. . . . . 6
⊢ (𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)}) → ∃𝑛 ∈ ℕ 𝑦 = {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)}) |
20 | 19 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)})) → ∃𝑛 ∈ ℕ 𝑦 = {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)}) |
21 | | simp3 1136 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ ∧ 𝑦 = {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)}) → 𝑦 = {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)}) |
22 | | subsaliuncl.4 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐹:ℕ⟶𝑇) |
23 | 22 | ffvelrnda 6943 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∈ 𝑇) |
24 | | subsaliuncl.3 |
. . . . . . . . . . . . 13
⊢ 𝑇 = (𝑆 ↾t 𝐷) |
25 | 23, 24 | eleqtrdi 2849 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∈ (𝑆 ↾t 𝐷)) |
26 | | subsaliuncl.2 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐷 ∈ 𝑉) |
27 | 26 | elexd 3442 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐷 ∈ V) |
28 | | elrest 17055 |
. . . . . . . . . . . . . 14
⊢ ((𝑆 ∈ SAlg ∧ 𝐷 ∈ V) → ((𝐹‘𝑛) ∈ (𝑆 ↾t 𝐷) ↔ ∃𝑥 ∈ 𝑆 (𝐹‘𝑛) = (𝑥 ∩ 𝐷))) |
29 | 2, 27, 28 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝐹‘𝑛) ∈ (𝑆 ↾t 𝐷) ↔ ∃𝑥 ∈ 𝑆 (𝐹‘𝑛) = (𝑥 ∩ 𝐷))) |
30 | 29 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐹‘𝑛) ∈ (𝑆 ↾t 𝐷) ↔ ∃𝑥 ∈ 𝑆 (𝐹‘𝑛) = (𝑥 ∩ 𝐷))) |
31 | 25, 30 | mpbid 231 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∃𝑥 ∈ 𝑆 (𝐹‘𝑛) = (𝑥 ∩ 𝐷)) |
32 | | rabn0 4316 |
. . . . . . . . . . 11
⊢ ({𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)} ≠ ∅ ↔ ∃𝑥 ∈ 𝑆 (𝐹‘𝑛) = (𝑥 ∩ 𝐷)) |
33 | 31, 32 | sylibr 233 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)} ≠ ∅) |
34 | 33 | 3adant3 1130 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ ∧ 𝑦 = {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)}) → {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)} ≠ ∅) |
35 | 21, 34 | eqnetrd 3010 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ ∧ 𝑦 = {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)}) → 𝑦 ≠ ∅) |
36 | 35 | 3exp 1117 |
. . . . . . 7
⊢ (𝜑 → (𝑛 ∈ ℕ → (𝑦 = {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)} → 𝑦 ≠ ∅))) |
37 | 36 | rexlimdv 3211 |
. . . . . 6
⊢ (𝜑 → (∃𝑛 ∈ ℕ 𝑦 = {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)} → 𝑦 ≠ ∅)) |
38 | 37 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)})) → (∃𝑛 ∈ ℕ 𝑦 = {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)} → 𝑦 ≠ ∅)) |
39 | 20, 38 | mpd 15 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)})) → 𝑦 ≠ ∅) |
40 | 15, 39 | axccdom 42651 |
. . 3
⊢ (𝜑 → ∃𝑓(𝑓 Fn ran (𝑛 ∈ ℕ ↦ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)}) ∧ ∀𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)})(𝑓‘𝑦) ∈ 𝑦)) |
41 | | simpl 482 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓 Fn ran (𝑛 ∈ ℕ ↦ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)}) ∧ ∀𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)})(𝑓‘𝑦) ∈ 𝑦)) → 𝜑) |
42 | | fveq2 6756 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑚 → (𝐹‘𝑛) = (𝐹‘𝑚)) |
43 | 42 | eqeq1d 2740 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑚 → ((𝐹‘𝑛) = (𝑥 ∩ 𝐷) ↔ (𝐹‘𝑚) = (𝑥 ∩ 𝐷))) |
44 | 43 | rabbidv 3404 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑚 → {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)} = {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑚) = (𝑥 ∩ 𝐷)}) |
45 | 44 | cbvmptv 5183 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ ↦ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)}) = (𝑚 ∈ ℕ ↦ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑚) = (𝑥 ∩ 𝐷)}) |
46 | 45 | rneqi 5835 |
. . . . . . . . 9
⊢ ran
(𝑛 ∈ ℕ ↦
{𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)}) = ran (𝑚 ∈ ℕ ↦ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑚) = (𝑥 ∩ 𝐷)}) |
47 | 46 | fneq2i 6515 |
. . . . . . . 8
⊢ (𝑓 Fn ran (𝑛 ∈ ℕ ↦ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)}) ↔ 𝑓 Fn ran (𝑚 ∈ ℕ ↦ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑚) = (𝑥 ∩ 𝐷)})) |
48 | 47 | biimpi 215 |
. . . . . . 7
⊢ (𝑓 Fn ran (𝑛 ∈ ℕ ↦ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)}) → 𝑓 Fn ran (𝑚 ∈ ℕ ↦ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑚) = (𝑥 ∩ 𝐷)})) |
49 | 48 | ad2antrl 724 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓 Fn ran (𝑛 ∈ ℕ ↦ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)}) ∧ ∀𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)})(𝑓‘𝑦) ∈ 𝑦)) → 𝑓 Fn ran (𝑚 ∈ ℕ ↦ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑚) = (𝑥 ∩ 𝐷)})) |
50 | 46 | raleqi 3337 |
. . . . . . . . 9
⊢
(∀𝑦 ∈
ran (𝑛 ∈ ℕ
↦ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)})(𝑓‘𝑦) ∈ 𝑦 ↔ ∀𝑦 ∈ ran (𝑚 ∈ ℕ ↦ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑚) = (𝑥 ∩ 𝐷)})(𝑓‘𝑦) ∈ 𝑦) |
51 | 50 | biimpi 215 |
. . . . . . . 8
⊢
(∀𝑦 ∈
ran (𝑛 ∈ ℕ
↦ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)})(𝑓‘𝑦) ∈ 𝑦 → ∀𝑦 ∈ ran (𝑚 ∈ ℕ ↦ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑚) = (𝑥 ∩ 𝐷)})(𝑓‘𝑦) ∈ 𝑦) |
52 | 51 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ ∀𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)})(𝑓‘𝑦) ∈ 𝑦) → ∀𝑦 ∈ ran (𝑚 ∈ ℕ ↦ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑚) = (𝑥 ∩ 𝐷)})(𝑓‘𝑦) ∈ 𝑦) |
53 | 52 | adantrl 712 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓 Fn ran (𝑛 ∈ ℕ ↦ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)}) ∧ ∀𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)})(𝑓‘𝑦) ∈ 𝑦)) → ∀𝑦 ∈ ran (𝑚 ∈ ℕ ↦ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑚) = (𝑥 ∩ 𝐷)})(𝑓‘𝑦) ∈ 𝑦) |
54 | | nfv 1918 |
. . . . . . 7
⊢
Ⅎ𝑧(𝜑 ∧ 𝑓 Fn ran (𝑚 ∈ ℕ ↦ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑚) = (𝑥 ∩ 𝐷)}) ∧ ∀𝑦 ∈ ran (𝑚 ∈ ℕ ↦ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑚) = (𝑥 ∩ 𝐷)})(𝑓‘𝑦) ∈ 𝑦) |
55 | 2 | 3ad2ant1 1131 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 Fn ran (𝑚 ∈ ℕ ↦ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑚) = (𝑥 ∩ 𝐷)}) ∧ ∀𝑦 ∈ ran (𝑚 ∈ ℕ ↦ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑚) = (𝑥 ∩ 𝐷)})(𝑓‘𝑦) ∈ 𝑦) → 𝑆 ∈ SAlg) |
56 | | ineq1 4136 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → (𝑥 ∩ 𝐷) = (𝑧 ∩ 𝐷)) |
57 | 56 | eqeq2d 2749 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → ((𝐹‘𝑚) = (𝑥 ∩ 𝐷) ↔ (𝐹‘𝑚) = (𝑧 ∩ 𝐷))) |
58 | 57 | cbvrabv 3416 |
. . . . . . . . . 10
⊢ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑚) = (𝑥 ∩ 𝐷)} = {𝑧 ∈ 𝑆 ∣ (𝐹‘𝑚) = (𝑧 ∩ 𝐷)} |
59 | 58 | mpteq2i 5175 |
. . . . . . . . 9
⊢ (𝑚 ∈ ℕ ↦ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑚) = (𝑥 ∩ 𝐷)}) = (𝑚 ∈ ℕ ↦ {𝑧 ∈ 𝑆 ∣ (𝐹‘𝑚) = (𝑧 ∩ 𝐷)}) |
60 | 45, 59 | eqtr2i 2767 |
. . . . . . . 8
⊢ (𝑚 ∈ ℕ ↦ {𝑧 ∈ 𝑆 ∣ (𝐹‘𝑚) = (𝑧 ∩ 𝐷)}) = (𝑛 ∈ ℕ ↦ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)}) |
61 | 60 | coeq2i 5758 |
. . . . . . 7
⊢ (𝑓 ∘ (𝑚 ∈ ℕ ↦ {𝑧 ∈ 𝑆 ∣ (𝐹‘𝑚) = (𝑧 ∩ 𝐷)})) = (𝑓 ∘ (𝑛 ∈ ℕ ↦ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)})) |
62 | 47 | biimpri 227 |
. . . . . . . 8
⊢ (𝑓 Fn ran (𝑚 ∈ ℕ ↦ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑚) = (𝑥 ∩ 𝐷)}) → 𝑓 Fn ran (𝑛 ∈ ℕ ↦ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)})) |
63 | 62 | 3ad2ant2 1132 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 Fn ran (𝑚 ∈ ℕ ↦ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑚) = (𝑥 ∩ 𝐷)}) ∧ ∀𝑦 ∈ ran (𝑚 ∈ ℕ ↦ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑚) = (𝑥 ∩ 𝐷)})(𝑓‘𝑦) ∈ 𝑦) → 𝑓 Fn ran (𝑛 ∈ ℕ ↦ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)})) |
64 | 46 | eqcomi 2747 |
. . . . . . . . . . 11
⊢ ran
(𝑚 ∈ ℕ ↦
{𝑥 ∈ 𝑆 ∣ (𝐹‘𝑚) = (𝑥 ∩ 𝐷)}) = ran (𝑛 ∈ ℕ ↦ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)}) |
65 | 64 | raleqi 3337 |
. . . . . . . . . 10
⊢
(∀𝑦 ∈
ran (𝑚 ∈ ℕ
↦ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑚) = (𝑥 ∩ 𝐷)})(𝑓‘𝑦) ∈ 𝑦 ↔ ∀𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)})(𝑓‘𝑦) ∈ 𝑦) |
66 | | fveq2 6756 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑧 → (𝑓‘𝑦) = (𝑓‘𝑧)) |
67 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑧 → 𝑦 = 𝑧) |
68 | 66, 67 | eleq12d 2833 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑧 → ((𝑓‘𝑦) ∈ 𝑦 ↔ (𝑓‘𝑧) ∈ 𝑧)) |
69 | 68 | cbvralvw 3372 |
. . . . . . . . . 10
⊢
(∀𝑦 ∈
ran (𝑛 ∈ ℕ
↦ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)})(𝑓‘𝑦) ∈ 𝑦 ↔ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)})(𝑓‘𝑧) ∈ 𝑧) |
70 | 65, 69 | bitri 274 |
. . . . . . . . 9
⊢
(∀𝑦 ∈
ran (𝑚 ∈ ℕ
↦ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑚) = (𝑥 ∩ 𝐷)})(𝑓‘𝑦) ∈ 𝑦 ↔ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)})(𝑓‘𝑧) ∈ 𝑧) |
71 | 70 | biimpi 215 |
. . . . . . . 8
⊢
(∀𝑦 ∈
ran (𝑚 ∈ ℕ
↦ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑚) = (𝑥 ∩ 𝐷)})(𝑓‘𝑦) ∈ 𝑦 → ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)})(𝑓‘𝑧) ∈ 𝑧) |
72 | 71 | 3ad2ant3 1133 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 Fn ran (𝑚 ∈ ℕ ↦ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑚) = (𝑥 ∩ 𝐷)}) ∧ ∀𝑦 ∈ ran (𝑚 ∈ ℕ ↦ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑚) = (𝑥 ∩ 𝐷)})(𝑓‘𝑦) ∈ 𝑦) → ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)})(𝑓‘𝑧) ∈ 𝑧) |
73 | 54, 55, 5, 61, 63, 72 | subsaliuncllem 43786 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 Fn ran (𝑚 ∈ ℕ ↦ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑚) = (𝑥 ∩ 𝐷)}) ∧ ∀𝑦 ∈ ran (𝑚 ∈ ℕ ↦ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑚) = (𝑥 ∩ 𝐷)})(𝑓‘𝑦) ∈ 𝑦) → ∃𝑒 ∈ (𝑆 ↑m ℕ)∀𝑛 ∈ ℕ (𝐹‘𝑛) = ((𝑒‘𝑛) ∩ 𝐷)) |
74 | 41, 49, 53, 73 | syl3anc 1369 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 Fn ran (𝑛 ∈ ℕ ↦ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)}) ∧ ∀𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)})(𝑓‘𝑦) ∈ 𝑦)) → ∃𝑒 ∈ (𝑆 ↑m ℕ)∀𝑛 ∈ ℕ (𝐹‘𝑛) = ((𝑒‘𝑛) ∩ 𝐷)) |
75 | 74 | ex 412 |
. . . 4
⊢ (𝜑 → ((𝑓 Fn ran (𝑛 ∈ ℕ ↦ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)}) ∧ ∀𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)})(𝑓‘𝑦) ∈ 𝑦) → ∃𝑒 ∈ (𝑆 ↑m ℕ)∀𝑛 ∈ ℕ (𝐹‘𝑛) = ((𝑒‘𝑛) ∩ 𝐷))) |
76 | 75 | exlimdv 1937 |
. . 3
⊢ (𝜑 → (∃𝑓(𝑓 Fn ran (𝑛 ∈ ℕ ↦ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)}) ∧ ∀𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)})(𝑓‘𝑦) ∈ 𝑦) → ∃𝑒 ∈ (𝑆 ↑m ℕ)∀𝑛 ∈ ℕ (𝐹‘𝑛) = ((𝑒‘𝑛) ∩ 𝐷))) |
77 | 40, 76 | mpd 15 |
. 2
⊢ (𝜑 → ∃𝑒 ∈ (𝑆 ↑m ℕ)∀𝑛 ∈ ℕ (𝐹‘𝑛) = ((𝑒‘𝑛) ∩ 𝐷)) |
78 | 2 | 3ad2ant1 1131 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑒 ∈ (𝑆 ↑m ℕ) ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) = ((𝑒‘𝑛) ∩ 𝐷)) → 𝑆 ∈ SAlg) |
79 | 27 | 3ad2ant1 1131 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑒 ∈ (𝑆 ↑m ℕ) ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) = ((𝑒‘𝑛) ∩ 𝐷)) → 𝐷 ∈ V) |
80 | 2 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑒 ∈ (𝑆 ↑m ℕ)) → 𝑆 ∈ SAlg) |
81 | | nnct 13629 |
. . . . . . . . 9
⊢ ℕ
≼ ω |
82 | 81 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑒 ∈ (𝑆 ↑m ℕ)) → ℕ
≼ ω) |
83 | | elmapi 8595 |
. . . . . . . . . 10
⊢ (𝑒 ∈ (𝑆 ↑m ℕ) → 𝑒:ℕ⟶𝑆) |
84 | 83 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑒 ∈ (𝑆 ↑m ℕ)) → 𝑒:ℕ⟶𝑆) |
85 | 84 | ffvelrnda 6943 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑒 ∈ (𝑆 ↑m ℕ)) ∧ 𝑛 ∈ ℕ) → (𝑒‘𝑛) ∈ 𝑆) |
86 | 80, 82, 85 | saliuncl 43753 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑒 ∈ (𝑆 ↑m ℕ)) →
∪ 𝑛 ∈ ℕ (𝑒‘𝑛) ∈ 𝑆) |
87 | 86 | 3adant3 1130 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑒 ∈ (𝑆 ↑m ℕ) ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) = ((𝑒‘𝑛) ∩ 𝐷)) → ∪ 𝑛 ∈ ℕ (𝑒‘𝑛) ∈ 𝑆) |
88 | | eqid 2738 |
. . . . . 6
⊢ (∪ 𝑛 ∈ ℕ (𝑒‘𝑛) ∩ 𝐷) = (∪
𝑛 ∈ ℕ (𝑒‘𝑛) ∩ 𝐷) |
89 | 78, 79, 87, 88 | elrestd 42547 |
. . . . 5
⊢ ((𝜑 ∧ 𝑒 ∈ (𝑆 ↑m ℕ) ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) = ((𝑒‘𝑛) ∩ 𝐷)) → (∪ 𝑛 ∈ ℕ (𝑒‘𝑛) ∩ 𝐷) ∈ (𝑆 ↾t 𝐷)) |
90 | | nfra1 3142 |
. . . . . . . . 9
⊢
Ⅎ𝑛∀𝑛 ∈ ℕ (𝐹‘𝑛) = ((𝑒‘𝑛) ∩ 𝐷) |
91 | | rspa 3130 |
. . . . . . . . 9
⊢
((∀𝑛 ∈
ℕ (𝐹‘𝑛) = ((𝑒‘𝑛) ∩ 𝐷) ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) = ((𝑒‘𝑛) ∩ 𝐷)) |
92 | 90, 91 | iuneq2df 42483 |
. . . . . . . 8
⊢
(∀𝑛 ∈
ℕ (𝐹‘𝑛) = ((𝑒‘𝑛) ∩ 𝐷) → ∪
𝑛 ∈ ℕ (𝐹‘𝑛) = ∪ 𝑛 ∈ ℕ ((𝑒‘𝑛) ∩ 𝐷)) |
93 | | iunin1 4997 |
. . . . . . . . 9
⊢ ∪ 𝑛 ∈ ℕ ((𝑒‘𝑛) ∩ 𝐷) = (∪
𝑛 ∈ ℕ (𝑒‘𝑛) ∩ 𝐷) |
94 | 93 | a1i 11 |
. . . . . . . 8
⊢
(∀𝑛 ∈
ℕ (𝐹‘𝑛) = ((𝑒‘𝑛) ∩ 𝐷) → ∪
𝑛 ∈ ℕ ((𝑒‘𝑛) ∩ 𝐷) = (∪
𝑛 ∈ ℕ (𝑒‘𝑛) ∩ 𝐷)) |
95 | 92, 94 | eqtrd 2778 |
. . . . . . 7
⊢
(∀𝑛 ∈
ℕ (𝐹‘𝑛) = ((𝑒‘𝑛) ∩ 𝐷) → ∪
𝑛 ∈ ℕ (𝐹‘𝑛) = (∪
𝑛 ∈ ℕ (𝑒‘𝑛) ∩ 𝐷)) |
96 | 95 | 3ad2ant3 1133 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑒 ∈ (𝑆 ↑m ℕ) ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) = ((𝑒‘𝑛) ∩ 𝐷)) → ∪ 𝑛 ∈ ℕ (𝐹‘𝑛) = (∪
𝑛 ∈ ℕ (𝑒‘𝑛) ∩ 𝐷)) |
97 | 24 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑒 ∈ (𝑆 ↑m ℕ) ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) = ((𝑒‘𝑛) ∩ 𝐷)) → 𝑇 = (𝑆 ↾t 𝐷)) |
98 | 96, 97 | eleq12d 2833 |
. . . . 5
⊢ ((𝜑 ∧ 𝑒 ∈ (𝑆 ↑m ℕ) ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) = ((𝑒‘𝑛) ∩ 𝐷)) → (∪ 𝑛 ∈ ℕ (𝐹‘𝑛) ∈ 𝑇 ↔ (∪
𝑛 ∈ ℕ (𝑒‘𝑛) ∩ 𝐷) ∈ (𝑆 ↾t 𝐷))) |
99 | 89, 98 | mpbird 256 |
. . . 4
⊢ ((𝜑 ∧ 𝑒 ∈ (𝑆 ↑m ℕ) ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) = ((𝑒‘𝑛) ∩ 𝐷)) → ∪ 𝑛 ∈ ℕ (𝐹‘𝑛) ∈ 𝑇) |
100 | 99 | 3exp 1117 |
. . 3
⊢ (𝜑 → (𝑒 ∈ (𝑆 ↑m ℕ) →
(∀𝑛 ∈ ℕ
(𝐹‘𝑛) = ((𝑒‘𝑛) ∩ 𝐷) → ∪
𝑛 ∈ ℕ (𝐹‘𝑛) ∈ 𝑇))) |
101 | 100 | rexlimdv 3211 |
. 2
⊢ (𝜑 → (∃𝑒 ∈ (𝑆 ↑m ℕ)∀𝑛 ∈ ℕ (𝐹‘𝑛) = ((𝑒‘𝑛) ∩ 𝐷) → ∪
𝑛 ∈ ℕ (𝐹‘𝑛) ∈ 𝑇)) |
102 | 77, 101 | mpd 15 |
1
⊢ (𝜑 → ∪ 𝑛 ∈ ℕ (𝐹‘𝑛) ∈ 𝑇) |