Proof of Theorem algcvgblem
| Step | Hyp | Ref
| Expression |
| 1 | | imor 853 |
. . . . 5
⊢ ((𝑁 ≠ 0 → 𝑁 < 𝑀) ↔ (¬ 𝑁 ≠ 0 ∨ 𝑁 < 𝑀)) |
| 2 | | 0re 11242 |
. . . . . . . . . . . 12
⊢ 0 ∈
ℝ |
| 3 | | nn0re 12515 |
. . . . . . . . . . . . 13
⊢ (𝑀 ∈ ℕ0
→ 𝑀 ∈
ℝ) |
| 4 | 3 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → 𝑀 ∈ ℝ) |
| 5 | | ltnle 11319 |
. . . . . . . . . . . 12
⊢ ((0
∈ ℝ ∧ 𝑀
∈ ℝ) → (0 < 𝑀 ↔ ¬ 𝑀 ≤ 0)) |
| 6 | 2, 4, 5 | sylancr 587 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (0 < 𝑀 ↔ ¬ 𝑀 ≤ 0)) |
| 7 | | nn0le0eq0 12534 |
. . . . . . . . . . . . 13
⊢ (𝑀 ∈ ℕ0
→ (𝑀 ≤ 0 ↔
𝑀 = 0)) |
| 8 | 7 | notbid 318 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈ ℕ0
→ (¬ 𝑀 ≤ 0
↔ ¬ 𝑀 =
0)) |
| 9 | 8 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (¬ 𝑀 ≤ 0 ↔ ¬ 𝑀 = 0)) |
| 10 | 6, 9 | bitrd 279 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (0 < 𝑀 ↔ ¬ 𝑀 = 0)) |
| 11 | | df-ne 2934 |
. . . . . . . . . 10
⊢ (𝑀 ≠ 0 ↔ ¬ 𝑀 = 0) |
| 12 | 10, 11 | bitr4di 289 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (0 < 𝑀 ↔ 𝑀 ≠ 0)) |
| 13 | 12 | anbi2d 630 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → ((¬ 𝑁 ≠ 0 ∧ 0 < 𝑀) ↔ (¬ 𝑁 ≠ 0 ∧ 𝑀 ≠ 0))) |
| 14 | | nne 2937 |
. . . . . . . . . 10
⊢ (¬
𝑁 ≠ 0 ↔ 𝑁 = 0) |
| 15 | | breq1 5127 |
. . . . . . . . . 10
⊢ (𝑁 = 0 → (𝑁 < 𝑀 ↔ 0 < 𝑀)) |
| 16 | 14, 15 | sylbi 217 |
. . . . . . . . 9
⊢ (¬
𝑁 ≠ 0 → (𝑁 < 𝑀 ↔ 0 < 𝑀)) |
| 17 | 16 | biimpar 477 |
. . . . . . . 8
⊢ ((¬
𝑁 ≠ 0 ∧ 0 < 𝑀) → 𝑁 < 𝑀) |
| 18 | 13, 17 | biimtrrdi 254 |
. . . . . . 7
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → ((¬ 𝑁 ≠ 0 ∧ 𝑀 ≠ 0) → 𝑁 < 𝑀)) |
| 19 | 18 | expd 415 |
. . . . . 6
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (¬ 𝑁 ≠ 0 → (𝑀 ≠ 0 → 𝑁 < 𝑀))) |
| 20 | | ax-1 6 |
. . . . . 6
⊢ (𝑁 < 𝑀 → (𝑀 ≠ 0 → 𝑁 < 𝑀)) |
| 21 | | jaob 963 |
. . . . . 6
⊢ (((¬
𝑁 ≠ 0 ∨ 𝑁 < 𝑀) → (𝑀 ≠ 0 → 𝑁 < 𝑀)) ↔ ((¬ 𝑁 ≠ 0 → (𝑀 ≠ 0 → 𝑁 < 𝑀)) ∧ (𝑁 < 𝑀 → (𝑀 ≠ 0 → 𝑁 < 𝑀)))) |
| 22 | 19, 20, 21 | sylanblrc 590 |
. . . . 5
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → ((¬ 𝑁 ≠ 0 ∨ 𝑁 < 𝑀) → (𝑀 ≠ 0 → 𝑁 < 𝑀))) |
| 23 | 1, 22 | biimtrid 242 |
. . . 4
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → ((𝑁 ≠ 0 → 𝑁 < 𝑀) → (𝑀 ≠ 0 → 𝑁 < 𝑀))) |
| 24 | | nn0ge0 12531 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ0
→ 0 ≤ 𝑁) |
| 25 | 24 | adantl 481 |
. . . . . . 7
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → 0 ≤ 𝑁) |
| 26 | | nn0re 12515 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℝ) |
| 27 | | lelttr 11330 |
. . . . . . . . 9
⊢ ((0
∈ ℝ ∧ 𝑁
∈ ℝ ∧ 𝑀
∈ ℝ) → ((0 ≤ 𝑁 ∧ 𝑁 < 𝑀) → 0 < 𝑀)) |
| 28 | 2, 27 | mp3an1 1450 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((0 ≤
𝑁 ∧ 𝑁 < 𝑀) → 0 < 𝑀)) |
| 29 | 26, 3, 28 | syl2anr 597 |
. . . . . . 7
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → ((0 ≤ 𝑁 ∧ 𝑁 < 𝑀) → 0 < 𝑀)) |
| 30 | 25, 29 | mpand 695 |
. . . . . 6
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (𝑁 < 𝑀 → 0 < 𝑀)) |
| 31 | 30, 12 | sylibd 239 |
. . . . 5
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (𝑁 < 𝑀 → 𝑀 ≠ 0)) |
| 32 | 31 | imim2d 57 |
. . . 4
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → ((𝑁 ≠ 0 → 𝑁 < 𝑀) → (𝑁 ≠ 0 → 𝑀 ≠ 0))) |
| 33 | 23, 32 | jcad 512 |
. . 3
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → ((𝑁 ≠ 0 → 𝑁 < 𝑀) → ((𝑀 ≠ 0 → 𝑁 < 𝑀) ∧ (𝑁 ≠ 0 → 𝑀 ≠ 0)))) |
| 34 | | pm3.34 765 |
. . 3
⊢ (((𝑀 ≠ 0 → 𝑁 < 𝑀) ∧ (𝑁 ≠ 0 → 𝑀 ≠ 0)) → (𝑁 ≠ 0 → 𝑁 < 𝑀)) |
| 35 | 33, 34 | impbid1 225 |
. 2
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → ((𝑁 ≠ 0 → 𝑁 < 𝑀) ↔ ((𝑀 ≠ 0 → 𝑁 < 𝑀) ∧ (𝑁 ≠ 0 → 𝑀 ≠ 0)))) |
| 36 | | con34b 316 |
. . . 4
⊢ ((𝑀 = 0 → 𝑁 = 0) ↔ (¬ 𝑁 = 0 → ¬ 𝑀 = 0)) |
| 37 | | df-ne 2934 |
. . . . 5
⊢ (𝑁 ≠ 0 ↔ ¬ 𝑁 = 0) |
| 38 | 37, 11 | imbi12i 350 |
. . . 4
⊢ ((𝑁 ≠ 0 → 𝑀 ≠ 0) ↔ (¬ 𝑁 = 0 → ¬ 𝑀 = 0)) |
| 39 | 36, 38 | bitr4i 278 |
. . 3
⊢ ((𝑀 = 0 → 𝑁 = 0) ↔ (𝑁 ≠ 0 → 𝑀 ≠ 0)) |
| 40 | 39 | anbi2i 623 |
. 2
⊢ (((𝑀 ≠ 0 → 𝑁 < 𝑀) ∧ (𝑀 = 0 → 𝑁 = 0)) ↔ ((𝑀 ≠ 0 → 𝑁 < 𝑀) ∧ (𝑁 ≠ 0 → 𝑀 ≠ 0))) |
| 41 | 35, 40 | bitr4di 289 |
1
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → ((𝑁 ≠ 0 → 𝑁 < 𝑀) ↔ ((𝑀 ≠ 0 → 𝑁 < 𝑀) ∧ (𝑀 = 0 → 𝑁 = 0)))) |